
B
a

n
k

in
g

 o
n

 D
o

m
a

in
 K

n
o

w
le

d
g

e
 fo

r F
a

ste
r Tra

n
sa

ctio
n

s
B

a
n

k
in

g
 o

n
 D

o
m

a
in

 K
n

o
w

le
d

g
e

 fo
r F

a
ste

r Tra
n

sa
ctio

n
s

T
im

 S
o

e
th

o
u

t
T

im
 S

o
e

th
o

u
t

Banking on Domain Knowledge Banking on Domain Knowledge
for Faster Transactionsfor Faster Transactions
LEVERAGING MODELS TO AVOID COORDINATIONLEVERAGING MODELS TO AVOID COORDINATION

Tim SoethoutTim Soethout

Banking on Domain Knowledge for
Faster Transactions

Leveraging Models to Avoid Coordination

Tim Soethout

Banking on Domain Knowledge for Faster Transactions
Leveraging Models to Avoid Coordination

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof. dr. ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op maandag 27 juni 2022 om 11:00 uur

door

Timotheus Martinianus Soethout

geboren te Nijmegen

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van
de promotiecommissie is als volgt:

voorzitter: prof. dr. J.J. Lukkien
promotores: prof. dr. J.J. Vinju (cwi – Technische Universiteit Eindhoven)

prof. dr. T. van der Storm (cwi – Rijksuniversiteit Groningen)
leden: dr. N. Crooks (uc Berkeley)

prof. dr. W.J. Fokkink
prof. dr. G.H.L. Fletcher
prof. dr. A. Iosup (Vrije Universiteit Amsterdam)

adviseur: drs. J. de Vos (ing Bank Nederland)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

The work in this dissertation has been carried out at Centrum Wiskunde &
Informatica (cwi), in collaboration with the ing Bank, under the auspices of
the research school Institute for Programming research and Algorithmics (ipa).

A catalogue record is available from the Eindhoven University of Technology
Library isbn: 978-90-386-5523-9

https://www.titelbank.nl/pls/ttb/f?p=103:4012:::NO::P4012_TTEL_ID:3516549&cs=18F75FEE54B5F10E503033EBED2020281

Table of Contents

Acknowledgements xi

1 Introduction 1
1.1 Background . 3

1.1.1 Consistency and Isolation 6
1.1.2 Coordination Avoidance . 9

1.2 Coordination in Distributed Systems 9
1.2.1 Coordination Avoidance by Example 12

1.3 Context within ing Bank . 13
1.4 Approach . 15

1.4.1 Research Questions . 15
1.4.2 Local-Coordination Avoidance 17

1.5 Origins of the Chapters . 19

2 Path-Sensitive Atomic Commit: Local Coordination Avoidance for Dis-
tributed Transactions 23
2.1 Introduction . 24
2.2 Background: Distributed Transactions 26
2.3 Path-Sensitive Atomic Commit (psac) 28

2.3.1 psac in action . 30
2.3.2 psac Algorithm . 32

2.4 Implementation: Rebel and Akka 35
2.4.1 Rebel: a dsl for Financial Products 35
2.4.2 Executing Rebel on Akka 37

2.5 Performance Evaluation . 40
2.5.1 Research Objectives . 40
2.5.2 Deployment Setup . 41
2.5.3 Baseline Experiments: Akka Scalability 43
2.5.4 Synchronization Experiments: psac vs 2pl/2pc 44

2.6 Discussion . 49
2.6.1 Threats to Validity . 49
2.6.2 Limitations . 51
2.6.3 Evaluation . 53

2.7 Related work . 53
2.8 Further Directions . 55

vii

Table of Contents

2.9 Conclusion . 57

3 Static Local Coordination Avoidance for Distributed Objects 59
3.1 Introduction . 59
3.2 Independent Events . 61

3.2.1 Bank Account Example . 61
3.2.2 Independent Events . 63
3.2.3 Statically Independent Events 63
3.2.4 Computing SIE . 64
3.2.5 Always Accept or Always Reject? 65

3.3 Local Coordination Avoidance (loca) 66
3.3.1 Static loca . 67

3.4 Evaluation . 69
3.4.1 Independence in Realistic Scenarios (rq 1) 69
3.4.2 Throughput and Latency (rq 2) 70

3.5 Discussion . 76
3.6 Related Work . 77
3.7 Future Work . 80
3.8 Conclusion . 81

4 Automated Validation of State-Based Client-Centric Isolation with tla+ 83
4.1 Introduction . 84
4.2 Background: State-Based Client-Centric Consistency 85
4.3 Formalizing ci in tla+ . 87
4.4 ci examples . 89
4.5 Model Checking Algorithms Using ci 92

4.5.1 Formalizing 2pl/2pc . 92
4.5.2 Model Checking 2pl/2pc 95
4.5.3 2pl/2pc Bug Seeding . 96

4.6 Discussion and Future Work . 98
4.7 Conclusion . 99

5 Safely Exploiting Contract-Based Return-Value Commutativity for Faster
Serializable Transactions 101
5.1 Introduction . 102
5.2 Background: State-Dependent Commutativity and Return-Value

Commutativity . 104

viii

Table of Contents

5.3 Contract-Based Commutativity: actionable sdc and rvc 106
5.3.1 Computing cbc at Run Time 107
5.3.2 cbc for Multiple In-progress Operations 110

5.4 Return-Value Serializability . 111
5.5 Local Coordination Avoidance (loca) 113

5.5.1 loca with Independent Events 114
5.6 Model Checking loca and rv-ser 115
5.7 Initial Validation . 118
5.8 Discussion . 119

5.8.1 Threats to Validity . 121
5.9 Related Work . 122
5.10 Conclusion . 123

6 Design and Architecture 125
6.1 Introduction . 125
6.2 Distributed Actors in rebel-runtime-lib 126
6.3 Experiment Runner . 132
6.4 rebel-conflictors: rebel-sie and rebel-cbc 133
6.5 Verifying Isolation in tla+ with isolation-specs 134
6.6 Summary . 135

7 Conclusion 137
7.1 Research Questions . 137

7.1.1 rq 1: Local Coordination Avoidance with Independent
Operations . 138

7.1.2 rq 2: Local Coordination Avoidance at Run Time 139
7.1.3 rq 3: Local Coordination Avoidance at Compile Time . 140
7.1.4 rq 4: Performance Benefits in High Contention Scenarios140
7.1.5 rq 5: Isolation Guarantees 141

7.2 Discussion and Further Directions 142
7.2.1 Implications for Research 142
7.2.2 Implications for Practitioners 143
7.2.3 Further Directions . 144

Bibliography 147

A Path-Sensitive Atomic Commit 161
A.1 Example 2pl/2pc and psac diagrams with abort 161

ix

Table of Contents

A.2 Actor class definition . 161
A.3 Detailed Rebel implementation using Akka 164

B Posters 167

Executive Summary 173

x

Acknowledgements

A major thanks to all the people involved directly and indirectly. Without
you this PhD project would never have happened. All discussions before and
during helped me a lot. A PhD is a very personal journey towards technical,
but also personal deepening. Both because of the challenges encountered in
the research itself, but also due to events happening in the span of 6 years.

First, I would like to thanks my supervisors Jurgen Vinju and Tijs van der
Storm. They learned me almost everything I know about research. Jurgen
was hugely influential by using positive affirmation when research and life
were harder. His endless knowledge, positivity and understanding is truly
inspirational. Tijs was already a great and inspiring group member at cwi,
with whom I shared some great and fruity late nights. Tijs also became my
promoter later in the project, which changed the supervision style, but that was
definitely not a bad thing. Looking at the subject and research in a different
way, made the quality and insight deeper.

This research project would not have been possible without my wife Saskia
Ubbink at my side. Thank you for your realistic view, and your support at all
times. Your unending patience and endless interest broke a lot of deadlocks
during various parts of research, paper writing and thesis writing. Also, the
births of our children, Stern and Aster, were monumental in creating real strict
deadlines for a paper and the final thesis.

A big thanks to my always supporting parents, Thecla and Luc Soethout.
During my upbringing you already guided my interest to computers and pro-
gramming. Instead of only exposing me to games, you showedme programming
in SuperLogo and C and with that, computational thinking. Thanks to my sib-
lings, Stijn, Floor and Gijs, and brother-in-law Martijn, for always being their
jovial selves. A special mention is for my grandparents, Joke, Wiel, Mia and
Carel, and parents-in-law, Marianne and René, who are, were or would have
been very proud.

Major thanks to ing bank for giving me the opportunity to take on this
challenge and for generously funding this research collaboration. Thanks
to: Jannes Smit for sponsoring and supporting; Joost Bosman for setting up
connections with academia, and being ing’s patron of research; Jordi de Vos
for supervision and support, and for asking the right reflection questions at the
right moments; and other ing colleagues for ongoing emotional and substantive

xi

Acknowledgements

support: Alessandro Vermeulen, Kevin van der Vlist, Robbert van Dalen and
Luna Luo. Also thanks to colleagues on the side line who supported and helped
me during various parts of the research: Ana, Anton, Bertjan, Daniele, Effi,
Joris, Jorryt-Jan, Miguel, Rene, Sebastian, Stefan, Viet, and many more.

Of course the whole swat research group was a warm bath. Everyone was
really welcoming and kind, also to unexperienced researchers. Thanks to Aiko,
Ali, Anastasia, Bert, Davy, Jouke, Jurgen, Kai, Lina, Mauricio, Michael, Nikolaos,
Pablo, Paul, Riemer, Rodin, Thomas, Thomas, Tijs, Ulyana, Yanja for the great
coffee breaks, fruit breaks, and (Duvel) drinks at Praethuys and/or Polder. A
special mention goes to Jouke, for your interesting work to build upon and
for your friendship and great commute car rides. Thanks Riemer, my office
mate for the whole period. We had many good and motivational discussions
on everything and then some, including the special L222 office humor.

Marijn, one of the paranimfs, is a great friend and also unexpectedly moti-
vated to understand the research, even though his expertise lies in a different
area. Thanks to Jochem for all discussions on the squash court including my
research, academia in general, life, programming and everything else. A special
thanks goes to the TanCKI, who made sure that enough social and explicitly
non-PhD events and relaxation took place.

I thank all the anonymous reviewers for their thorough reviews and feedback,
and the defense committee for evaluating and accepting my thesis.

Live long and prosper.

xii

1
Introduction

In large-scale enterprise software systems, performance and data consistency
are paramount. Internal and external clients should receive timely and correct
responses from web applications, also when these applications are under high
load. For example, customer information needs to be up-to-date and correct,
and bank accounts’ money should not get lost. This all needs to happen per-
formantly under high transaction loads. Complex it landscapes with multiple
distributed applications in heterogeneous technologies are complicated and
hard to maintain over time. All these application communicate and synchronize
with one another and many store data. For these applications maintaining high
throughput and enabling scalability is very important.

An important bottleneck for scalability is coordination. Different applications
or parts of applications, potentially running distributed in a data center or geo-
replicated, synchronize over updates on data. For example, transferring money
from a bank account to another bank account should only happen when the
money is respectively withdrawn and deposited on both. These kinds of atomic
updates are expensive to implement and can potentially slow all connected
applications down. Connectivity between applications is more expensive in
terms of delay when distances between hosting locations increase, and even
more when multiple back-and-forths are necessary. In the worst case new
operation requests have to wait on all coordination to finish before starting.

Coordination needs to be avoided as much as possible. However, one-size-
fits-all approaches, such as databases or generic middleware, stay on the safe
side by possibly doing more coordination than necessary. Determining when
coordination can be avoided is non-trivial and often dependent on the specific
application logic. This dissertation therefor proposes approaches to leverage

1

Chapter 1 Introduction

Open()[]/
Opened

balance: Int

Deposit(amount: Int)
[]/

Withdraw(amount: Int)

[,]/

Close()

[]/

Figure 1.1 A simple bank account state chart with contracts on operations. Operations
follow state chart notation: Event(fields)[guard]/effect

(domain) knowledge of applications to reduce coordination. Contracts on
objects and operations enable detection of necessity of coordination.

This doctoral project is born from an ongoing research collaboration between
the Dutch national research institute for mathematics and computer science
cwi and ing Bank on enterprise software engineering. Its main goal is to
device approaches to manage the complexity and evolution of large enterprise
it systems. This is explored in the context of a state-machine based domain
specific language for financial products, Rebel [108]. It generalizes to other
models, as long as a similar contract is available.

Examples A running example throughout the dissertation is bank accounts.
These accounts do not allow overdraft, so their balances should never go below
zero. Operations defined on bank accounts are the deposit and withdrawal
of money. This is always done in the context of a transfer from one account
to another. Some chapters consider a slightly more involved version where
accounts first have to be opened, and can be closed.

Figure 1.1 shows a state chart of a bank account that can be opened, closed
and have money withdrawn and deposited via operations. These operations
are enabled in specific states when guards or preconditions on its local state
(the account balance) hold. The effect of the operations is always local and
updates the internal state.

A synchronized operation, such as a money transfer, requires all involved
objects (accounts) to have the grouped operations enabled. For a money transfer
the withdraw and deposit operations act on respectively the from account and

2

1.1 Background

the receiving account. Only if both accounts enable the operations, the transfer
happens. This is an atomic step for multiple objects. An account only accesses
its local state and operations, so it knows that the local deposit is valid, but
not yet if the withdraw on the contra-account is. For this communication and
coordination is necessary. Also locally for the account, a local deposit can be
needed for the next local withdrawal to be allowed or not.

The definitions of the objects and its operations, guards and effects is called
the contract. One example of leveraging these contracts to reduce coordination
is detecting that multiple deposits for an account can safely run concurrently
without coordination, because their guards are always true. Even if the first
deposit is aborted due to the contra-account not having enough balance, the
second deposit can happen, since the abortion has no influence on its enabled-
ness. The deposit’s guard-contract allows multiple deposits in parallel, because
independent of the other in-progress deposit the operations can make progress,
without leading to a different output.

1.1 Background

Distributed Systems A large interconnected it landscape is a distributed sys-
tem. A distributed system is a collection of servers or applications that com-
municate via messages [33]. For resiliency purposes the functioning of the
system should not be impacted by for example failing hardware. A distributed
program is deployed on the different servers as separate components. The main
benefit is that the program can continue to run if separate components fail
and that its application can scale beyond the single machine. The main issue
is that there is no longer a main process or main clock, since all components
operate independently. Also, messaging over the network results in overhead
in communication compared to within a single server.

This dissertation relates to the distributed systems and database field by
considering distributed objects and messages between them. It embraces the
latency, failure, and potential distributed location of objects. It relates closely
to database transactions [9, 42] and distributed data structures [85].

Reactive Programming The reactive manifesto [16] describes principles that
lead to resilient and responsive applications, based on asynchronous message
passing. Instead of trying to abstract away the properties of implementation

3

Chapter 1 Introduction

layers, such as message delivery failure, delays, and latency, it becomes part
of the programming model. Abstractions of synchronous methods and non-
parallelism, while implemented on top of non-perfect networks and distributed
objects, can lead to unexpected and complex corner cases. Embracing failure
of the underlying implementation and hardware is done by including this in
the programming abstractions.

Messages are also the base of our approach: Distributed objects or actors
that communicate via messaging. The modeling of the objects and architecture
of the implementation approach is done in a domain driven design (ddd) [17,
26, 31] fashion. The essential complexity of message passing and making sure
the correct messages are handled, lead to explicitly stating requirements and
consistency for applications.

Distributed Objects [110], such as actors [53], that communicate with each
other need ways to synchronize operations, in order to fullfil business require-
ments, e.g. money transferred from one bank account to another should not get
lost. Abstractions such as guaranteed delivery are created on top of message
passing. Virtual Actors are created to make sure they are restarted without
data loss on another server node when crashed or unavailable. Part of this is
also the requirement of synchronization, certain operations are only allowed
when other operations also happen or only if and only if conditions on other
distributed objects hold. This transactionality inherently requires coordination,
but sometimes coordination can be deferred, for example if operations do
not change the internal state, or can be reordered without this influencing
decisions on other objects.

Keeping decisions local [64] reduces potential bottlenecks and other chal-
lenges with cloud computing. Reaction speed of interaction is fast, ownership
of data stays with the user, applications keep functioning when offline, all while
maintaining most functionality that cloud services provide. A change from
the cloud and centralized computing model, which is currently the major part
of the online landscape, required a change of view. The contributions in this
dissertation help towards such a local-first approach. It supplies opportunity
and direction on where decisions can be kept local. Objects which do not
require coordination, can be implemented in a local-first fashion.

Model Driven Engineering Model driven engineering (mde) [24, 91] starts
with models of some kind. Models describe for example business objects and
rules. Often Domain Specific Languages (dsls) [74] or visual representations
are used. Model driven engineering raises the level of abstraction by using

4

1.1 Background

the domain-specific solution space. dsls express domain specific models and
constraints. This allows for specialized tooling with targeted semantical checks,
such as type and constraints checkers. Models can be automatically translated
to other formalisms, such as executable implementations. Both mde and dsls
abstract away from low-level implementation details and allow reasoning on
the domain level.

The holy grail for mde is fully generating the implementation from these
often-at-higher-level models. mde is an important part of the low-code and no-
code movement [90]. These low-code development platforms provide an often
visual development environment in order to quickly produce applications based
on models, where the platform takes care of implementation details. Many
vendors promise applications using only models without requiring specialized
personnel. The resulting application should be correct, fast and scalable with
customer demands. The algorithms and model analysis methods presented in
this dissertation are compatible with and fit into these kinds of platforms.

However, generating such an implementation is far from trivial, especially
when non-functional requirements are taken into account, e.g. performance
(throughput, latency), security, audit trails, etc. The main advantages are that
models are often at a higher level and allow reasoning without being bothered
by implementation details, and the code generator can be reused [14]. The
means the far-from-trivial design is reusable. This also means that, since busi-
ness requirements often change less often than new implementation strategies
and hypes appear, these models are reusable in different iterations for the
applications, e.g. different used frameworks, programming paradigms and
changes in external technical connections. Different implementation targets
can be generated and large parts of an application can be generated using the
source models. This also leads to ample opportunity to optimize: specialized
implementations can be used that provably implement the model, but do not
resort to ad-hoc optimizations.

Many generative programming approaches use general purpose building
blocks to implement the models. Since these platforms need to work in all
situations, these general purpose building blocks, such as databases, stay on
the safe side on the kinds of interaction they allow. For example, relational
databases lock rows and columns based on low-level reads and writes to rule
out theoretical errors that might never occur for the specific application or
model. The general purpose code has stricter constraints than the actual model
might require for functionally correct behavior.

5

Chapter 1 Introduction

This work focuses on constructively and deliberately leveraging the semanti-
cally higher-level knowledge from models to increase performance in specific
cases without violating business and data consistency requirements. This is
a form of domain-specific analysis, verification, optimization, parallelization,
and transformation (avopt) [74]. The actual application logic can be more
lenient than the generic building blocks based on lower-level operations. By
using the higher-level semantic information available, these cases can be found
out and used.

System model The system model is state charts with operations [21, 47]. On
top of this multiple state charts take part in (distributed) transactions.

Grouped operations are transactions that by default run under serializable
isolation [42]. This means that externally all operations run in a serial order.
Depending on the level of abstraction, operations can be reads and writes
of database fields, or higher-level operations on state machines. A grouped
transaction for a money transfer between bank accounts A and B, can for
example exist of two operations: a withdrawal on A and a deposit on B; or when
looking at a lower level, a read and write the balance of A and a read and write
of the balance of B. A schedule is a specific ordering of operations. An isolation
level can be determined for a schedule, meaning that the observed execution
as defined by the schedule could have occurred under that isolation level [23,
115]. Adya’s generalized isolation levels [1] define a direct serialization graph
based on conflicts between different transactions and determines via cycles in
this graph if an isolation level is upheld. For example, strict serializability is the
highest achievable isolation level, and relaxing conflict relations result in lower,
less stricter isolation levels, such as, in order of strict to looser guarantees [9]:
snapshot isolation, repeatable read, read committed and read uncommitted.
Crooks et al.’s client-centric isolation model [23] looks at observed return
values to define the different isolation levels, and proofs them to be equivalent
to Adya’s model.

1.1.1 Consistency and Isolation

The terms consistency and isolation are often used vaguely and interchange-
ably [49]. In different research communities they have different meanings. It is
beneficial to define what these terms mean in the context of this dissertation.

6

1.1 Background

Consistency Consistency has many meanings in different fields. It often is a
mix of semantic program consistency and guarantees on groups and orders of
operations. In this dissertation consistency is used for adherence to the local
contract of an objects. Consistent objects only reach states in accordance to
their guards and local effects.

This is similar to the consistency c of acid transactions in databases [46]:
The client defines consistency by only committing the transaction when correct
from a program semantics perspective. Next to that, the database preserves all
the database rules, such as unique and foreign keys, and cascading updates.1

The client or application controls what fields and values are relevant for the
application semantics, and should be included in the transaction.

Isolation Next to that, isolation (the i of acid) is concerned with “consistency”
of operations on a group of objects or resources, where acid consistency is
only concerned with single resources. It concerns the isolation of a database
transaction: all operations in a transaction should not interfere with operations
from other transactions.

The most well-known and easy-to-reason-about isolation level is serializabil-
ity. All transactions must be totally isolated from another and appear in a
serial order. Operations from different transactions should not read not yet
committed or aborted values. The flexibility of interpretation lies in orderings
that are equivalent to a serial order. But when are orderings equivalent? When
looking at low-level read and written values, equivalence is based on observing
the same reads and writes. If higher-level program semantics are taken in
to account, the equivalence could be less strict, e.g. as long as deposits and
withdrawals on a bank account do not have to be retracted they might be
considered equivalent to the serial order as well [23, 115]. This flexibility is
explored in chapter 5.

Convergence Convergence is a more concrete and better defined name for
eventual consistency, sometimes called eventual convergence [49]. Convergence
covers single objects, where replicas of the object eventually converge to the
same state when the same operations are received in any order. This is a local

1 This is different from c from the cap theorem [37]: Consistency is linearizability of
a single register: the entire application operates as if it is a single value. Operations
happen somewhere between invocation and response from a client’s perspective
and are not limited to reads and writes.

7

Chapter 1 Introduction

guarantee on the component state, based on eventual state. A merge function
is associative, commutative and idempotent, and handles the convergence. “A
system is convergent or ‘eventually consistent’ if, when all messages have been
delivered, all replicas agree on the set of stored values.” [5], which is the same
as Strong Convergence from crdts [93].

Confluence Confluence [5, 50] is about input and output of operations. Its
scope is a set of components, so multiple objects. It guarantees the same set of
outputs for all orderings of its inputs. Confluence gives no promises of recency
and it not about memory reads and writes.

In practice this means that a confluent component can receive any number
of operations, and return values (outputs) directly. It never has to retract those
outputs. When dealing with operations that are not confluent, the earlier
confluent stream of operations can be sealed, for example by coordination.
Non-confluent blocking operations then run to completion, before opening a
new stream of confluent operations.

An interesting observation is that retraction of outputs depends on what an
observer allows, depending on the use case. For example, outputting a different
updated balance on a successful withdrawal from different replica’s could be
equivalent from a application perspective, e.g. as long as the success or failure
of said withdraw does not change.

Confluence and Serializable Isolation Both confluence and serializability are
properties over multiple objects. Serializability is a guarantee on (equivalence
to) the serial order of operations in transactions. Confluence is about the non-
retraction of outputs. Confluence is a property on higher application-level
operations, where serializability often looks at lower-level reads and writes.
This dissertation bridges the gap between these formalisms. The goal is to
reduce the required coordination, by providing serializability, while leveraging
confluence where possible. When safe we give outputs earlier, by detecting that
the output does not have to be retracted in the future. One of themain insights is
that we look at higher-level operations, also for serializability, because the order
of operations can be less strict, while maintaining application invariants and
serializability on that level. Similar to sealing before non-confluent operations,
all relevant in progress operations need to finish before a conflicting operation
is handled.

The different chapters focus on different aspects of this journey. First, chap-
ters 2 and 3 focus on an formalism and algorithm to enable concurrent oper-

8

1.2 Coordination in Distributed Systems

ations in distributed objects. The focus there is to automatically detect, both
online and offline, when coordination can be avoided. The point of departure
is only local (object) information, since local decisions require no coordination,
enable independent progress, and with that increased performance. These
chapters also look at computational cost, and in which scenarios it actually
improves performance. In the later chapters 4 and 5, the focus shifts to deter-
mining the adherence to serializability. These chapters provide a framework for
determining isolation guarantees for higher-level operations and an alternative
offline and online property that is sufficient for serializability.

1.1.2 Coordination Avoidance

The term Coordination Avoidance was coined by Bailis [8, 10]: use coordination
only when necessary. Coordination avoidance focuses on lock-free algorithms in
a geo-replicated setting. Large parts of real world use cases can be implemented
without locks, increasing throughput. When transactions do not conflict, they
run on multiple geo-located data centers without coordination. They are even-
tually merged in an asynchronous fashion. Bailis states: “Invariant Confluence
captures a simple, informal rule: coordination can only be avoided if all local
commit decisions are globally valid.” This dissertation focuses on leveraging
domain semantics or models in order to avoid coordination, by determining
when coordination is not needed based on the outcome of operations.

1.2 Coordination in Distributed Systems

In distributed systems coordination is an expensive endeavor. Especially la-
tency2 increases a lot when more coordination is required. Coordination is
necessary because of data consistency requirements. One way to increase per-
formance and reduce latency is to reduce the data consistency requirements.
For example, if you do not require all group chat messages to have the same
order for all participants, a lot less coordination is necessary. In the financial
industry these consistency requirements are often harder to relax.

2 Latency [34, 62] is the overhead time span between a request and a response in
which no actual work is done. This is “waiting” on the result. Latency is typically
larger when remote calls are involved.

9

Chapter 1 Introduction

Strong Isolation High Performance

Higher Latency
Lower Throughput
Lower Performance

Lower Latency
Higher Througput
Weaker Isolation

Figure 1.2 Tradeoff: Transaction Isolation versus Performance

Transaction Isolation versus Performance Figure 1.2 sketches this trade-off
between transaction isolation and performance. On the one hand stronger
isolation requires more coordination between resources, resulting in limited
throughput and higher latency. On the other hand, weaker isolation relaxes the
coordination constraints and allows for more performance, because resources
do not wait on each other. On this trade-off axis a lot of work has been done, e.g.
related to data structures (crdts [86]), algorithms (Multi-Version Concurrency
Control) and isolation levels [1] (Serializability, Snapshot Isolation, Eventual
Consistency).

Coordination is Expensive When applications grow in both usage and com-
plexity coordination becomes more expensive. On a single server cpus have to
synchronize concurrent access to data. In a larger application, spanning multi-
ple servers, coordination becomes more expensive. For coordination between
(distributed) objects multiple round-trips are necessary [41]. These messages
have to travel over the local or global network, which is a order of magnitude
slower than on a single machine between cpu cores. To provide an intuition on
latencies and cost of coordination table 1.1 shows the relative latencies between
actual timings for different operations compared with a more human time scale.
A single cpu cycle corresponds to a second in the human time scale, and the
other rows relate relatively. Networked implementations are a must however,
because this enables applications to scale with the number of users, increase
availability and uptime, and reduce latency for users spread over the world.
When considering that coordination is a multiple of the communication latency
between objects, it becomes clear that when networks are involved latency
increases by orders of magnitude. Every preventable networked message is
worth many extra local computations. Reducing the amount of coordination

10

1.2 Coordination in Distributed Systems

Table 1.1 An intuitive representation on how time for a computer is relative to a
more human scale. Reproduced from Systems Performance: Enterprise and
the Cloud [43].

Event Latency Scaled

1 cpu cycle 0.3 ns 1 second
Level 1 cache access 0.9 ns 3 seconds
Level 2 cache access 2.8 ns 9 seconds
Level 3 cache access 12.9 ns 43 seconds
Main memory access (dram, from cpu) 120 ns 6minutes
Solid-state disk i/o (flash memory) 50–150 µs 2–6 days
Rotational disk i/o 1–0ms 1–12months
Internet: San Francisco to New York 40ms 4 years
Internet: San Francisco to United Kingdom 81ms 8 years
Internet: San Francisco to Australia 183ms 19 years
tcp packet retransmit 1–3 s 105–317 years
os virtualization system reboot 4 s 423 years
scsi command time-out 30 s 3millennia
Hardware virtualization system reboot 40 s 4millennia

necessary is of paramount importance. And ideally without (too much) loss of
data or program consistency guarantees.

Application landscapes, such as large enterprise systems, grow over time.
Their usage increases and dependency grow as well. For many operations
coordination is a necessary evil, e.g. in a core banking application, you can
not lose money, so every withdraw on an account should be accompanied by a
deposit on another bank account. If these accounts are stored on other servers,
or even on other continents, coordination is necessary, different operations of
these accounts need to wait on previous ones to finish.

This dissertation focuses on reducing coordination required while maintain-
ing the consistency and isolation guarantees. It leverages program semantics
in the form of contracts for this. These contracts are defined in models, domain
specific languages, or annotated in or derived from source code.

11

Chapter 1 Introduction

1.2.1 Coordination Avoidance by Example

How can these contracts be used to avoid coordination? Consider a tax office
bank account, which is used in collecting taxes and paying out benefits to
citizens. By regulations, both of these use cases should be run in a limited
time frame. This means that this account is involved in many transactions for a
short moment. This tax account is modeled as the example in figure 1.1, with
a balance, and withdrawal and deposit operations.

A straightforward implementation of this example runs into problems with a
tax bank account being involved in all individual transfers, creating a potential
bottleneck for the legislatory time frame. A solution can be approached in
multiple ways. Either by functionally changing the problem to solve the inherit
technical shortcomings or keeping the original modeling and solving the prob-
lem at run time. An example of a functional change is splitting the tax account
in multiple separate accounts and use those to do the bookings, or by first
booking the total of payed benefits from the main tax account to an in-between
account (wash account), and then do the the transfers without overdraft checks
on the intermediate accounts. Both proposed alternate modeling approaches
reduce coordination, either by splitting coordination over multiple accounts, or
taking the coordination off the critical path. An example of a run-time solution
also depends on the specific modeling. In this case the tax bank account can
actually run the different withdrawals for benefit payouts in parallel as long as
enough balance is available for all of them. In this case extra domain knowledge
about the problem reduces the required coordination. Both alternatives for
this example depend on the same inherent property of the model, that enough
total balance is available for all transfers: either by checking this at run time
for multiple individual withdraws, or when changing the functionality by first
moving the sum of withdraws to an intermediate account.

These examples show that multiple solutions are possible. The changing
of the model of tax bank accounts to into multiple separate accounts, shows
that many inherent technical bottlenecks are often solved and encoded in the
business logic itself. On the hand, this is good practice, since performance
trade-offs are inherent to the modeling strategy and should be solved explicitly
on a business level. On the other hand, this lets technical implementation
limitations slip into the business domain. Firstly, this dissertation suggests a
feasible middle way where seemingly technical limitations are short-circuited
by finding operations which can run without coordination, and with that
reducing bottlenecks. Secondly, it makes clear where performance bottlenecks

12

1.3 Context within ing Bank

could show up and points out when a business decision is necessary to make
the inherent trade-offs betweens performance, functional modeling, and risk.

1.3 Context within ing Bank

This research was executed in the context of ing Bank.3 ing Bank is a large
multi-national bank, with head offices based in the Netherlands. It has a
very complex it landscape that grew and grows over time, consisting of micro
services, mainframes and everything in between. The interconnectivity between
these applications is complex. Strict data consistency requirements ensures
maintained trust from customers and adherence to laws and regulations.

Some key figures on ing Bank:4

39.3 million customers worldwide (year-end 2020)
58 000+ employees worldwide
€2.4+ billion net profit (2020)
One of the challenges for ing is to keep track of evolution of applications and

business logic over time. An approach is to employ models or domain specific
languages for this purpose on different abstraction levels. The models capture
the functional business logic and are not cluttered by implementation details.
This allows for underlying implementations to change, or even be regenerated,
while the higher level business logic stays the same.

Modeling choices As observed in the previous section many high-performing
implementations depend on how the business logic is defined. For example
when withdrawing money from an atm, the atm should be connected to the
bank’s balance servers in order to check if enough balance is available. In this
case the business logic dictates that the atm checks the balance. However, when
a network disconnect occurs, multiple solutions are possible, for example not
handing out any money at the disconnected atm until connection is restored
and balance can be checked, or for example still handing out smaller amounts
and deducting them from the balance on reconnect. In this last case there is a
business risk involved where a client withdraws money that is not available
on his account. The risk depends on how often this happens, what the actual
3 https://ing.com
4 From the annual report 2020 found at https://www.ing.com/Investor-relations/
Financial-performance/Annual-reports.htm.

13

https://ing.com
https://www.ing.com/Investor-relations/Financial-performance/Annual-reports.htm
https://www.ing.com/Investor-relations/Financial-performance/Annual-reports.htm

Chapter 1 Introduction

damages are and is reduced by only allowing small money amounts. On the
other hand this leads to many customers still being able to withdraw money
without being hindered by the disconnect and increases customer satisfaction.
This example illustrates that the way the business logic is modeled has great
impact on the availability and performance of an implementation. It shows
coordination avoidance on the model level.

The Bank in 30k Lines of Code In this collaboration between cwi and ing
on enterprise software engineering the main goal is to device approaches to
manage complexity and evolution of large enterprise it systems. The Rebel
domain specific language [105, 106, 107, 108] is created for this purpose. In
Rebel a domain expert specifies financial products as communicating state
machines, operations on the state machines are defined using pre- and post-
conditions. The Rebel toolset includes a symbolic interpreter, visualizations, a
testing language and prototyped connectivity to real banking systems.

The initial dissertation’s research project started as an implementation ap-
proach for Rebel: a code generator implementing the Rebel specifications on
top of actors and distributed databases towards an enterprise-grade correct,
resilient and available implementation. Performance bottlenecks in certain
kinds of specifications led to the investigation of leveraging semantics from the
specifications to remove these bottlenecks.

The Rebel language and implementation generator spun off into various
projects inside ing Bank: Multiple MSc graduation projects [28, 66, 67, 111,
112, 113, 116, 117], the current PhD project and a multi-million productization
inside ing’s innovation incubator.

Industrial Relevance Separating functional domain knowledge and implemen-
tation is extremely beneficial for large enterprises, where implementations
change more often than core business processes. It enables individual evolution
of the business and the underlying implementation. This dissertation is a step
in the direction of carefree focus on the domain of the business, while letting
a code generator or implementation figure out how to run it performantly.
For inherent trade-offs and fundamental bottlenecks, tooling can be created
to point out these bottlenecks out and suggest a different way of modeling
the application, such as the risk trade-off in the atm example, and make it an
explicit business decision instead of an implementation artifact.

Algorithms, such as loca with different conflict relations, e.g. independent
events (chapters 2 and 3) and contract-based commutativity (chapter 5), allow

14

1.4 Approach

this decoupling of specification and implementation. The implementation takes
care of performance where possible and the specification can be analysed on
potential bottlenecks. Together with usage patterns, these bottlenecks become
clear to the business experts and appropriate changes in the models can be
made.

1.4 Approach

Reducing the amount of coordination is important, because it leads to bottle-
necks in performance, especially when messages delivery takes longer. Separat-
ing functional business rules and implementation details can help here. Ideally,
optimized implementations automatically leverage the program semantics.

When looking at applications as communicating distributed objects, how can
coordination between operations on an object basis be avoided? This leads to
the following research questions:

1.4.1 Research Questions

Research Question 1 (rq 1):
When can coordination between two operations be avoided without
violating isolation and consistency requirements?

In order to avoid coordination, we require constraints on when it is safe to run
operations concurrently. This question captures what a sufficient condition is for
operations to interleave arbitrarily, without violating isolation and consistency
requirements.

Research Question 2 (rq 2):
How can coordination avoidance between two or more operations be
achieved at run time?

How can answers to rq 1 be leveraged in an implementation at run time?
This considers formal and descriptive formalisms and how to compute them at
run time.

15

Chapter 1 Introduction

Research Question 3 (rq 3):
How can coordination avoidance between two operations be determined
at compile time?

Given that coordination reduction requires more (local) computational over-
head, can this overhead partially be reduced by compile-time optimizations?
This considers formal and descriptive formalisms, and how to make them
actionable at run time.

Research Question 4 (rq 4):
What are the performance benefits for local coordination avoidance and
in which scenarios do they hold?

Given the implementation approaches from rqs 2 and 3, what performance
benefits do they entail? And in which use cases can one expect these benefits?
This specifically considers scalability, throughput and latency.

Research Question 5 (rq 5):
What are the isolation guarantees when using the different non-conflict
relations, and how do they relate?

Isolation guarantees are the well-known levels of database isolation for (dis-
tributed) transactions. What isolation guarantees do the different approaches
for avoiding coordination actually provide? How can this be determined? And
is this domain specific?

The research questions are explored around three axes:

Compile Time versus Run Time Effectively, coordination is only reduced at run
time, because that is where the actual coordination occurs. However, since our
approach of reducing of coordination requires extra computation, parts of this
can be determined statically at compile time. Chapter 2 describes a run time
variant, which leverages run-time state (rqs 1 and 2). Chapter 3 describes
a variant with reduced coordination without requiring run-time state (rqs 1
and 3). The static variant should hold for all possible run-time states.

Formalization versus Implementation Both the run-time and compile-time vari-
ants are described on two levels: a descriptive formalization, and an imple-
mentation making the formalization operational.

16

1.4 Approach

Table 1.2 Mapping of Chapters to Research Questions

Chapter Research
Questions

run/compile
time

descriptive/
operational

local/global
guarantees

2 rqs 1, 2 and 4 run time operational local
3 rqs 1 and 3 compile time both local
4 & 5 rqs 1 and 5 both both global

Local Consistency versus Global Isolation Guarantees The starting requirement
is a correct implementation with respect to the contract. However, there are
multiple ways to interpret correctness. A local perspective is that the object
implements the contract, which means that local state should never be invalid,
or the object should never reach an unreachable state. This is called consistency.
Even when the individual objects never show an invalid state, and thus are
consistent, different observable effects orders are possible. These are known as
isolation guarantees. psac with independent events (chapters 2 and 3) focuses
on local correctness guarantees, where loca with contract-based commutativity
(chapter 5) also focuses on global isolation properties such as serializability.

Mapping of Chapters to Research Questions Table 1.2 shows an overview of the
relation of chapters to the research questions and dichotomy axes.

1.4.2 Local-Coordination Avoidance

The Local-Coordination Avoidance (loca) algorithm is a connecting thread of
this dissertation. A distributed object or actor, which receives method calls or
messages, can run this algorithm in order to do coordinated operations. It builds
on top of an atomic commit algorithm, in this case two-phase commit (2pc),
but generalizes to different atomic commitment or consensus protocols. loca’s
concurrency control differs from two-phase locking (2pl) in the sense that the
object only locks for conflicting operations. In between receiving a command
to do an operation, and its actual execution, loca decides if another incoming
operation can already start processing, or should wait for in-progress actions to
finish. loca requires a conflict relation for this, which takes the current internal
state of the object and two operations. Depending on the conflict relation used,
its behavior is different. For example, loca with Contract-Based Commutativity

17

Chapter 1 Introduction

Independent Events

Statically Independent EventsContract-Based Commutativity

Static Contract-Based Commutativity

Chapter 2

Path-Sensitive Atomic Commit

Chapter 3

Local Coordination Avoidance

Chapter 4&5

Contract-Based Commutativity

& Return-Value Serializability

Figure 1.3 Non-conflict relations with related chapters. ⊆ on the dashed edges shows
the subset relation. Each of the non-conflict relations fits in this grander
scheme.

(cbc) results in serializable behavior, whereas with Independent Events (IE)
only provides local linearizability guarantees.

Conflict relations These conflict relations follow the interface: State ×
Operation×Operation→ Boolean. Given an object state and two operations, it
defines if the operations are non-conflicting or not.

Figure 1.3 shows different conflict relations discussed in this dissertation
and their internal relations. Independent Events (IE) defines non-conflicting
operations as operations for which the enabledness of the operation are not
changed if the first in-progress operation is eventually applied or not.5 Statically

5 Note that event and operation are used interchangeably to denote the operations
defined on an object.

18

1.5 Origins of the Chapters

Independent Events (SIE) is the subset of IE which is independent of the run-
time state. So for all possible run-time states the mentioned operations are
Independent Events. This is a restriction, but be computed offline, without
requiring the run-time state. Contract-Based Commutativity (cbc) and its
static counterpart (scbc) are based on observable return values. An operation
is cbc with an in-progress operations if and only if their return values do not
change when swapped.

1.5 Origins of the Chapters

All work presented in this dissertation is related. Improvements and abstrac-
tions created later in time support and extend earlier work. Later work places
earlier work into a larger frame. For example psac from chapter 2 fits in the
independent events definition IE in chapter 3 and contract-based commutativity
(chapter 5) is a drop-in replacement for IE and SIE (chapter 3) for the runtime
loca algorithm. The formalization of serializability with low-level reads and
writes in chapter 4 are the building blocks and frame for the formalization of
return-value serializability (rv-ser) with higher-level operations in chapter 5.
This results in serializable isolation guarantees.

This section lists all peer-reviewed contributions. I am the primary author of
all of them.Most papers are accompanied by artifacts: (reproducible) evaluation
results and/or scripts (e) and source code (s).

Chapter 2 Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Path-
Sensitive Atomic Commit - Local Coordination Avoidance for Distributed Trans-
actions”. In: The Art, Science, and Engineering of Programming 5.1 (2021),
page 3. doi: 10.22152/programming-journal.org/2021/5/3

Artifacts e s : Tim Soethout. Path-Sensitive Atomic Commit: Local Coordi-
nation Avoidance for Distributed Transactions Evaluation Data. Oct. 2019. doi:
10.5281/zenodo.3405371

Chapter 3 Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Static
local coordination avoidance for distributed objects”. In: Proceedings of the 9th
ACM SIGPLAN International Workshop on Programming Based on Actors, Agents,
and Decentralized Control - AGERE 2019. ACM Press, 2019, pages 21–30. isbn:
9781450369824. doi: 10.1145/3358499.3361222

19

https://doi.org/10.22152/programming-journal.org/2021/5/3
https://doi.org/10.5281/zenodo.3405371
https://doi.org/10.1145/3358499.3361222

Chapter 1 Introduction

Artifacts e s : Tim Soethout. Static Local Coordination Avoidance for Dis-
tributed Objects Artifacts. Sept. 2019. doi: 10.5281/zenodo.3405232

Chapter 4 Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Automated
Validation of State-Based Client-Centric Isolation with TLA+”. In: Software
Engineering and Formal Methods. SEFM 2020 Collocated Workshops - ASYDE,
CIFMA, and CoSim-CPS, Amsterdam, The Netherlands, September 14-15, 2020,
Revised Selected Papers. Edited by Loek Cleophas and Mieke Massink. Vol-
ume 12524. Lecture Notes in Computer Science. Springer, 2020, pages 43–57.
doi: 10.1007/978-3-030-67220-1_4

Artifacts e s : Tim Soethout. TimSoethout/TLA-CI: TLA+ Specifications Used
in “Automated Validation of State-Based Client- Centric Isolation with TLA+”.
Zenodo. July 2020. doi: 10.5281/zenodo.3961617. url: https://github.com/
TimSoethout/tla-ci

Chapter 5 Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Contract-
Based Return-Value Commutativity: Safely exploiting contract-based commuta-
tivity for faster serializable transactions”. In: Proceedings of the 11th ACM SIG-
PLAN International Workshop on Programming Based on Actors, Agents, and De-
centralized Control - AGERE 2021. ACM Press, 2021. doi: 10.1145/3486601.3486707

Artifacts e s : Tim Soethout. TimSoethout/cbc-artifacts: Artifacts for
AGERE’21 paper “Contract-Based Return-Value Commutativity: Safely exploiting
contract-based commutativity for faster serializable transactions”. Zenodo. Sept.
2021. doi: 10.5281/zenodo.5497756. url: https://github.com/cwi-swat/cbc-
artifacts

SPLASH Doctoral Symposium The earlier overall dissertation design and ap-
proach was sketched and published in the SPLASH doctoral symposium as:
Tim Soethout. “Exploiting models for scalable and high throughput distributed
software”. In: Proceedings Companion of the 2019 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software
for Humanity, SPLASH 2019, Athens, Greece, October 20-25, 2019. Edited by
Yannis Smaragdakis. ACM, 2019, pages 35–37. doi: 10.1145/3359061.3361073

Design and Architecture of the implementations and tools Chapter 6 features
the design and architecture of the software components created to do this
research. loca is implemented in the Akka actor framework, with large-scale
deployment in mind. It is fully resilient, horizontally scalable, and by-default

20

https://doi.org/10.5281/zenodo.3405232
https://doi.org/10.1007/978-3-030-67220-1_4
https://doi.org/10.5281/zenodo.3961617
https://github.com/TimSoethout/tla-ci
https://github.com/TimSoethout/tla-ci
https://doi.org/10.1145/3486601.3486707
https://doi.org/10.5281/zenodo.5497756
https://github.com/cwi-swat/cbc-artifacts
https://github.com/cwi-swat/cbc-artifacts
https://doi.org/10.1145/3359061.3361073

1.5 Origins of the Chapters

leverages enterprise-grade database Cassandra. It also features a reproducible
experiment runner for scalability experiments on cloud infrastructure, such as
Amazon Web Services, which is leveraged in the experimental evaluation in
chapter 2.

Next to that, the design and tool for the detection of static IE (chapter 3) and
static cbc (chapter 5) operation pairs is presented. This chapter also discussed
the tla+ formalizations, structure and examples as used in chapters 4 and 5.

21

2
Path-Sensitive Atomic Commit: Local
Coordination Avoidance for Distributed
Transactions

Abstract Context Concurrent objects with asynchronous messaging are an increasingly
popular way to structure highly available, high performance, large-scale software systems.
To ensure data-consistency and support synchronization between objects such systems
often use distributed transactions with Two-Phase Locking (2pl) for concurrency control
and Two-Phase commit (2pc) as atomic commitment protocol.
Inquiry In highly available, high-throughput systems, such as large banking infrastructure,
however, 2pl becomes a bottleneck when objects are highly contended, when an object is
queuing a lot of messages because of locking.
Approach In this chapter we introduce Path-Sensitive Atomic Commit (psac) to address
this situation. We start from message handlers (or methods), which are decorated with
pre- and post-conditions, describing their guards and effect.
Knowledge This allows the psac lock mechanism to check whether the effects of two
incoming messages at the same time are independent, and to avoid locking if this is the
case. As a result, more messages are directly accepted or rejected, and higher overall
throughput is obtained.
Grounding We have implemented psac for a state machine-based dsl called Rebel, on top
of a runtime based on the Akka actor framework. Our performance evaluation shows that
psac exhibits the same scalability and latency characteristics as standard 2pl/2pc, and
obtains up to 1.8 times median higher throughput in congested scenarios.
Importance We believe psac is a step towards enabling organizations to build scalable
distributed applications, even if their consistency requirements are not embarrassingly
parallel.

This chapter is previously published as: Tim Soethout, Tijs van der Storm, and
Jurgen J. Vinju. “Path-Sensitive Atomic Commit - Local Coordination Avoidance for
Distributed Transactions”. In: The Art, Science, and Engineering of Programming 5.1
(2021), page 3. doi: 10.22152/programming-journal.org/2021/5/3

23

https://doi.org/10.22152/programming-journal.org/2021/5/3

Chapter 2 Path-Sensitive Atomic Commit

2.1 Introduction

Structuring a software system as a collection of actively communicating ob-
jects is an increasingly popular architecture for large-scale, high performance,
and high availability it infrastructure. A common challenge in systems is to
maintain high availability and consistency when communicating objects need
to synchronize. This is particularly challenging in the context of large, scalable,
highly available enterprise software. Our experience in the context of ing Bank1

is that financial institutions deal with large and complex it landscapes, con-
sisting of many communicating software applications and components under
high request loads, which need to synchronize to keep data consistent. These
systems often perform operations that span multiple different applications and
server nodes with consistency and durability guarantees.

A safe and well-known distributed transaction protocol to implement these
distributed transactions, is Two-Phase Locking (2pl) [84] for isolation with Two-
Phase Commit (2pc) [40] for atomicity. While this approach ensures consistency
and serializability, it limits throughput in high-contention objects [10, 48, 62],
since transactions have to wait on locks of other transactions on the same
object. High-contention objects limit the throughput and latency of other
objects they communicates with. Depending on the use case, this can be a
problem. Examples with high-contention and strong consistency requirements
are:

tax bank accounts, involved in many money transfers and strict regulations
on turnaround time;
a video view counter on a popular video used for advertisement income
calculations;
cases with long-running transactions, where objects stay locked for long
periods.

More general, applications with a long tail usage pattern, combined with strict
performance and consistency requirements, will have high-contention objects.

This chapter studies the performance of high-load strict 2pl/2pc in high-
and low-contention use cases and introduces a novel concurrency mechanism
named Path-Sensitive Atomic Commit (psac), which minimizes waiting in busy
entities by exploiting high-level, functional knowledge about object behavior
to reduce contention.

1 https://www.ing.com

24

https://www.ing.com

2.1 Introduction

psac trades computing power for reduced waiting on locks, in order to
achieve higher throughput than strict 2pl. By detecting whether two or more
incoming requests have independent effects psac can start processing more
requests in parallel than 2pl.

A request is independent of an already in-progress request if the acceptance
or rejection of it is not influenced by whether the in-progress requests commit
or abort. More details are discussed in section 2.3.

psac works under the assumptions that:
all objects are state machine-based objects with clearly defined actions;
the behavior of actions is defined by pre- and post-conditions on the local ob-
ject, using first order logic with support for integer constraints, respectively
describing their applicability and state effect;
an object handles an action as an atomic step, checking the preconditions
and applying its post-conditions;
objects communicate by synchronized actions, which describe an atomic
step of a group of actions on multiple objects;
a group of actions is effectively a transaction among multiple objects.
Separating this functional specification of business objects from their im-

plementation allows experimenting with different back-ends. In this case we
have developed a code generator mapping high-level specifications, written in
a state machine based domain specific language for financial products called
Rebel [105, 106, 108], to an implementation based on the Akka actor frame-
work, employing either 2pl/2pc or psac. The psac back-end then exploits the
model’s action pre- and post-conditions to detect independence of actions at
run time.

Based on these two implementations we evaluate the performance of psac,
and compare its performance in the same scenario to the standard of dis-
tributed transactions (acid [46]), which is 2pl/2pc. Our results show that psac
consistently outperforms 2pl/2pc in high-contention scenarios. Furthermore,
psac retains the same scalability characteristics as 2pc, but does not guarantee
serializability.

The contributions of this chapter are as follows:
We introduce psac, a novel concurrency mechanism that exploits semantics
of operations to allow transactions to proceed in parallel if it can be detected
that their effects are independent (section 2.3).

25

Chapter 2 Path-Sensitive Atomic Commit

We describe the implementation of psac based on Rebel, targeting the
Akka actor framework, which provides the basis for our experimental setup
(section 2.4).
We evaluate the performance of both 2pl/2pc and psac, and show that psac
outperforms 2pl/2pc in high-contention scenarios (section 2.5).

The chapter starts with a background on distributed transactions (section 2.2)
and concludes with a discussion of the evaluation (section 2.6), related work
(section 2.7), further directions for research (section 2.8) and conclusion (sec-
tion 2.9). Evaluation data is available on Zenodo [95].

2.2 Background: Distributed Transactions

Transactions are a mechanism to limit the complexities inherent to concurrent
and distributed systems, such as dealing with hardware failure, application
crashes, network interruptions, multiple clients writing to same resource, read-
ing of partial updates and data and race conditions [62]. Transactions simplify
solving these issues for clients. They group reads and writes together in a
logical unit of work, where either all commit, or all abort, even in presence of
failures. Transactions can be long running when parties take a long time to
respond, for example because of waiting on user input. The safety guarantees
for Transactions are acid [46]: Atomicity, Consistency, Isolation and Durability.

Historically Isolation in acid guarantees serializability for transactions, mean-
ing operations take effect in a manner equivalent to some serial schedule.
However, modern database systems offer a range of isolation properties weaker
than serializability [9]. The reason is the trade-off between safety guarantees
and performance of the database. Weaker isolation guarantees allow for op-
timization in performance, especially in a distributed systems setting, where
coordination is expensive due to network latency.

This is related to a trade-off in the level of details in the specification of an
application. The more that is explicitly known about an application’s correct-
ness criteria, the more specific the isolation guarantees can be specialized. In
the general case you have to fall back to stronger isolation guarantees. psac
should simulate the behavior of 2pl/2pc on the object level; since we assume
specifications are also on the object level. Strong system-wide guarantees such
as serializability are not scrutinized in the current paper, although there is a
discussion in section 2.6.2.

26

2.2 Background: Distributed Transactions

Implementing distributed transactions for distributed objects is the focus of
this chapter. We use the available semantic knowledge to trade some global
isolation guarantees for more local performance, resulting in lower latency
and higher throughput.

Distributed Transactions ensure atomicity over multiple application nodes
or distributed objects. Two-Phase Locking (2pl) [13, 40, 84] is a concurrency
control mechanism and makes sure that serializable isolation is maintained
on the application nodes. Two-Phase Commit (2pc) [13, 40, 84] is an atomic
commitment protocol that guarantees Atomicity and Durability.

Concurrency Control and Two-Phase Locking Consider a bank account object
with withdrawal and deposit methods, where a withdrawal should never make
an account balance negative. Without concurrency control, it could be the case
that two withdrawal actions are simultaneously applied to the account. Both
read the same balance and find that individually they do not make the balance
negative and are executed, but together they do make the balance negative,
violating the invariant. In a serializable situation this is not allowed, since only
an outcome state equivalent to a serial execution of both actions would be
valid.

Two-Phase Locking (2pl) is a concurrency control mechanism that guar-
antees serializable isolation (the i in acid) for a local node or resource. 2pl
uses locking to make sure no concurrent changes are made to a resource. It
achieves this by using two phases, a growing phase and a shrinking phase in
this strict order.

In the withdrawal example, the account resource is locked when the action
starts and waits until the first withdrawal action is completed before accepting
new actions.

Atomic Commit and Two-Phase Commit Two-Phase Commit (2pc) is an atomic
commitment protocol that guarantees Atomicity and Durability (from acid). In
itself it does not guarantee Consistency and Isolation. Consistency is achieved
by making sure the application invariants are maintained by all operations on
the resource. The protocol consists of one Transaction Coordinator and multiple
Transaction Participants per transaction. Their internal state is persisted to
a durable log, and thus can be recovered in case of failure. The coordinator
asks the participants to vote on the transaction. If all participants respond with
yes, the coordinator tells them to commit the transactions. If any votes no,
the coordinator tells them to abort. When a participant voted yes, it promises

27

Chapter 2 Path-Sensitive Atomic Commit

that it will commit when the coordinator requests it, even in case of failures.
2pc is considered blocking, because if the coordinator fails in the specific case
when participants have voted yes, but not yet received a commit decision by
the coordinator, the participants are blocked until the coordinator recovers.

Distributed Transactions 2pc and 2pl are combined to implement acid dis-
tributed transactions. 2pl’s locks are only released when the 2pc transactions
are finalized.

2pl locks the resource even though a new incoming transaction might be
compatible with the current in-progress transaction, and coordination between
the two actions is not actually necessary. This depends on the functional
application requirements, which could be less strict than serializability while
still maintaining all internal consistency guarantees. The key idea of psac is
to use available semantic knowledge to determine this, e.g. the outcome of
the first withdrawal can never interfere with the acceptance of the second
withdrawal when enough run-time balance is available for both. The incoming
transaction can be already started, without violating consistency of the balance
with respect to its specification. We explore this idea in the next section.

2.3 Path-Sensitive Atomic Commit (psac)

In this section we present Path-Sensitive Atomic Commit (psac), which exploits
statically known preconditions and post-effects to prevent unnecessary locking
at run time, and thus increases performance of the overall system in terms
of throughput and availability. Intuitively psac, like 2pl, is a blocking access
protocol between transaction and object, but instead of the opaque “locked”
indicator of 2pl, psac filters incoming actions which would interact with
concurrent actions while letting independent actions through. The strictness of
the gate is determined at run time using the possible outcomes of in-progress
actions determined by the post-effects, and the preconditions to validate the
incoming actions against the outcomes.

Previous work [100] defines independent actions as follows: I E(e1, e2, s) =
∀s′ ∈ State. pre(e1, s)∧ post(e1, s, s′)→

�

pre(e2, s)↔ pre(e2, s′)
�

. An action e2 is
independent of an in-progress action e1 in run-time state s, if and only if its
preconditions check result is the same in s and in the post state s′, where
e1’s effect is applied, e.g. two withdrawals when enough balance is available

28

2.3 Path-Sensitive Atomic Commit (psac)

on the bank account. In order for psac to leverage this at run time, the pre-
and post-conditions are required to be locally checkable and computable, and
totally denote the actions’ effects.

psac gives the same atomicity and linearizability guarantees as 2pl/2pc,
while allowing higher throughput when no local dependency exists. Serializ-
ability is not guaranteed, which is discussed in section 2.6.2. Linearizability
guarantees an atomic real-time ordering of operations on a single object, as
opposed to the global, multiple object-guarantees of serializability. Functional
correctness in the local participant is maintained and actions’ effects are applied
in the original order of arrival.

psac combines a variant of 2pl with locks that take the semantics of the
actions into account with 2pc. Each resource can have a shared lock when it
can be determined that actions are semantically independent. This includes
commutative actions. However, even for non-commutative actions psac will
potentially avoid blocking if actions are independent in the current run-time
state, e.g., two withdrawal actions are non-commutative, but will run in parallel
by psac if the run-time balance is sufficient for both because neither of them
would affect the success or failure of the other one.

psac is faster in accepting actions and increases parallelism when possible,
and falls back to the safe 2pl locking approach when not enough information is
available. In practice, we limit the number of allowed in-progress actions to be
sure that the system can make progress and is not overflowed with accepting
new actions on objects. As a consequence, when limiting the maximum number
of parallel actions to 1, psac degrades gracefully to standard 2pl/2pc, since
new actions are delayed until the single in-progress action’s lock clears.

In a scenario with many participants and many requests, but in different
transactions (low contention), an application using 2pl/2pc (or psac) is em-
barrassingly parallel. This means that each of the participants can do their
own computations without the need to synchronize with others. These kinds
of computations are more easily spread over multiple application nodes.

psac’s performance gain over 2pl/2pc becomes evident when multiple ac-
tions on the same participant are requested in an overlapping time span. The
ability to do parallel processing when application invariants allow it, results in
less waiting, and thus more throughput. It also results in processing actions
that would otherwise have timed out. This benefit becomes clear at a higher
request rate, especially in a higher contention use case, when a few objects are
participating in many transactions.

29

Chapter 2 Path-Sensitive Atomic Commit

On the other hand, there is also an upper bound to the performance im-
provement of psac over 2pl/2pc. If the servers running this application are
already maxed out on one or more resources, such as cpu, memory or network
bandwidth, we expect less improvement, because psac can no longer trade the
extra cpu cycles for extra precondition computations and the extra parallel
transactions. In the high-contention use-case with a high number of requests,
2pl waits most of the time on locks to clear and many resources are underused.
Here lies the biggest performance gain for psac.

2.3.1 psac in action

Figure 2.1 and figure 2.2 visualize the general difference between 2pl/2pc and
psac when two actions arrive at the same object in a small time frame. Both
figures depict an object sequence diagram. Comment boxes show the internal
state of the object, with actions in parenthesis as pending updates. Arrows
denote sending and receiving of messages, with withdrawals of €i depicted as
‘−€i’. “apply” and “defer” respectively denote applying of effects and deferring
committed effects until later.

Figure 2.1, on the left, shows the sequence of events when using 2pl/2pc
to synchronize. Consider an account object with balance €100 and a precon-
dition check on the withdrawal action that prohibits a negative balance after
withdrawal. When withdrawal action C1 (−€30) arrives 1 , its preconditions
are checked against the current balance. C1 is allowed, the resource is locked
and a new 2pc-transaction starts. Even though the account allows the trans-
action, it is not yet known if the transaction will be committed or aborted
by the coordinator, due to processing in other transaction participants. Then
another withdrawal action C2 (−€50) arrives 2 . Because the account object is
locked, the action is delayed. When C1 commits 3 , its effects are applied to
the account state, resulting in a new balance of €70 and the object is unlocked.
Now, the delayed withdrawal C2 can start, eventually it commits 4 and its
effect is applied. This results in the new state of €20. 2pl effectively serializes
the two parallel transactions.

The amount of locking performed by 2pl/2pc can be problematic in situations
where a lot of transactions happen on a single object. For instance, in the case
of ing Bank, when the tax authority pays out benefits to citizens, the bank is
required to handle all these transactions within a specific time frame. The tax
authority’s bank account is highly contended because it is involved with all

30

2.3 Path-Sensitive Atomic Commit (psac)

 −€30𝐶1

2P
C

Start −€30

Commit −€30

2P
C

Start −€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€70
apply −€50
€20

€100
apply −€30
€70

Success −€50

Success −€30

1

2

3

4

Account Entity
2PL/2PC

time

Delay −€50

€70
 (−€50)

Initial balance: €100

Account Entity
PSAC

 −€30𝐶1

2P
C

Start −€30

Commit −€30
2P

C

Start −€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€100
 (−€30)
 (−€50)

€100
 (−€30)
defer −€50

€100
apply −€30
defer −€50
€70
apply −€50
€20

Success −€50

Success −€30

1

2

3

4

Initial balance: €100

Figure 2.1 Vanilla Two-Phase Commit Figure 2.2 Path-Sensitive Atomic Commit

31

Chapter 2 Path-Sensitive Atomic Commit

individual transfers. This would not scale on such an object-oriented message-
based distributed system, because each withdrawal will have to wait on the
previous to finish.

psac improves on this situation by detecting at run time if transactions can
be processed in parallel anyway. The same execution scenario is visualized in
figure 2.2, illustrating how psac differs from 2pl. We again consider an account
object with initial state €100 and a precondition check that prohibits a negative
balance. Similar to 2pl, when withdrawal action C1 is received 1 and no other
transactions are in progress, a new 2pc-transaction is started, but contrary to
2pl, the object is not completely blocked. When another withdrawal action C2

arrives 2 , it is started because it is independent of whether the earlier action
commits or aborts, since there is enough balance to allow the withdrawal to
proceed in either case. Therefore, C2 is immediately started. psac can detect
this independence, based on in-depth knowledge of the functionality of a bank
account via the preconditions and post-effects of its actions.

In the example scenario, C2 commits 3 earlier than C1, but its effect is
delayed to maintain linearizability of the account. The original requester can
be already notified of the successful result (Success −€50), but not yet the new
state of the account, since this is dependent on the outcome of C1. C2’s effect
is deferred. Now, when C1 commits 4 , both effects are applied in order to the
account, resulting in a new state of €20.

In situations with non-uniform loads, psac delivers on allowing more trans-
actions per time span than 2pl/2pc (and thus higher scalability in terms of
throughput). An example with abort is shown in appendix A.1. We detail the
algorithm below and evaluate these claims in section 2.5.

2.3.2 psac Algorithm

Listing 2.1 shows the psac algorithm in pseudo-code. The algorithm main-
tains three lists, inProgress containing transactions that have been started, but
have not finished yet; delayed, containing the deferred transactions that have
to wait till at least one of the in-progress transactions completes; and finally
queued, containing the transactions that are successful, but not yet applied to
the state of the object, to maintain the original order of arrival.

On arrival of a command Cnew, its preconditions are checked against all
possible outcomes of the transactions that are currently in progress. If it is
allowed in all possible states, the action is independent and can start processing.

32

2.3 Path-Sensitive Atomic Commit (psac)

Listing 2.1 Pseudo-code of a psac-enabled object

1 inProgress = []
2 delayed = []
3 queued = []
4
5 while true:
6 if incoming command Cnew:
7 #See figure 2.3 for this part of the algorithm.
8 S = set of all possible outcome states of

,→ Ci ∈ inProgress
9 if ∀s ∈ S. preconditions of Cnew hold:
10 inProgress += Cnew

11 start Cnew

12 else if ¬∃s ∈ S such that preconditions
,→ of Cnew hold:

13 reply Fail(Cnew) to requester of Cnew

14 else
15 delayed += Cnew

16 else if commit of Cn:
17 reply Success(Cn) to requester of Cn

18 queued += Cn

19
20 else if abort of Cn:
21 reply Fail(Cn) to requester of Cn

22 inProgress -= Cn

23
24 Cm = head(inProgress)
25 if Cm ∈ queued:
26 apply Cm

27 inProgress -= Cm

28 queued -= Cm

29 currentDelayed = delayed
30 delayed = []
31 for Ci in currentDelayed:
32 handle Ci as incoming command

For such transactions it is as if the object is not locked. If there is no possible
outcome where the preconditions of Cnew hold, the action is immediately
rejected with a failure reply. Otherwise, if there is at least one possible state
where the preconditions of Cnew hold, the action is dependent on one of the
transactions that are currently in progress, so it is delayed by adding it to
delayed. For such a transaction, the semantics of psac is equal to 2pl.

Whenever an action commits, it is queued for applying the effects to the
object’s state. Since all actions are stored in order of arrival in inProgress, it will
be applied to the state in the same order. This way non-commutative actions do
not violate linearizability. If a transaction aborts, the requester is notified of the
failure, and it is removed from the inProgress list. Finally, if the first element
of inProgress is in queued, its effects are applied to the state, it is removed
from inProgress and queued, and all delayed actions are retried. This results in
applying the effects in original arrival order and makes sure delayed actions
are retried as soon as possible.

The key idea of the algorithm is the use of the preconditions and actions’
effects to construct a tree of all possible outcome states of the set of transactions
that are currently in progress. At run time, given the current object state, the
set of in-progress actions and the new incoming action, we calculate all possible

33

Chapter 2 Path-Sensitive Atomic Commit

Account Instance
PSAC

 -€30𝐶1

 -€50𝐶2

Success 𝐶2

1

Precondition:
Balance €0≥

Initial State
€100

𝑆0

€100
𝑆0

€70
𝑆0+1

+-

€100
𝑆0

€50
𝑆0+2

+-

€70
𝑆0+1

€20
𝑆0+1+2

- +

 -€60𝐶3

 preconditions fail in and : delay until finishes.𝐶3 𝑆0+2 𝑆0+1+2 𝐶3 𝐶2 Commit 𝐶2

€20
𝑆0+1+2

€50
𝑆0+2

€50
𝑆0+2

€20
𝑆0+1+2

Fail 𝐶3

Commit 𝐶1Success 𝐶2

Start 𝐶1

Start 𝐶2

2

3
4

5

6

€20
𝑆0+1+2

time

Figure 2.3 psac example with internal possible outcome tree and decisions on com-
mands

outcome states of the in-progress actions using the post-effects. This is done by
simulating the first in-progress action in the current state, branching into two
possible outcomes: one where the in-progress action actually commits and the
post-effect is applied, and one where it is aborted and thus not applied. Doing
this for all in-progress actions results in a tree with in its leaves the possible
outcome states of the object.

figure 2.3 shows an example of the potential outcome tree S corresponding
to the scenario of figure 2.2 and how it is updated when actions arrive. The
leaves represent the potential outcomes. Withdrawal C1 (−€30) arrives 1 at
a bank account instance using psac. The preconditions are valid for C1, and
given tentative Abort (−) or Commit (+) by the 2pc transaction, the possible
outcome tree branches to two possible outcomes: S0 and S0+1, respectively
corresponding to a balance of €100 and €70. Withdrawal C2 (−€50) arrives 2
and its preconditions are valid in all possible outcomes S0 and S0+1, so both
possible outcomes branch in similar fashion. Withdrawal C3 (−€60) arrives

34

2.4 Implementation: Rebel and Akka

3 , but its preconditions are not valid in all possible states, in particular not
in S0+2 and S0+1+2. C3 is delayed until it is independent from the in-progress
actions. In this case C3 is only dependent on C2. The outcome tree is unchanged,
since C3 is not accepted for processing yet. When C2 is committed by the 2pc
coordinator 4 , the possible outcome tree is pruned, because the branches
where C2 is aborted are no longer valid, leaving only S0+2 and S0+1+2. After an
in-progress action commits or aborts, in this case C2 5 , delayed actions are
retried, here C3. Now preconditions fail in all possible outcome states, C3 is
independent and thus rejected. When C1 commits 6 , the possible outcome
tree is pruned again and a single state S0+1+2 remains. The new state is now
calculated by applying the effects in order.

Given all possible outcome states we can check the new incoming action
against all outcomes using its precondition. This gives insight if the action
conflicts with any in-progress action or combinations thereof. If all or none of
possible outcomes satisfy the preconditions, the incoming action is independent
and is accepted for processing or immediately rejected.

A difference from 2pl/2pc is that actions that come in later could be accepted
for commit earlier. Then the effect of the action is delayed until after the
previous actions are committed or aborted, making sure that linearizability of
the object is maintained.

2.4 Implementation: Rebel and Akka

To compare psac to 2pl/2pc in a realistic environment, we prototyped a
small accounting service on top of Akka. For the pre- and post-conditions
of transactions we use the Rebel specification language, which aligns with
the design requirements of psac. Our specific use of Rebel and Akka are not
essential to the operation of psac but they are part of our evaluation setup for
the performance evaluation in section 2.5.

2.4.1 Rebel: a dsl for Financial Products

Rebel is a domain specific language (dsl) for describing financial products,
designed in collaboration with ing Bank, as an experiment to tame the complex-
ity of large financial it landscapes [105, 106, 108]. Declarative specifications
functionally describe financial products, such as current- and savings accounts

35

Chapter 2 Path-Sensitive Atomic Commit

and financial transfers between them. Rebel specifications are designed to
facilitate unambiguous communication with domain experts, support simula-
tion, verification, testing, and execution through code generation. Rebel and
proprietary derivatives are used by ing Bank to prototype and understand
many different financial products, such as European payments and open data
regulations, banking cards and business lending use cases. For example the
sepa specifications consist of 26 Rebel specifications, totaling 964 lines of code.

An example similar to the bank account example used throughout this
chapter is shown in a Rebel-like specification in listing 2.2. A specification
declares an identity (using the annotation@identity), data fields, and describes
the life cycle of a product as a state machine with actions and pre- and post-
conditions on those actions in predicate logic plus integer constraints.

Listing 2.2 shows the specification of two classes, Account and MoneyTransfer.
An Account is identified by its iban bank account number, and has a current
balance. The life cycle of an account is as follows: it can be opened, then any
number of withdrawals and deposits may occur, and finally it can be closed.
Transitions among states are triggered by the actions Open, Withdraw, Deposit,
and Close respectively. Each event is guarded by preconditions and describes
its effect in terms of post-conditions. For instance, the Withdraw action requires
that the withdrawn amount is greater than zero, and that the withdrawal does
not produce a negative balance. The effect of withdrawal is then specified as a
post-condition on the balance of this account.

The second class MoneyTransfer in listing 2.2 models a transfer of money
between two accounts. It can simply be booked via the Book action. The Book
action is triggered on two accounts. The effect of booking a money transfer
consists of synchronizing the Withdraw event on the from account, with the
Deposit event on the to account. The sync represents an atomic transaction
between two or more entities. In other words, an underlying implementation
must guarantee that either both Withdraw and Deposit should fail or both
should succeed.

The fact that the functional requirements on financial products are formally
specified in Rebel separates the “what” from the “how”. In other words, decou-
pling the description of a financial product from its implementation platform
allows us to experiment with different back-ends for Rebel specifications, by
developing different code generators for different platforms or different run-
time architectures. Below we show how Rebel classes are mapped to Scala
classes that can be executed as actors on the Akka platform. In particular this

36

2.4 Implementation: Rebel and Akka

Listing 2.2 Rebel specification and state charts of a simple bank account: an Account
supports events Open, Withdraw, Deposit, and Close. A MoneyTransfer can
be booked by synchronizing Withdraw and Deposit on two accounts.

1 class Account
2 accountNumber: Iban @identity
3 balance: Money
4
5 initial init
6 on Open(initialDeposit: Money): opened
7 pre: initialDeposit ≥ €0
8 post: this.balance ≡ initialDeposit
9
10 opened
11 on Withdraw(amount: Money): opened
12 pre: amount > €0, balance - amount ≥

,→ €0
13 post: this.balance ≡ balance - amount
14 on Deposit(amount: Money): opened
15 pre: amount > €0
16 post: this.balance ≡ balance + amount
17 on Close(): closed
18
19 final closed

1 class MoneyTransfer
2 initial init
3 on Book(amount: Money, to: Account,

,→ from: Account): booked
4 sync:
5 from.Withdraw(amount)
6 to.Deposit(amount)
7 final booked

Account

Open
Deposit

Withdraw

Close
opened

Transaction
Book

allows us to experiment with different implementations of the sync construct,
such as 2pl/2pc and psac.

The consistency of the Rebel classes is fully determined by their life-cycle
and pre- and post-conditions and local to the class specification. Isolation
guarantees however are undefined for Rebel synchronization [108], although
Rebel’s simulator and model checker use sequential non-overlapping events,
which implies serializability.

2.4.2 Executing Rebel on Akka

Deployment To support fault tolerance and scalability, the execution of Rebel
entities is deployed on at least two servers so that customer requests can still
be processed when one of the servers breaks down. This means the generated
application is a distributed system. One style of implementing a distributed
system is by using the actor model [53]. Akka [3] is a well-known toolbox for

37

Chapter 2 Path-Sensitive Atomic Commit

actor-based systems that runs on the jvm and is widely used to build distributed,
message-driven applications. Mapping Rebel objects to Akka actors is a natural
fit and provides sufficient low-level controls to vary the implementation of
the sync construct. This implementation approach is similar to other reactive
architectures such as presented by Debski et al. [26].

Each concrete Rebel class instance is run as an actor in isolation and enables
distribution of the computation over multiple cluster nodes. Class instance
actors are automatically spread over the available cluster nodes to allow for
more optimal spread over resources such as ram and cpu. This enables scaling
in and out by moving the actors to other nodes if needed. Each actor runs as
an independent object, so it performs work without having to wait on other
actors, allowing concurrent work. In theory this means that actor systems scale
out linearly, until they have to synchronize. In practice this means that an
actor system scales up until too many of its actors are blocked by multiple
transactions at the same time.

Rebel to Akka Each instance or entity of a Rebel state machine is imple-
mented as an actor. We use the following features of Akka: Cluster for cluster
management and communication between application nodes; Sharding for
distributing actors over the cluster by sharding on the identity; Persistence
enables event sourcing for durable storage and recovery; and Http for http
endpoints definitions and connection management. These combined Akka fea-
tures allow us to spread the Rebel instance actors over a dynamically sized
cluster of application nodes. More details on the implementation using Akka
are found in appendix A.3. The back-end for persistence is an append-only
event sourcing log, for which we use the distributed and linearly scalable
Cassandra database [20].

The runtime guarantees that there is a single actor instance per Rebel class
instance and thus guarantees linearizability on instance level, in the sense that
operations always see all previous updates. Each operation is persisted to the
journal before processing the next, to allow for recoverability and durability
in case of failure. The journal data is replicated over three Cassandra nodes.
Reads and writes use the built-in quorum consistency level of Cassandra to
make sure no stale data is read.

An example of the generated Scala code for the Account and MoneyTransfer
example of listing 2.2 is shown and explained in appendix A.2.

38

2.4 Implementation: Rebel and Akka

Synchronization We first consider the 2pl/2pc synchronization strategy.
Our implementation of 2pc follows the description by Tanenbaum and Van
Steen [110] extended with the flattened commit protocol [115] to support
nested synchronization in Rebel, where 2pc participants can add more transac-
tion participants. As optimization the transaction manager does not wait on the
votes of the other participants and immediately aborts the transaction when
one participant aborts. There is a single transaction manager per transaction
and one or more transaction participants, respectively implemented by Akka
Persistent FSMs named TransactionManager and TransactionParticipant. They
both define a state machine following the definition and also persist their state
to the persistence back-end, and thus can be recovered in case of failure.

Both manager and participants have timeouts on their initial states, this
means that when no initialization message is received within a given time
duration, they will timeout and abort the transaction. This makes sure that the
system does not deadlock, although it might result in overhead in creation of
transaction actors and messaging when lots of timeouts are triggered.

To make sure no deadlocks happen in other states, timeouts are in place
that trigger retries and eventually stop the actor. In the unlikely case that a
participant or coordinator is not running, the combination of Akka Sharding
and Persistence will make sure it is restarted. This also works when some of
the cluster nodes shut down, are killed, or become unreachable for whatever
reason; in that case other nodes will take over automatically,2 restore the actors
and continue the protocol. The blocking aspect of 2pc, when a transaction
manager crashes, is also partly mitigated by message retries and recovering on
another application node.

psac is implemented on top of 2pc. Whenever a new action is received by the
actor, an action decider function decides if the action can be safely executed
concurrently. If the configurable maximum number of paerallel transactions
per actor is reached, the action is queued. Otherwise, it calculates the possible
outcome states by iterating all the possible in-progress action interleavings and
checks the preconditions in the calculated states to decide if it can safely start
the 2pc transaction for this action. If dependency is detected, the action is also
queued. Note that reducing the maximum number of parallel transactions to 1
results in vanilla 2pl/2pc behavior.

2 The fundamental problem of determining when to fail over, because node failure,
slowness and network delay are indistinguishable, is out of scope for this chapter.

39

Chapter 2 Path-Sensitive Atomic Commit

2.5 Performance Evaluation

2.5.1 Research Objectives

In this section, we evaluate the performance of psac relative to 2pl/2pc. First,
we find out in which scenarios 2pl/2pc is sufficient as a Rebel synchronization
back-end and in which scenarios it can no longer maintain sufficient perfor-
mance. Furthermore, we are interested in determining when psac performs
better for the cases where 2pl/2pc is no longer sufficient. In order to look at ap-
plications that can scale with business requirements, we focus on scalable and
resilient applications that can continue to grow when performance demands
keep growing. We study applications that can scale over multiple servers.

The experiments are created to fairly compare psac and 2pl/2pc against
each other in the same synthetic scenarios with same load and configuration.
We are interested in the scalability of both 2pl/2pc and psac under similar
loads. In other words, we are interested in to what extent the throughput
increases when more nodes are added to the cluster.

It might seem counter-intuitive that the extra work in psac of calculating
the possible outcomes tree and checking the preconditions against all of these
states, can result in higher performance compared to 2pl/2pc. For an ideally-
scheduled batch based system all extra calculations would worsen performance,
since every cpu cycle counts. In this case, the most time in 2pl/2pc is lost by
waiting for the unlock. psac’s parallel transactions use this otherwise lost time
in between for these extra calculations, to determine safe extra parallelization.

We expect that:
Hypothesis 1. 2pl/2pc and psac perform similarly in maximum sustainable
throughput for actions without synchronization, because objects do not have
to wait on each other.
Hypothesis 2. 2pl/2pc and psac perform similarly in maximum sustainable
throughput for actions with low contention synchronization, because synchro-
nization is evenly spread over the objects.
Hypothesis 3. psac performs better than 2pl/2pc in maximum sustainable
throughput for actions with high-contention synchronization, because 2pl/
2pc has to block for in-progress actions, where psac allows multiple parallel
transactions.

Before it can be determined if psac is generally useful, first we need to
find out whether psac pays off in high-contention scenarios. Since PSAC is a

40

2.5 Performance Evaluation

 Application nodes𝑁 or Load generator(s)1 𝑁 Database nodes2𝑁

Gatling Rebel cluster
Node C*

Requests Persists

InfluxDB

 Metrics host1

Experiment/system metrics

Application/system metrics

Database/system metrics

Figure 2.4 Experiment setup on N nodes. A single or more load generators do http
requests randomly over N Rebel application nodes, backed by 2N Cassandra
database nodes. Relevant experiment and system metrics are reported to
InfluxDB for later analysis.

new algorithm running a complex technological context the answers to these
hypotheses are not trivial: first the expected gain may not be significant com-
pared to other relevant factors and second the cost of the additional overhead
for every transaction may outweigh the benefits. So, these experiments are
designed to first isolate the effect of psac as compared to 2pl/2pc, and then to
try and invalidate the above hypotheses. If the experiments can not invalidate
our claims, then we gain confidence in the relevance of the new algorithm.

To be sure that we are not running into the limits of (configuring) the
infrastructure, but really into limits of the synchronization implementation, we
investigate first how far we can take the Akka infrastructure without any logic
or synchronization.
Hypothesis 0. The actor system infrastructure enables horizontal scalability,
which means that adding more compute nodes increases throughput.

2.5.2 Deployment Setup

In order to scale to multiple nodes, our experiment setup runs on Amazon ecs
(Elastic Container Service) using Docker images for the Database (Cassandra),
the Application, Metrics (InfluxDB), and the Load generator (Gatling [36]).
Figure 2.4 shows an overview of the setup. The Cassandra version is 3.11.2

41

Chapter 2 Path-Sensitive Atomic Commit

on OpenJDK 64-Bit Server VM/1.8.0_171. The application runs on Akka ver-
sion 2.5.13, Oracle Java 1.8.0_172-b11, with tuned garbage collector G1 with
MaxGCPauseMillis=100.

In order to prevent cpu or memory starvation/contention between the
application and the load generator tool, we deploy each of the application
components on a different virtual host on Amazon Web Services (aws). We use
ec2 instance type m4.xlarge3 for all vms, which are located in the Frankfurt
region in a single data center and availability zone.

Each of these containers is deployed on its own container instance (host),
with the exception of Metrics and Load generator, which share a host. Metrics
being sent asynchronously over udp, to ensure minimal interference with
application performance. cpu and other system metrics are monitored to
prevent this.

For realism of the experiments we use the production-ready persistent journal
implementation Cassandra as an append-only log for the persistent actors, so
limited synchronization is done on the database level, although it gives realistic
overhead. We over-provision the database to make sure it is not a bottleneck.

Our tooling supports running the performance load from multiple nodes.
Experimentally we discovered that setting up the correct experiment for high
load is not trivial: such as the correct number of file descriptors for connections;
garbage collection tuning; library versions with bugs; careful load generation
to capture the sustainable throughput; ratio of application, load and database
nodes; collection of metrics for all components; and validating correct de-
ployment before running the experiment. We collect system metrics for all
machines in order to monitor overload of any specific part. The low-overhead
JDK Flight Recorder profiling is also enabled for after-the-fact bottleneck anal-
ysis of our application nodes. The experiment metrics results and profiling files
are available at Zenodo [95].

When load testing applications, the crafting of the load is very important,
and not trivial. A distinction often used is closed versus open systems [92].
Closed systems have a fixed number of users, each doing requests to the service,
one after another, limiting the total number of tcp connections. Open systems
have a stream of users requesting at a certain rate, meaning there is no such
maximum of concurrent requests as in a closed system. Typically closed systems
are used for batch systems and open systems for online usage.

3 m4.xlarge: 4 vCPU, 16GiB Memory, ebs-based ssd storage, 750Mbit/s network
bandwidth.

42

2.5 Performance Evaluation

For all experiments presented in this chapter, we employ a closed system
workload approach. Finding the maximum throughput using an open-world
workload quickly results in an overloaded application, both for 2pl/2pc and
psac, which obscures the differences between them. In an enterprise setting,
such as a bank, a (hardware) load balancer translates the open workload
behavior to a more closed world behavior by limiting the number of network
connections and reusing them.

Each request from the load generator to the application will spawn a 2pc
coordinator actor for the request a 2pc participant actor for each synchroniza-
tion participant. For the bank transfer experiments, this means that for each
request, a new Rebel MoneyTransfer entity actor is started, one 2pc coordinator
actor, and three 2pc participants (for the money transfer and the two accounts).
So the number of actors created is roughly five times the number of requests.
For our experiment scenarios all actors are equally spread over all the Akka
cluster nodes.

2.5.3 Baseline Experiments: Akka Scalability

To make sure that Akka or our setup does not influence the result of evaluating
the performance of psac, we run four experiments on top of plain Akka to
establish horizontal scalability. The goal of this experiment is to isolate (en-
vironment) noise and reduce confounding factors. The baseline experiments
use a setup as similar as possible to the more involved experiments discussed
later. We run multiple variants that increase in complexity, building up to all
the features used by the Rebel implementation, and measure the maximum
sustainable throughput (requests/transactions per second) per each increment
of application complexity.

The following experiments were run:
1. Bare – http: responses are immediately given by the http layer.
2. Simple – http + Actors: each request creates an actor which sends the

response.
3. Sharding – http + Sharded Actors: actors are equally spread over the

cluster and send the response
4. Persistence – http + Sharded Persistent Actors: actors are spread equally

over the cluster and wait for a successful write to the persistence layer
(Cassandra) before responding to the request.

43

Chapter 2 Path-Sensitive Atomic Commit

Table 2.1 Baseline experiment fit to Amdahl’s law and asymptote

experiment λ (tps) σ ainf = λσ−1 (tps)

Bare 16 751 0.002 923 3 5 729 998
Simple 10 372 0.000 877 3 11 822 028
Sharding 6303 0.004 728 5 1 332 920
Persistence 1928 0.008 159 7 236 281

The application responds with a json message when the work is described is
done. A request is successful when a 200 http status code is received.

Figure 2.5 shows the throughput results of the experiments. Data points are
throughput in terms of successful responses per second during the stable load of
the experiment, after warm-up and ramp-up of users. For warm- and ramp-up
we increase the number of simulated users over time, to give the application
some time to get up to speed. The plot also shows a fit to Amdahl’s [6] law
using a non-linear least squares regression analysis. For intuitive comparison
we include the upper bound of linear scalability line for each of the experiments.
Amdahl’s law is defined as: X (N) = λN

1+σ(N−1) , where X (N) is the throughput
when N nodes are used. Linear scalability means that the contention σ is 0
and the throughput grows with λ, which denotes the throughput of the single
application node. The fitted values for λ and σ are shown in table 2.1.

All variants have very different performance per node. This is expected, by
the increasingly complex actions performed. Increasingly complex variants have
increasing σ, which can be explained by increased synchronization between
the Akka application nodes. All experiments show horizontal scalability up until
an expected peak throughput on Amdahl’s law asymptote (ainf = λσ−1), which
is the theoretical maximum throughput which can not be further improved by
adding more nodes.

The results show that our implementation using Akka exhibits horizontal
scalability and corroborates H0.

2.5.4 Synchronization Experiments: psac vs 2pl/2pc

To compare the performance of psac and 2pl/2pc, we run three experiments
with different synchronization characteristics, linked to the relevant hypothesis:
1. NoSync – OpenAccount: A Rebel operation without sync. (H1)

44

2.5 Performance Evaluation

0k

100k

200k

300k

400k

0 5 10 15 20

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
)

variant Bare Simple Sharding Persistence

Figure 2.5 Throughput X (N) (violins), Amdahl fit (colored line) and linear scalability
upper bound (transparent line) of baseline experiments

2. Sync – Book: A Rebel operation with sync, synchronizing with Withdraw
and Deposit on two accounts. (H2)

3. Sync1000 – Book on a limited number of accounts, to increase the contention.
(H3)

These different scenarios enable us to see if and when psac improves over
2pl/2pc, especially in the Sync1000 high-contention experiment. On the one
hand NoSync and Sync show where psac performs similarly 2pl/2pc. On the
other hand Sync1000 shows the high-contention scenario where psac improves
over 2pl/2pc.

All three experiments use a closed system approach [92], where we limit
the number of concurrent total users. This ensures that the application is not
overloaded by too many requests, causing high failure rates. Each experiment
is run consecutively for increasing node count N , with N load generator nodes
(except Sync1000) to grow the load proportionally. Sync1000 runs a single load
generator which increases the load in incremental steps in order to determine
the maximum throughput until the application overloads.

The high-contention scenario Sync1000 is designed to be as close as pos-
sible to a realistic industry setting, where high-contention objects become a
bottleneck. This is similar to the NewOrder benchmark of the well-known tpc-

45

Chapter 2 Path-Sensitive Atomic Commit

c [87] online transaction processing benchmark suite, where a high-contention
object is responsible for handing out order ids.

In all experiments we compare 2pl/2pc’s and psac’s throughput (X (N)) for
a varying number of application nodes N .

NoSync The NoSync experiment is the Open Account scenario which does not
contain a Rebel sync. It corresponds to hypothesis H1, which states that 2pl/
2pc and psac should have similar throughput when there is no synchronization
for the actions involved. The results are plotted in figure 2.6a. We observe that
the throughput of the two variants is similar, as expected and thus corroborates
H1. The throughput is only limited by the cpu-usage on the nodes and the
creation of records in the data store. The metrics data shows that the application
cpu usage drops to around 80% and the data store cpu usage is almost 100%.

Sync The Sync experiment contains a sync in the Book action and corre-
sponds to H2, which states that we expect that psac and 2pl/2pc also have
similar throughput in this low-contention scenario. The results are shown in
figure 2.6b. Here we also see the same performance for both 2pl/2pc and psac,
corroborating H2. This can be explained by the experiment setup: The Book
actions are done between two accounts uniformly picked from 100 accounts
initialized before the experiment. With a maximum throughput of roughly
1500 and uniformly spread bookings the probability of overlapping transactions
on a single account is low.

The absolute throughput numbers are lower than NoSync, however, which
is explained by the fact that Book has to do more work, since it involves three
instances: one MoneyTransfer and two Accounts.

Sync1000 Finally, Sync1000 introduces artificial contention by reducing
the number of accounts to 1000, corresponding with H3. H3 states in high-
contention scenarios that psac is expected to have higher throughput than
2pl/2pc, because it is able to avoid blocking where 2pl/2pc can not. This
results in a difference between 2pl/2pc and psac, as seen in figure 2.6c. Since
this is the most interesting case we have run the experiment for higher node
counts, and include a fit on Amdahl’s law, shown in figure 2.7. Figure 2.6d
contains the fitted parameters. The results show that psac consistently achieves
higher throughput than 2pl/2pc.

The metrics show that both application and data store cpu usage starts
dropping for node counts > 9. This can be explained by contention: busy

46

2.5 Performance Evaluation

0

1000

2000

3000

4000

1 3 6 9

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
) variant NoSync2PL/2PC NoSyncPSAC

(a) Throughput X (N) of NoSync

0

500

1000

1500

1 3 6 9

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
) variant Sync2PL/2PC SyncPSAC

(b) Throughput X (N) of Sync

0

1000

2000

1 3 6 9

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
) variant 10002PL/2PC 1000PSAC

(c) Throughput X (N) of Sync1000

variant λ (tps) σ

2pl/2pc 180 0.049 880 9
psac 296 0.049 587 8

(d) Sync1000 experiment fit to Amdahl’s law

Figure 2.6 Throughput X (N) against number of nodes N . This pirate plot is a combi-
nation of violin plot, box plot and bar chart. Line is the median, points are
the data points. This gives a complete overview of the data (data points
and distribution in violin plot) and an aggregated view.

entities are at their maximum throughput for 2pl/2pc transactions. In the
case of psac this also happens, because the number of parallel transactions is
limited by configuration at 8. Nevertheless, psac consistently achieves higher
throughput.

The graphs in figure 2.8 display the latency percentiles against increasing
throughput. Since the Y-axis of the different graphs is the same, we can see
that the latencies for all node sizes are similar, but the throughput grows larger
when node size increases. This also shows clearly that psac reaches higher
throughput levels and that psac is on par or better latency-wise with 2pl/2pc
up to at least the breaking point of 2pl/2pc, which is explained by the improved
parallelism on psac.

47

Chapter 2 Path-Sensitive Atomic Commit

0.0k

1.0k

2.0k

3.0k

4.0k

0 5 10 15 20 25

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
)

variant 10002PL/2PC 1000PSAC

Figure 2.7 Plot of Amdahl fit and corresponding linear scalability upper bound (trans-
parent) for Sync1000 on higher node counts

n: 18 n: 21 n: 24

n: 9 n: 12 n: 15

n: 1 n: 3 n: 6

0 1000 2000 0 1000 2000 3000 0 1000 2000 3000

0 500 1000 1500 20000 500 1000 1500 2000 0 1000 2000

0 100 200 300 0 200 400 600 0 500 1000

30
100
300

1000
3000

30
100
300

1000
3000

30
100
300

1000
3000

Throughput (tps)

L
a

te
n

c
y
 (

m
s
)

percentiles 50p 95p 99p variant 10002PL/2PC 1000PSAC

Figure 2.8 Latency percentiles (logarithmic scale) of
Sync1000/ grouped by number of nodes (n). Y-axis shared for latency
comparison, lower is better. X-axis: higher is better.

48

2.6 Discussion

2.6 Discussion

2.6.1 Threats to Validity

We distinguish between construct validity, internal and external threats to
validity. Construct validity discusses if the test measures what it claims to
measure. Internal threats are concerned with problems of configuration and
bugs in the implementation. External threats are about the generalization of
the results.

Contruct validity Regarding construct validity we have mitigated this risk by
first doing a infrastructure and a NoSync experiment (H0), in order to make
sure that we actually measure the intended construct: comparing psac against
2pl/2pc. How sure can we be that in our situation with a noisy cloud envi-
ronment, the results are significant compared to coincidental variation? Our
experiments compare between variants under the same benchmark and imple-
mentation to be sure we are correctly comparing the relevant synchronization
implementation parts of the setup. The baseline experiment (H0) makes sure
that the setup and environment are correctly configured, and provides bounds
in throughput and latency in which the results of the actual experiments are to
be interpreted. The Sync1000 experiment is set up in such a way that if psac
did not significant improve performance, this would be visible in the results.
The other experiments (NoSync, Sync1000) are its baseline to show psac’s
and 2pl/2pc’s variance is limited in other (low-contention) situations. This
shows that psac’s performance improvement in the high-contention scenario is
not due to noise or external factors.

Internal threats to validity To make sure there are no differences in config-
uration and deployment of our experiments, we designed and implemented
an experiment runner to automatically run the different scenarios required
for each experiment on the available aws VMs. The experiments are defined
using declarative configuration, to make them reproducible and without con-
figuration mistakes. For each experiment each node size is run separately on
aws. The use of Docker images and automated tooling makes sure that the
configuration and artifacts for each of the experiments are the same, except
for the specific differences that we want to compare.

49

Chapter 2 Path-Sensitive Atomic Commit

Another threat is the Amazon virtual machine environment: this can be
a noisy environment, which influences our experiments. Nodes are run on
possibly shared hosts, which may impact performance depending on noisy
neighbors, differences in hardware, or even time of day. Warm up time is
frequently the bottleneck in data parallel distributed systems on the jvm [73],
so this factor may not be eliminated by our experiments. Experiments may also
not have been run long enough to obtain reliable results. We mitigated this
threat partially by (a) designing our experiments to compare between variants
under the same conditions and (b) running the experiments on many different
occasions and manually validating that the results are similar to previous runs.
There is a threat that our findings do not generalise to a broader range of
scenarios.

Another possible influence on the performance results is the persistence layer.
In order to make sure the persistence layer is not the bottleneck, we should
monitor metrics of the database nodes, such as cpu, io and memory usage. If
none of them continuously peak, we assume this is not a bottleneck. However,
during the execution of some of the experiments the persistence layer has not
been monitored consistently.

External threats to validity For psac to be correct and consistent, the defined
pre- and post-conditions have to be precise and fully define the checks and
effects of an implementation. In practice psac’s implementation uses the same
non-side-effecting code to calculate the possible outcomes as for the actual
state changes. When psac is used as part of another implementation, care has
to be taken.

The load might be too hard on the system, resulting in higher throughput
but worse response times than we want. This could obscure comparison and
generalization. For instance, the Sync1000 experiment for psac showed overall
higher throughput, but also increasing latencies. We expect that tuning of
the load reduces the pressure on the application and will result in improved
latencies to 2pl/2pc but at higher throughput.

The experiments reported on in this section are still relatively isolated. In
order to claim generalized applicability, further work is needed to obtain results
in different settings, and different kinds of loads. Related work [100] studies
statically independent events, which is a subset of the independent actions
discussed in this chapter. They show that at least 60% of event pairs in state
machine models from industry can benefit from independent actions. To show
psac’s performance gains in real-life scenarios, orthogonal research is needed

50

2.6 Discussion

to show that these independent actions occur in high-contention scenarios.
For instance, it would be interesting to see how psac performs on some well-
known benchmarks, such as tpc-c [87], the twitter-like Retwis Workload [71],
ycsb [22], the SmallBank benchmark [19] and the OLTPBench benchmark
runner [27]. Modeling tpc-c’s NewOrder is non-trivial in Rebel, because of
a mismatch with sql transactions, which can contain multiple queries and
updates based on each other, where a Rebel event is non-interactive.

A geo-located setup, furthermore, would make the experiments more re-
alistic, because round trip times to application nodes and database nodes
are relatively large. We expect contention to be more of a problem there, be-
cause the latency of individual transactions (and thus the amount of locking)
goes up. psac could be extended to employ techniques similar to Explicit
Consistency [11] to allow parallel multi-regional actions without immediate
communication.

2.6.2 Limitations

psac results in performance gains when actions are independent and there is
much contention. So in practice the benefit depends on the use case, because
it might not be a high-contention scenario. psac’s benefit is most clear in the
situation where (a) objects are involved in many (long running) synchronized
actions from different other objects, making that single object a bottleneck
for the others and (b) when all actions being used for synchronization are
independent. This situation results in a scalability limiting factor where psac
improves throughput and latency performance over 2pl/2pc. In the case with
many objects which do not interact via synchronization or the request volume
is low, psac’s performance gain is limited, although never worse than 2pl/2pc
in the same situation, as shown by the NoSync and Sync experiments.

A current limitation of psac is that it does not offer fairness for dependent
actions. psac accepts new independent actions when there are also dependent
actions in the wait queue. In a pathological scenario this results in a new
in-progress action that keeps the queued action dependent, and thus will po-
tentially never be removed from the queue. A potential solution is to consider
the dependency of the queued actions on the incoming action, when deter-
mining independence, so that queued actions are never requeued indefinitely.
Another, simpler but less fair, solution is to make sure only a limited number
of independent actions can go before the dependent action.

51

Chapter 2 Path-Sensitive Atomic Commit

timeAccount 𝐴

Account 𝐵

𝑇1

𝑇2

Deposit(50)

Withdraw(50)

Interest(10%)

Interest(10%)

€100

€100

Locked
by : Wait𝑇1

Locked by
: Wait𝑇2

Time-out:
 restarts𝑇2

Withdraw(50)

€50

€150

Deposit(50)

Interest(10%)

Interest(10%)

€55

€165

 restarts𝑇2Deadlock continues𝑇1

(a) 2pl/2pc is serializable

time
Account 𝐴

Account 𝐵

𝑇1

𝑇2

Deposit(50)

Withdraw(50)

Interest(10%)

Interest(10%)

€100

€100

€150 €165

€110 €60

(b) psac is not serializable

Figure 2.9 Example with two events, to show difference in isolation between 2pl/2pc
and psac

psac is not Serializable psac does not guarantee serializability, while 2pl/
2pc does. Consider the following situation, as shown in in figure 2.9: Two
distributed transactions T1 and T2 are concurrently started. T1 consists of two
actions, Deposit(50) and Withdraw(50) on respectively Account A and Account B,
both with a balance of €100. T2 consists of two actions Interest(10%) on both
Account A and Account B. T1 first arrives at Account A and T2 arrives first at
Account B.

For strict 2pl (see figure 2.9a) this means that A is locked by T1 and B
is locked by T2. Now both transactions are waiting on the other Account to
acquire locks. This deadlock situation is solved by a deadlock mechanism, such
as timeouts: one of the two transactions times out, its lock is released and the
other makes progress.

In this situation psac will allow both transactions to take a shared lock (see
figure 2.9b), since for each transaction the already in-progress event’s outcome
does not influence the validity of the precondition of the other: Interest(10%) is
valid on Account A, regardless of the commit or abort of Deposit(50). The same
holds vice versa for Account B. Both transactions commit and have their effects
applied. For Account A this results in applying the effects in order or arrival,
first Deposit(50), then Interest(10%): (100+ 50) ∗ 1.10= 165. +For Account B
first Interest(10%), then Withdraw(50): (100∗1.10)−50= 60. Both accounts are
in a valid state according to their specification, but notice that the transactions
are applied in different order for the accounts. A first applies T1, then T2. B
first applies T2, then T1.

52

2.7 Related work

For a valid serializable schedule for the whole system, in this case the two
entities, the resulting state should be equivalent to an outcome state of a sequen-
tial execution of all transactions. Serializability requires one of two possible
histories: 〈T1, T2〉 or 〈T2, T1〉. The results of these histories are respectively:
{A : 100, B : 100} →T1 {A : 150, B : 50} →T2 {A : 165, B : 55} and

{A : 100, B : 100} →T2 {A : 110, B : 110} →T1 {A : 160, B : 60}
The outcome for psac in this situation, {A : 165, B : 60}, which is not one

of the valid serializable configurations. Ergo, this counterexample shows that
psac is not serializable. Determining the isolation guarantees of psac more
precisely is part of future work.

2.6.3 Evaluation

We have seen in the previous section that psac outperforms 2pl/2pc in through-
put and its request latency is on par or better. This is due to less locking by psac,
which is isolated by the NoSync experiment, where both psac and 2pl/2pc
perform similarly when no transaction have to wait due to locking. However,
psac does not give the same serializable isolation guarantee as 2pl/2pc. In our
experiment scenarios with withdraw and deposit events this does not lead to
different results or outcome states as in a serializable schedule, because these
event’s effects are commutative and result in serializable histories with psac.

2.7 Related work

Distributed Transactions in Actor Systems Orleans [83] is an actor based dis-
tributed application framework that implements transactions [29] in a similar
way to 2pl/2pc, but with a central Transaction Manager, which decides if
transactions are incompatible. To support high throughput the distributed
object releases the 2pl lock when it prepares successfully, and already applies
the new state. If a transaction triggers an abort, all the actions on top are also
aborted (cascading abort). This solution enables high throughput, but it drops
when aborts happen regularly on congested instances.

Reactors [88] is a distributed computing framework defined on reactors: ac-
tors reacting to events. It uses Reactor transactions with nested sub-transactions,
but is not yet tested in a cluster of nodes. Their current implementation also
uses 2pc in the transaction manager.

53

Chapter 2 Path-Sensitive Atomic Commit

Coordination More recent work in distributed systems is investigating require-
ments to keep a program functionally correct, instead of focusing on data
consistency (or memory consistency) where registers with single data items
are always in a consistent state, which is what 2pl ensures. The CALM pa-
per [50] hints at creating programs that are monotonic by construction, by
using languages that help monotonic specification. psac makes sure objects
only increases monotonically on the life-cycle lattice of an entity as defined
by its specification. Parallel events are only allowed when the functional ap-
plication properties (pre-/post-conditions) allow this. This makes sure that
entities are monotonic by construction, w.r.t. their specification. This is a step
towards CALM in the sense that it allows designers to write specifications with
coordination, which in the end are run without local coordination by psac.

ROCOCO [77] reorders transactions at run time, whenever possible, instead
of aborting. It uses offline detection, but only works on stored procedures. Coor-
dination Avoidance [8, 10] focuses on lock-free algorithms in a geo-replicated
setting. It makes sure that transactions do not conflict, and allows them on
multiple geo-located data centers without coordination. They are eventually
merged in an asynchronous fashion. Bailis [8] states: “Invariant Confluence
captures a simple, informal rule: coordination can only be avoided if all local
commit decisions are globally valid.” psac focuses on local avoidance of coor-
dination of transactions on objects and it is yet to be seen how well it works in
a geo-replicated setting.

psac is based on detecting independence of actions at run time. A com-
patible approach [100] to avoid blocking is to use static analysis of pre- and
post-conditions to determine whether certain types of actions are always in-
dependent of other types of actions for all possible run-time states and action
field values. Actions which never influence the outcome of later actions, such
as depositing money in the running example, can always be safely started in
parallel, without checking all possible outcomes of in-progress actions.

Using commutative operations to reduce coordination is a productive area [8,
10, 11, 38, 50, 78, 85, 118]. Commutative operations always result in the
same outcome state, even when the operations are reordered. These works
prevent coordination by relying on reordering and commutativity of operations
in order to allow parallel operations in mainly geo-distributed data center
environments.

Other related work The Escrow Method [80, 115] is a way to handle high-
contention records for long running transactions. Balegas et al. [11] discuss

54

2.8 Further Directions

Escrow reservations with numeric fields divided over multiple (geo-located)
nodes. Each node locally decides up to a maximum amount, and communicates
with the rest when it needs more. In the banking example this is analogous to
splitting the balance of an account in parts and allow nodes to locally mutate
that part without synchronization. Although psac is not optimized for geo-
separation, since an object is not divisible in multiple parts, it is not limited to
numeric fields.

psac is related to Predicate locks [30, 42, 58] and Precision locks [42, 58], but
differs in the sense that the latter operate at the level of tuples. psac supports
more granular locking because two independent actions can change the same
field or tuple.

Phase Reconciliation [78] is a run-time technique that splits high-contention
objects over multiple cpu cores. It allows specific commutative operations
of a single type to be processed locally on the core in parallel and after a
configurable window the results are reconciled again. psac operations also
cannot return values, however psac does not require commutative operations
or all operations to be of a single type.

Flat Combining [51] is a technique to speed up concurrent access to data
structures. The first thread to get the lock on a shared data structure, processes
the operations of concurrent operations in a batch and informs the requester
threads of their respective results, resulting in improved throughput. psac
focuses on distributed transactions, where the actual transition is determined
externally from the object by a transaction manager and not on applying
operations sequentially as fast as possible.

2.8 Further Directions

In this chapter, we have presented psac informally. Further research is needed
to obtain precise results about the isolation guarantees that psac offers. A
potential direction could be to formally verify the correctness of psac, for
instance, using tla+ [69], or state-based formalization [23].

Further, the implementation of psac could be improved by applying well-
known optimizations of 2pc. For instance, using half round trip time locks [8]
the set of participants is forwarded by the previous participant to the next, in
a linked list-like fashion. This results in half the round trip time for acquiring

55

Chapter 2 Path-Sensitive Atomic Commit

the locks compared to the approach where locks are acquired one-by-one by
the transaction coordinator.

Additional optimizations are possible in the representation of the outcome
tree. For instance, outcomes could be grouped by abstractions, such asminimum
or maximum values, sets of outcomes, or predicates deduced from pre- and
post-conditions. This reduces the size of the tree, and thus faster precondition
checking.

psac can be further improved by reordering of actions, however this requires
commutative operations. At run time it can be checked if an incoming action is
commutative with all in-progress actions, and safely reordered. However, the
pre- and post-conditions should be explicit about time sensitive or otherwise
important functional action ordering.

The depth of the possible outcomes tree is limited by configuration, because
it grows exponentially in the number of in-progress actions. Benchmarks, not
shown in this chapter, show that when it grows too big for the bank transfer
use case, actions start timing out. This performance impact of varying this
depth greatly depends on how computationally expensive actions are and how
much contention there is, but also how many other resources are running and
their contention. More in-progress actions, result in more running actors and
extra calculations of the tree. It is future work to find an approach to tune this
tree depth.

In order to evaluate the boundaries of applicability of psac, an extra experi-
ment that tries to maximize the overhead of psac can be created. If computing
preconditions or post states is expensive, the extra calculation overhead could
result in worse performance than the sequential 2pl/2pc approach.

For online user experience keeping tail latencies low is important. We can
apply the techniques presented in The Tail at Scale [25] to make psac more
latency tail-tolerant. This requires sending multiple omnipotent requests to
different application nodes and effectively increasing replication factors of the
entities. The current design does not fit this yet, since the runtime makes sure
only one instance of each entity is alive in the cluster. psac can be extended,
however, to support read-only versions, inferring actions that are commutative
to be applied on different nodes in arbitrary order order.

56

2.9 Conclusion

2.9 Conclusion

Large organizations such as banks require enterprise software with ever higher
demands on consistency and availability, while at the same time controlling the
complexity of large application landscapes. In this chapter, we have introduced
path-sensitive atomic commit (psac), a novel concurrency mechanism that
exploits domain knowledge from high-level specifications that describe the
functionality of distributed objects or actors. psac avoids locking participants
in a transaction by detecting whether requests sent to objects can be handled
concurrently. Whether the effects of two or more requests are independent is
established by analyzing the applicability and effects of message requests at
run time.

psac has been implemented in the actor-based back-end of Rebel, a state
machine-based dsl for describing business objects and their life cycle. Rebel
specifications are mapped to actors running on top of the Akka framework.
Using different code generators this allowed us to explicitly compare standard
2pl to psac as locking strategies for when objects need to synchronize in
transactions.We conducted an empirical evaluation on an industry-inspired case
of psac compared to an implementation based on standard two-phase commit
with strict two-phase locking (2pl/2pc). We designed multiple experiments
to show specifically where psac and 2pl/2pc perform similar and where psac
outperforms 2pl/2pc.

Our results show that in low contention scenarios with and without syn-
chronization the throughput is similar, because no actions can be parallelized.
However, psac performs up to 1.8 times better than 2pl/2pc in terms of me-
dian throughput in high-contention scenarios. This is especially relevant, for
instance, when a bank has to execute a large number of transactions on a single
bank account. Latency-wise psac is on par or better than 2pl/2pc. Furthermore,
psac scales as well as 2pl/2pc, and under specific non-uniform loads even
better.

57

3
Static Local Coordination Avoidance for
Distributed Objects

Abstract In high-throughput, distributed systems, such as large-scale banking infrastruc-
ture, synchronization between actors becomes a bottle-neck in high-contention scenarios.
This results in delays for users, and reduces opportunities for scaling such systems. This
chapter proposes Static Local Coordination Avoidance, which analyzes application invari-
ants at compile time to detect whether messages are independent, so that synchronization
at run time is avoided, and parallelism is increased. Analysis shows that in industry scenar-
ios up to 60% of operations are independent. Initial performance evaluation shows that, in
comparison to a standard 2-phase commit baseline, throughput is increased, and latency
is reduced. As a result, scalability bottlenecks in high-contention scenarios in distributed
actor systems are reduced for independent messages.

3.1 Introduction

Enterprise software systems are large, complex, and hard to maintain. For
instance, banks such as ing Bank, deal with large and complex it landscapes
consisting of many heterogeneous communicating applications, under high
transaction loads. There is increased demand for high throughput and scalabil-
ity for such systems.

This chapter is previously published as: Tim Soethout, Tijs van der Storm, and Jurgen
J. Vinju. “Static local coordination avoidance for distributed objects”. In: Proceedings
of the 9th ACM SIGPLAN International Workshop on Programming Based on Actors,
Agents, and Decentralized Control - AGERE 2019. ACM Press, 2019, pages 21–30.
isbn: 9781450369824. doi: 10.1145/3358499.3361222

59

https://doi.org/10.1145/3358499.3361222

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

In a distributed setting, both throughput and latency are heavily influenced
by the amount of synchronization that is required between distributed objects.
For instance, the generic atomic commit protocol Two-Phase Commit (2pc) [42]
only allows a single event to be in progress per actor, all other events are queued.
For high contention objects this leads to high latency and time-outs.

Recent work [10, 11] shows that invariants to maintain program-level con-
sistency can be leveraged to optimize the implementation of synchronization.
Invariant Confluence [10] shows that for the tpc-c benchmark [87] ten of
twelve invariants are invariant confluent and require no coordination.

In this chapter we propose a similar, but novel concurrency mechanism,
called Local Coordination Avoidance (loca), that allows multiple concurrent
in-progress events per object, when it can be determined that such events are
independent of each other. One event is independent of another if the commit
or abort of the latter can never invalidate the result of the former. In that case,
processing of the latter can be started without waiting.

As an example, consider the text book example of a bank account entity
with withdraw and deposit events, where withdraw has a precondition that the
balance should be sufficient for the withdrawal. In this case the deposit event
is independent of deposit itself, because depositing money can never invalidate
the requirements of a deposit. Deposit is also independent of withdraw, because
depositing money is always possible, even if the in-progress withdraw would
fail. A withdraw event, however, is not independent from withdraw, because
the failure or success of in-progress withdraw might influence the precondition
of the second withdraw.

loca is informed by static analysis of state machine models. In our case, we
use Rebel [108], a domain specific language (dsl) to model financial products
as state machines which communicate using atomic, synchronized events. loca
consists of statically analyzing application invariants declared as pre- and post-
conditions in the state machine models. This results in pairs of events that are
independent, regardless of local state at run time.

We have implemented the independent event analysis by transforming Rebel
state machine models to constraint definitions for the z3 Satisfiability Modulo
Theory (smt) solver [76], which computes the set of independent event pairs.
This set is then input to the run-time system, which safely skips the precon-
dition check if a new event comes in that is independent of all in-progress
events,—otherwise it falls back to 2pc.

We have run the analysis on state machine models manually derived from
the standard tpc-c [87] benchmark, and state machine models currently being

60

3.2 Independent Events

prototyped inside ing Bank. In both cases, the results show that around 60% of
event combinations are independent, suggesting that the benefits of loca could
be substantial. Initial performance evaluation shows that loca, or a variant of
loca that detects independence at run time increases throughput and reduces
latency compared to vanilla 2pc in high contention scenarios.

The contributions of this chapter are as follows:
We formalize the notion of Statically Independent Events (SIE), a characteri-
zation of state machine models that captures when an event’s preconditions
are always independent of in-progress event’s effects, and show how an
smt solver can be used to compute independent pairs from state machine
models (section 3.2);
We describe a novel run-time concurrency control mechanism, Local Co-
ordination Avoidance (loca), which uses independent events to speed up
synchronization on distributed objects. We present a loca implementation
leveraging SIE analysis results: locaS (section 3.3);
We evaluate the SIE analysis on two realistic examples: the tpc-c benchmark
and Rebel specifications developed at ing. We evaluate the performance of
both 2pc and loca variants, and show that locaS outperforms 2pc in high
contention scenarios (section 3.4).
Source code of the SIE analysis and loca implementation, together with

result data is found in [96].
We conclude with a discussion and limitations (section 3.5); related work

(section 3.6); further directions for research (section 3.7); and a conclusion
(section 3.8).

3.2 Independent Events

3.2.1 Bank Account Example

Consider an example of a bank account state machine as seen in figure 3.1. For
simplicity it has two states New and Opened with an integer data field balance,
and three Events: Open, Deposit and Withdraw, the latter two with an integer
amount event parameter, that should be a positive integer. The precondition
on withdrawal (balance− amount≥ 0) makes sure that the balance does not
become negative. The effect of the events are represented by labels on the
edges in state chart notation. The effect of Open sets the balance to 0 and the

61

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

Open()[]/
New

Opened
balance: Int

Deposit(amount: Int)[]/

Withdraw(amount: Int)[,]/

Figure 3.1 State machine of example simple account. Events are defined in state chart
notation: Event(fields)[guard]/effect

state to Opened. The effect of Deposit and Withdraw, respectively increases or
decreases the balance with the events’ amount value.

Now, consider an instance of this bank account state machine running as an
actor. The bank account actor handles a single event at one moment in time. A
sequence of events is handled sequentially, one at a time. If an incoming event
is part of a distributed 2pc-transaction with other actor participants, the actor
first decides if the event is allowed by checking its preconditions, but it cannot
transition to the next state yet. To maintain the serializability requirements of
the distributed transaction, the actor has to wait on the whole transaction to
either commit or abort the event. Other incoming events have to wait on the
in-progress event.

In this particular example it becomes clear that waiting on in-progress events
is not always necessary to ensure valid state machine transitions. For exam-
ple, an incoming event Deposit(10)’s precondition check is independent of an
in-progress Withdraw(20)’s effect in state Opened(100). It does not matter if
the in-progress Withdraw(20)’s effects are actually applied or not. The state
machine stays in the Opened state, the only difference is the balance, which
is only decremented on commit of the Withdraw(20) event. The new incoming
Deposit(10) can always already start, since the Opened state allows it and the
specific balance does not invalidate the precondition of Deposit(10). The in-
coming Deposit(10) event is thus independent of the in-progress Withdraw(20)
event.

62

3.2 Independent Events

3.2.2 Independent Events

An incoming event e2 is independent of an in-progress event e1, iff e2 is accepted
by the state machine, independent of whether e1’s effects are actually applied
or not.

In order to formalize the notion of independent event pairs, we consider a
finite state machine, with states with data and events with parameters. We
assume that the transition function is encoded in the preconditions pre : Event×
State→ Boolean. The predicate pre(e, s) is true iff event e is valid in the given
state s. An event is valid in a state if the transition function and its transition
guards, the preconditions, allow it. The resulting outcome state of a transition,
given the current state and event is encoded in post : Event× State× State→
Boolean. post(e, sfrom, sto) is true iff event e in state sfrom leads to post state sto.

Given an in-progress event e1 and an incoming event e2 in some starting
state s, the independent event relation IE(e1, e2, s) is defined as follows:

∀s′ ∈ State.

pre(e1, s)∧ post(e1, s, s′)→
�

pre(e2, s)↔ pre(e2, s′)
�

(3.1)

IE(e1, e2, s) denotes that e2’s acceptance is independent of the outcome of e1

in state s. The predicate pre(e1, s) makes sure that e1 has valid preconditions in
s, describing the situation where e1 is already accepted by the participant, but
has not yet committed nor aborted. post(e1, s, s′) binds s′ to the post state when
e1’s effects are applied on s. An event e2 is independent of an event e1 iff, for all
possible post states s′, the evaluation of the preconditions of e2 in both s and s′

give the same result. Intuitively this means that whether e1 eventually commits
or aborts and its effects are applied or not, does not influence the precondition
check of e2. There is no possible way for the result of e1 to influence the validity
of e2.

3.2.3 Statically Independent Events

The IE relation captures independence at run time: it considers preconditions
and postconditions, given a current state machine state (e.g., balance). This
however, requires run-time computation when dispatching incoming events,
which could be expensive. Here we introduce statically independent events,
which avoid this computation step.

Table 3.1 displays all statically independent event pairs of the bank account
example. It shows the decision on event of type E2 given that an event of type

63

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

Table 3.1 Static independency of bank account events. E1 in rows, E2 in columns.

SIE(E1, E2) Open Deposit Withdraw

Open Delay Delay Reject
Deposit Reject Accept Delay
Withdraw Reject Accept Delay

E1 is in progress. For instance, Deposit is statically independent of both Deposit
and Withdraw, because no matter the actual run-time state of the bank account,
deposits can always be directly accepted. Similarly, if a Deposit is in progress, an
Open event should be immediately rejected, since the state machine’s transition
function disallows it. For all event pairs that are not independent, the decision
is delay.

SIE is a relation between two types of events, E1 and E2, without considering
their parameter values or the run-time state of an actor.

SIE(E1, E2) = ∀s ∈ State, e1 ∈ E1, e2 ∈ E2.I E(e1, e2, s)

where ∀ei ∈ Ei means for all possible event instances of type Ei. SIE(E1, E2) is
true when all possible instances of the event types E1 and E2 are independent
in all possible starting states s.

3.2.4 Computing SIE

The SIE definition can be used to transform state machine models to first-
order logic formulas as input to smt-solvers, like z3 [76] to find the statically
independent event pairs at compile time. For this we assume a mapping of
the state machine’s transition relation and the pre- and postconditions of each
type of event as formulas in first-order logic.

In order to let an smt-solver find the statically independent events, we let
the solver search for counterexamples, the dependent event pairs. This means
that for every combination of event types E1 and E2, we ask the solver whether
the formula ¬SIE(E1, E2) can be satisfied. If it is satisfiable, the resulting model
represents a counterexample witnessing the fact the E2 is dependent on E1,
otherwise they are independent.

64

3.2 Independent Events

The negation of SIE(E1, E2), after inlining the definition of IE is:

∃s, s′ ∈ State, e1 ∈ E1, e2 ∈ E2.

pre(e1, s)∧ post(e1, s, s′)∧¬
�

pre(e2, s)↔ pre(e2, s′)
�

To satisfy this formula the solver needs to find a model instance with some
starting state s, and two event instances e1 and e2, for which it holds that event
e1 is valid in s and its follow-up state is s′, but event e2 should be invalid in only
one of states s or s′. Such a model instance denotes that e2 is dependent on e1’s
outcome. The resulting e1 and e2 event instances are the counterexample for
the static independence of E2 on E1, making event type E2 statically dependent
on event type E1.
Withdraw is not statically independent of Deposit and the first instance found

by z3 is indeed an example of this: Withdraw(35) is only allowed when the
Deposit(1202) actually commits in state Opened(34), otherwise the balance
would not be sufficient. Another example is where Open is dependent on
the outcome of another Open in state New, which makes sense since an account
can only be opened once.

However, checking ¬SIE(Withdraw,Deposit) will return “unsat” which means
that no counterexample could be found to show that the outcome of Withdraw
would influence the acceptance of Deposit.

3.2.5 Always Accept or Always Reject?

The SIE relation determines whether one event is independent of the other,
but does not say if an event should always be accepted or always be rejected,
as shown in table 3.1.

To obtain this information we partition the definition of SIE in two variants
SIEAccept and SIEReject, where the equivalence used in IE (Definition 3.1) is split
in the case where the preconditions of both events are true, and the case where
neither of them are true:

SIEAccept(E1, E2) = ∀s, s′ ∈ State, e1 ∈ E1, e2 ∈ E2.

pre(e1, s)∧ post(e1, s, s′)→
�

pre(e2, s)∧ pre(e2, s′)
�

SIEReject(E1, E2) = ∀s, s′ ∈ State, e1 ∈ E1, e2 ∈ E2.

pre(e1, s)∧ post(e1, s, s′)→¬
�

pre(e2, s)∨ pre(e2, s′)
�

65

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

To ensure that the solver does not return “junk” models in which events are
always invalid, regardless of the state (e.g., Withdraw(-1000)), we instruct the
solver to only consider such events by asserting ∃s ∈ State.pre(e2, s). Following
the same process as with SIE above, SIEAccept and SIEReject can be used to find
statically independent event pairs, knowing whether the decision should be
accept or reject.

3.3 Local Coordination Avoidance (loca)

A run-time system for a state machine-based language like Rebel is typically
implemented as follows. A distributed object receives a request as part of a
2pc distributed transaction. It then becomes participant in this transaction. If
the request is valid according to the corresponding event’s preconditions, the
object is locked until the transaction completes. If the preconditions do not
hold, the object declines the request immediately and does not have to lock.

In this case, for each incoming request, the participant object has to check
the preconditions and act accordingly. If the request is valid, it votes to commit
the transaction and the object is locked for other requests in order to maintain
the consistency guarantees of 2pc. Even though the participant object has
voted to commit, it cannot continue until the coordinator responds, since it
does not know if other transaction participants have voted to abort. Incoming
transactions are delayed in order of arrival until the transaction coordinator
commits or aborts the transaction. This results in potentially high wait times
and thus high transaction latency for busy objects.

Local Coordination Avoidance (loca) is our novel concurrency control mech-
anism that leverages SIE information at run-time to run multiple parallel 2pc
requests per participant object. IE allows an implementation to safely start pro-
cessing new events when previous events are still in progress. loca first checks
independence according to the pre-computed results of the static independent
event analysis (SIE). If two types of events are not statically independent, the
actual event occurrences can still be dynamically independent; this is checked
according to the IE relation at run time. If events are dynamically dependent
still, loca falls back to vanilla 2pc.

For evaluation purposes, we distinguish variants of loca according to which
kinds of independence checking are done at run time: locaS (only checks based
on SIE), locaD (only checks based on IE [103]), and locaSD (first SIE, then IE).

66

3.3 Local Coordination Avoidance (loca)

3.3.1 Static loca

Static loca (locaS) first considers SIEAccept, then SIEReject, and falls back to 2pc.
locaS leverages the SIE analysis results. In the case where the transaction

participant is waiting on a response of an in-progress transaction’s coordinator,
it can use the SIE independent event pairs to determine if it is always safe to
start another incoming request in parallel.

If the incoming event’s type is an independent accept for all the in-progress
events’ type, as determined by SIEAccept, it can be started immediately without
checking its preconditions. If not matched by SIEAccept, and the incoming event
is an independent reject, determined by SIEReject, for all in-progress events, it
can be immediately rejected. If the request is not statically independent for
both sets, the incoming event is dependent on at least one of the in-progress
events’ type and has to be delayed until it is finished.

Figure 3.2 shows sequence diagrams to compare vanilla 2pc to locaS in
the case that locaS can directly accept an event. For 2pc an action is de-
layed when another action is in progress. For locaS the action’s transaction
is started when SIEAccept allows it. In figure 3.2a, 1 a 2pc-participant receives
a VoteRequest(e1) message, and responds with VoteCommit(e1) because
the preconditions pre(e1, s) allow it. This locks the resource until e1 commits or
aborts. When e1 is still in progress, the participant receives 2 a VoteRequest
for another event e2, and it is delayed until e1 completes. On receiving of
GlobalCommit(e1) 3 , the effects of e1 are applied, the state is updated
and acknowledgement is replied. Now the delayed e2 is started 4 , and a
VoteCommit(e2) is send. e2 is eventually committed, and its effects applied.

In figure 3.2b, a locaS-participant receives 1 a VoteRequest(e1) message,
and similarly accepts the event because the precondition pre(e1, s) holds. Unlike
2pc the resource is not locked, but guarded by static independence guarantees.
When VoteRequest(e2) arrives 2 , it now checks if it is safe to execute e2 in
parallel with e1, by checking the event’s types in SIEAccept(E1, E2). In this case
SIEAccept(E1, E2) holds and VoteCommit(e2) is readily sent. Now e2 commits
earlier 3 , and in order to maintain serializability, the effects of e2 are delayed
to preserve the original order. When e1 is allowed to commit 4 , its effects are
applied, and the postponed effects of e2 as well. The case for immediate reject
is analogous.

67

Chapter3
Static

LocalCoordination
Avoidance

forDistributed
Objects

GlobalCommitAck()

VoteCommit()

GlobalCommitAck()

1
VoteCommit()

2PC Participant

✔

Delay until completes
Lo

ck
ed

 b
y

Lo
ck

ed
 b

y

Transaction
Coordinator

VoteRequest()VoteRequest()

GlobalCommit()

Transaction
Coordinator

VoteRequest() VoteRequest()

VoteCommit()

GlobalCommit()

Apply

Apply

✔

VoteCommit()

2

3

4

(a) Vanilla Two-Phase Commit

GlobalCommitAck()

VoteCommit()

GlobalCommitAck()

VoteCommit()

LoCA Participant

Delay effect

Transaction
Coordinator

VoteRequest()VoteRequest()

VoteCommit()

GlobalCommit()

Transaction
Coordinator

VoteRequest() VoteRequest()

VoteCommit()

GlobalCommit()

Apply

Apply

✔

1

2

3

4

✔

(b) Static Local Coordination Avoidance

Figure 3.2 2pc and locaS , Direct Accept.

68

3.4 Evaluation

3.4 Evaluation

In this section we evaluate static local coordination avoidance to answer two
questions:
rq 1. How often are events independent in realistic scenarios?
rq 2. What is the effect of loca on performance in terms of throughput and
latency?

3.4.1 Independence in Realistic Scenarios (rq 1)

In order to evaluate the relevance of SIE analysis we have analyzed two sets of
Rebel models and computed the independence results. The first set consists
of Rebel state machine models manually derived from the standard tpc-c
benchmark [87], the second set consists of models of payment infrastructure
developed at ing Bank.

tpc-c There is no direct mapping for tpc-c’s transactions to Rebel, but we
can model the tables and the transaction’s operations on them. tpc-c consist
of 9 database tables and 5 transactions, which we model as state machines
where transactions are represented as events. Some tpc-c transactions make
decisions based on data which is read from the state machine. To avoid that
in-progress events modify such data, we model this data flow using event
parameters.

While this approach makes sure that exposed values are not changed by
in-progress events, it is an over-approximation and leads to false negatives
of dependent event pairs. Incorrectly detected dependent event pairs cannot
be parallelized at run time, which is still correct, but not as efficient as when
correctly identified.

Table 3.2 shows the SIE analyses’ results for each table specification and
a percentage describing the ratio between independent and all event pairs.
As can be seen, many events are independent for this case. This is the case
because often the specific tables’ data is only read, and not used for decisions
later in the transaction. Note that these results are only for local independency
decisions in a state machine instance, representing a single row in the database
tables.

ing Bank Account Models In order to evaluate SIE effectiveness on an industrial
use case, we run the analysis on Rebel specifications being developed at ing

69

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

Table 3.2 tpc-c SIE Analyses

tpc-c Table #States /
#Events

#Direct Accept /
#Direct Reject

Independence
Ratio

Stock 1 / 2 4 / 0 100%
NewOrder 3 / 3 2 / 2 44%
Order 2 / 2 4 / 0 100%
District 1 / 3 6 / 0 67%
Customer 1 / 4 12 / 0 75%
OrderLine 2 / 4 6 / 3 56%
Warehouse 1 / 1 1 / 0 100%
History 2 / 1 0 / 0 0%
Item 2 / 2 0 / 1 25%

Total 15 / 22 35 / 6 64%

Bank, containing multiple types of bank accounts and Single Euro Payments
Area (SEPA) bank transactions. Our specification data set consists of 29 Rebel
specifications. 7 of them used features not yet supported by our analysis tool.
The remaining 22 specifications are analyzed with small changes. For some
of them the data types and preconditions are simplified, in such a way that it
does not influence the SIE analysis, for instance changing DateTime fields to
Integer fields and mapping static set membership tests to string equality.

The analysis results of the resulting 22 specifications are presented in ta-
ble 3.3. Most specifications are relatively small in terms of number of states and
events. Many independent events pairs are direct reject, since many events are
not allowed in multiple states. More than 60% of all event pairs are indepen-
dent, suggesting that SIE analysis would be beneficial in industrial scenarios.
This analysis shows how often events are independent in realistic scenarios
answering rq 1.

3.4.2 Throughput and Latency (rq 2)

locaS is expected to show performance benefits when a transaction participant
is involved in multiple transactions at the same moment in time and for inde-
pendent events. In low-contention scenario we expect little extra performance
in using locaS compared to 2pc.

70

3.4 Evaluation

Table 3.3 SIE Analyses’ results of ing product specifications

Specification #States /
#Events

#Direct Accept /
#Direct Reject

Independence
Ratio

CreditTransfer 9 / 9 1 / 52 65%
Restriction 3 / 4 6 / 3 56%
DepositBlock 3 / 4 2 / 5 44%
DirectDebitBlock 3 / 4 2 / 5 44%
WithdrawBlock 3 / 4 2 / 5 44%
Limit 5 / 5 1 / 12 52%
NoLimit 3 / 3 1 / 2 33%
RevolvingAccount 2 / 3 4 / 2 67%
DirectDebitAccount 2 / 3 4 / 2 67%
TreasuryAccount 4 / 4 4 / 8 75%
CreditTransferBatch 5 / 6 10 / 5 42%
CreditBooking 4 / 3 0 / 2 22%
DebitCreditorBooking 3 / 2 0 / 1 25%
FromExternalDebitBooking 3 / 2 0 / 1 25%
ToExternalDebitBooking 3 / 2 0 / 1 25%
DebitBooking 13 / 17 0 / 188 65%
CurrentAccount 3 / 4 4 / 4 50%
LocalCreditTransfer 6 / 5 0 / 12 48%
SepaCreditTransfer 6 / 8 15 / 29 69%
Arrangement 4 / 4 2 / 7 56%
BankPayment 4 / 4 0 / 6 38%
ThirdPartyPayment 5 / 3 0 / 5 56%

Total 96 / 103 58 / 357 (mean) 61%

71

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

The goal of the performance evaluation is to find out if this expectation holds.
We ran several synthetic scenarios in microbenchmarks in order to confirm
these expectations.

In order to evaluate loca we prototyped a small accounting service providing
dependent and independent events in the state machine dsl Rebel [108]. The
SIE Analysis translates Rebel specifications to smt using Rascal [65] and runs
the analysis using the state-of-the-art smt-solver z3 [76]. The SIE results are
used in a loca implementation [96], an actor-based runtime system, based on
the Akka actor toolkit [3], on the jvm.

Akka enables fault tolerance and horizontal scalability by sharding actors
over multiple servers and provides locational transparent message passing
between them. These features together with persistence and state machine
primitives, are used to implement loca and 2pc. The Rebel state machine
models are translated to communicating run-time actors.

The 2pc implementation follows the description by Tanenbaum and Van
Steen [110]. In order to avoid deadlocks, we make sure that all transactions
participants are locked in increasing order.

For all experiments in this chapter, we limit the maximum number of parallel
events per actor for loca to a configurable limit of 8. A higher number results
in reduced throughput and worse latency when contention increases. This is
a problem, especially for locaD and locaSD with run-time dependent events,
when the computation time grows exponentially due to more concurrently
in-progress actions.

We present multiple microbenchmarks and their throughput and latency
results on a single application node. Each benchmark is run using the different
synchronization implementation variants, 2pc, locaS, locaD, locaSD, and
increasing contention rate. The benchmark scenarios are the following:

Statically dependent events – Withdraws on single account
Statically independent events – Deposits on single account
Distributed transactions with statically dependent and statically independent
event – Money transfers between two accounts
Distributed transactions with high-contention statically independent events
and low-contention dependent events – Tax direct debit use case: Deposits
on a single tax account & Withdraws on 10 000 taxed accounts
The first two benchmarks represent statically dependent and independent

events. These are baseline benchmarks to determine whether locaS improves

72

3.4 Evaluation

throughput when contention increases for independent events, but has to fall
back to 2pc for dependent events.

The distributed transaction cases are more realistic. In the money transfer
case between two accounts, the expectation is that locaS improves perfor-
mance only slightly over 2pc, because the whole distributed transaction has
to wait on the slowest dependent event participant. On the other hand for
locaD and locaSD we expect better performance, since the Withdraws are run-
time independent, because enough balance is available for multiple parallel
Withdrawals.

For the tax use case, the expectation is that locaS performs better than
2pc and is on par with locaD and locaSD, because the statically independent
Deposits on the tax account can be parallelized.

The microbenchmarks are run using jmh [57] and measure the maximum
throughput in transactions per second and transaction latency. The hardware
used is a dual core Intel i7-7567U 3.5GHz up to 4GHz with 32GiB of ram on
Linux using Java AdoptOpenJDK HotSpot 11.0.2+9 64bit. Each run consists of
5 warmup cycles and 20 measure cycles of each 10 seconds.

To increase contention, multiple parallel events are requested in batches. The
batch size is varied in order to find out when contention becomes a problem
and determines the maximum number of events in-progress on a participant.

Microbenchmark results The throughput results for the statically dependent
and independent events are shown in figure 3.3. For statically dependent
events, in low-contention scenarios (Batch Size = 1), all variants reach 1800
transactions per second. As expected for higher contention (Batch Size > 1),
locaS performs the same as 2pc, because both algorithms only allow a single
event to be in progress for statically dependent events. Since locaSD falls back to
locaD for run-time independent events there is a higher maximum throughput
around 5000 transactions per second. At run time locaD determines that the
Withdraw events can be safely run concurrently because enough balance is
available.

For statically independent events, 2pc has the same maximum throughput
as the statically dependent variant, because it handles all events sequentially.
locaS reaches higher maximum throughput than the dependent variant, around
7000, because for independent events, it can immediately accept. locaSD has
similar performance, because for independent events it is equivalent to locaS

and does not have to fall back to locaD. locaD also detects the independence

73

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

●●●● ●

●●

●
●

●
●

● ●

●

●

●
●

●
●

● ●

●●

● ●

●

●

● ●

●
●

● ●

●●

● ●

●●

● ●●●●

●●●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

Statically Dependent Statically Independent

0 10 20 0 10 20
0k

2k

4k

6k

Batch Size

Th
ro

ug
hp

ut
 (t

ps
)

Variant ● ● ● ●2PC LoCAD LoCAS LoCASD

Figure 3.3 Statically Dependent and Independent events’ throughput. Higher is better.

at run time, but suffers a computational overhead compared to locaS, resulting
in a lower maximum throughput, but still performs better than 2pc.

Interestingly, locaSD performs the best in both cases. It leverages the static
knowledge when events are independent so no precondition calculations are
necessary, and in the dependent case it can profit from IE’s dynamic indepen-
dence check.

Distributed transaction: Money transfer Figure 3.4 shows the throughput results
for the money transfer microbenchmark. As expected, all variants perform the
same in the low-contention case (Batch Size = 1). 2pc and locaS have similar
maximum throughput at 1000 transactions per second. This is expected because,
although the Deposit is statically independent, the whole transaction has to
wait on the statically dependent Withdraw, limiting the overall throughput.
Both locaD and locaSD perform better at around 2500 transactions per second,
which can be explained by the dynamic independence of Withdraw.

74

3.4 Evaluation

●●●●

●

●
●

●

●

●
●

●
●

●●

● ●

●

●

●
●

●

●

● ●

●
●

●
●

●
●

● ●

●●

● ●

●

●

●

0k

1k

2k

0 10 20
Batch Size

Th
ro

ug
hp

ut
 (t

ps
)

Variant ● ● ● ●2PC LoCAD LoCAS LoCASD

Figure 3.4 Throughput of the money transfer microbenchmarks

Distributed transaction: Tax collection For the tax collection, the throughput
results shown in figure 3.5 are as expected. 2pc performs up to 1750 transactions
per second and for higher contentions slowly drops, which is explained by
larger batch size having to wait longer for the sequential handling by the tax
account. locaS and locaSD perform similar, up to 3000 tps, since throughput
is limited by the tax account. locaD performs slightly worse because of the
computational overhead.

Latency Results For all microbenchmarks, latency results were also col-
lected [96]. Overall, the latency percentiles follow the same curve for all
algorithm variants, where higher throughput corresponds to lower latency per
operation.

Overall, all loca variants outperform 2pc, both in throughput and latency,
except for the low-contention case, where it performs similar. We thus answer
rq 2 on the effect of loca and variants on performance.

75

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

●●●●

●
●
●

●

●●
●

●

●●●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

0k

1k

2k

3k

0 10 20
Batch Size

Th
ro

ug
hp

ut
 (t

ps
)

Variant ● ● ● ●2PC LoCAD LoCAS LoCASD

Figure 3.5 Throughput of the tax microbenchmarks

3.5 Discussion

The performance evaluation has shown that SIE analysis may increase perfor-
mance both in throughput and latency, for situations where multiple requests
arrive at objects in a small amount of time. The statically independent events
make sure that only the event types have to be inspected.

In distributed transactions with statically independent events, locaSD and
locaS perform better than locaD since locaD is computationally more expensive
when the number of parallel events increases. However, in scenarios where
the independence can only be determined dynamically, the combined version
locaSD still outperforms 2pc. It turns out that all loca variants, locaS, locaD

and locaSD, perform as least as well as 2pc, and can therefore be used as
a replacement in all cases where pre- and postconditions are known. The
SIE analysis finds the independent events pairs in order of seconds per state
machine model.

SIE analysis is applicable in the specific scope where requesters of operations
are only interested in the success or failure of the operation. The requester

76

3.6 Related Work

receives the acknowledgement directly, but not yet the post state of an entity,
when this depends on other in-progress events. The new state can be queried
in a new transaction.

IE is an asymmetric relation, and also does not require events to be commu-
tative. Even though multiple events can be in progress at the same time, their
effects always are applied in order or arrival, leading to serializable behavior
and commutativity is not necessary. In our specific implementation uncondi-
tional acceptance of events is already communicated to the requester, but not
the outcome state.

Limitations loca results in performance gains in the specific scenario of inde-
pendent actions and high-contention. SIE can find independent events, but from
this information it is not directly clear if this independent result allows loca
to speed up performance in practice, since it might not be a high-contention
scenario. In practice the events could very well be low-volume or the requests
are already spread out on many different specification instances.

loca’s benefit is most visible when the following conditions hold:
objects are involved in many synchronization steps from different objects,
each with low load, but making the single objects a bottleneck for all
objects are involved in a single type of synchronization step from the same
objects

Both cases are a scalability limiting factor when request volumes continue
to increase and are typical for a bank like ing Bank. If the machines are
low volume and the instances spread out, loca’s performance gain is limited,
although it will never worsen the performance compared to 2pc.

3.6 Related Work

IE and loca focus on optimizing performance of a single object, running
in a single location, which is highly-contended. It uses conventional actor
architecture approaches to shard actors over multiple machines. Much literature
focuses on how one can do parallel updates in multiple geo-distributed locations
without communication overhead, and only synchronize if really necessary
for application consistency. Running multiple instances of the same object in
order to allow parallel operations, improves performance in high-contention

77

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

scenarios as well. SIE analysis is related to checking which operations are
commutative and violate invariants.

Many distributed databases focus on scaling by splitting data into partitions,
such as Cassandra [20], H-Store/VoltDB [109], Spanner [4]. Within partitions
they fall back to sequential operations, such as 2pc and Optimistic Concurrency
Control. loca focuses on avoiding coordination locally in these partitions and
could thus be implemented inside other database systems to speed up these
sequential operations, when program invariants are known.

Program-level consistency The notion of program-level consistency, instead
of generic data-consistency, is a valid way to capture what a program should
functionally do and also gives opportunity to improve performance while
maintaining the program invariants. Work in this direction tries to find ways
to characterize this notion, which in turn enables optimized implementations.

The calm theorem [50] says that monotonic programs do not need coordi-
nation. So ideally programs should have only monotonic parts. IE and loca
describe on a local object level, how one can execute events in parallel, im-
proving performance, and make sure the object only grows monotonically in
its lifecycle, by exploiting the programs functional requirements.

Coordination Avoidance [8] states that coordination can be avoided if all local
commit decisions are globally valid. IE describes local avoidance of coordination
between events on the object.

Explicit Consistency [11] also uses an smt-solving approach to “identify
which operations would be unsafe under concurrent execution”. For unsafe
operations, it presents approaches on changes to make concurrent execution
safe or requires an explicit synchronization implementation. It focuses on
parallel changes on geo-located data centers.

Observable Atomic Consistency [118], related to RedBlue Consistency[72],
categorizes operations in two categories: Commutative operations on crdts
which can be handled in any order by different replicas, and totally ordered
operations, for which the replicas need to coordinate.

SIE and loca operate in a different design space, where all operations on an
object go through a single actor, which is not designed for a geo-distributed
setting. It would be interesting to explore this space and an extension of loca.

Conflict-free Replicated Data Types [39, 93] guarantee Strong Eventual
Consistency. This means that all replicas converge to the same state if they
receive the same messages, not necessarily in the same order. IE provides strong

78

3.6 Related Work

consistency, meaning serializability, since events are processed in the original
order, but are internally processed concurrently.

Adahbi1 [89] reasons that in many cases the high-contention bottleneck in
2pc can be avoided by making the precondition check of another participant a
local decision, for example by querying the data required for its precondition
check from the other participant. In that way data flows only one way, and
both participants can locally decide, sometimes with data from the other, if the
transactions will commit or abort without waiting on each other. IE focuses on
local avoiding of delays, but still uses 2pc for the coordination of the transaction.

Single node optimizations Phase Reconciliation [78] is a run-time technique,
that splits contended objects over multiple cores, and allows multiple commu-
tative operations of the same type in parallel on each core. After a configurable
window, the split versions are recombined in a reconciliation phase maintaining
serializability. This improves throughput for contended objects. Similarly to
loca, it thus allows safe parallel operations on an object, and the operations
should not return values. Differences are that the operations are limited to
commutative operations and only allow a single operation type per split phase.
loca and IE do not require commutativity for operations and allow different
operation types to run in parallel, as long as they are independent, which is
either detected statically or dynamically, without special effort by the specifica-
tion designer. Phase Reconciliation’s implementation does not support durable
writes yet, which loca explicitly supports. A difference in scope is that loca
applies effects in the original order. Its parallelism has nothing to do with the
kind of effects, but whether it influences preconditions of other events. Phase
Reconciliation splits up the effects over threads, which loca does not do. Phase
Reconciliation could be embedded within loca, to speed up the applying of
effects within a loca object.

Flat Combining [51] and a distributed version of it [54] show an interesting
way to speed up concurrent access to data by keeping track of concurrent
operations on an object, and letting the first thread obtain the lock, batch
process all the operations and notify the requesters with the result of their
operation. Flat Combining focuses on reads and writes on data structures, and
thus focuses on effects. loca differs in the sense that it is focused on distributed
transactions, where it is externally decided by other transaction participants

1 https://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-two-
phase.html

79

https://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-two-phase.html
https://dbmsmusings.blogspot.com/2019/01/its-time-to-move-on-from-two-phase.html

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

if in-progress operations will be commit or aborted. An interesting part of
Flat Combining is the canceling out of sequential operations, locally in the
concurrent operations list, e.g. push and pops in a stack. This results in reduced
sending of operations to the actual data structure. Interesting future work
related to this, is to statically detect, using analyses similar to SIE, which events
can safely be combined, and (partly) cancel each other out within invariant
bounds.

3.7 Future Work

This chapter describes Independent Events pairs on event type level, ignoring
parameters. It would be interesting to have a more granular approach by
including symbolic field values. The smt-solver can synthesize computationally
cheap field bound checks that loca can use at run time to determine when
events are independent.

In order to make IE more generally applicable, reading of data can be added.
Now, static independence is determined by event types, resulting in either
accept or reject. IE does not support state or return values for events. This has
to be simulated as seen in the tpc-c use case. If exposed (computed) values
are specified, this can be taken into account for the analysis. The “exposed”
effect describes which (computed) values are exposed by events next to the
postconditions, which only describe internal state changes. This would result in
support for sql like transactions, which can use sub queries and can represent
tpc-c’s usage of data, resulting in fewer false-negative dependent events. This
can also support analysis of nested synchronization in Rebel, by tracking if
nested participants rely on exposed event parameter values.

IE focuses on parallel distributed transactions. It would be interesting to
explore if the IE property can be exploited in other non-transactional cases, for
example in the context of Active Objects [52].

The current SIE analysis can take false-positive dependent event pairs into
account, because the smt-solver is allowed to synthesize any state possible, also
states that cannot occur in the normal state machine life cycle. Extra assertions
could be added to make sure only reachable states are used. A drawback could
be that the state machine representations becomes more involved and solve
times can become higher.

80

3.8 Conclusion

In order to avoid deadlocks, transaction participants are locked in increasing
order. In many cases loca does not need this, because it allows multiple
transactions in parallel. loca should only need increasing order locking when
deadlocks can happen for dependent events. Static analysis could detect this
and switch to parallel requesting of locks, saving multiple round trip times in
transaction latency, compared to increasing order locking.

This chapter presents microbenchmark performance evaluations on a single
application node. Since the implementation is based on actors, which can run
as-is in a clustered environment, it would be interesting to do further scalability
performance evaluation on a cloud environment. It would be interesting to
replicate ing’s workloads using loca to find a benefit compared to their current
implementation.

Commutativity of statically independent events can most probably be stati-
cally determined. This would allow reordering of events at run time and would
allow requesters to see outcome states earlier. Reordering would require de-
signers of specifications to take care with pre- and postconditions to make sure
that time sensitive or otherwise important event orders are captured explicitly.

Offline analysis using smt solvers can also be used to support specification
designers by giving insight in potential performance bottlenecks at design time.
Research directions include detection of events which are used in multiple
synchronized steps but never independent, and suggestions on how to make
events independent. The latter can be done by systematically removing pre-
conditions from dependent event pairs, until it becomes independent. This
signals which preconditions might be weakened by the specification designer
to reduce performance bottlenecks.

loca uses an atomic commitment protocol to implement the actual transac-
tion, which is now 2pc. Optimistic concurrency control, instead of 2pc, could
provide even more performance improvements, since fewer rollbacks or aborts
would be required for independent events.

3.8 Conclusion

Atomic commitment protocols such as Two-Phase Commit (2pc) may lead
to bottlenecks for high-contention objects, because requests have to wait on
previous events to finish. It is possible to improve throughput and latency, by

81

Chapter 3 Static Local Coordination Avoidance for Distributed Objects

increasing parallelism of events on an object, while maintaining application
consistency.

Independent Event (IE) pairs capture when a state machine object can
safely start processing events when other events are still in progress. Statically
Independent Events (SIE) analysis enables detection of types of event pairs
that are always independent, at compile-time. We have implemented the SIE
analysis on top of the Rebel state machine dsl by translating object invariants
to smt constraints and checking the SIE property. Local Coordination Avoidance
(loca) leverages the resulting independence information to start more events
per object concurrently, when it is determined that new events cannot violate
the object’s invariants.

We have shown that in two sets of realistic Rebel specifications, around 60% of
events are always independent, which suggests that loca potentially increases
throughput in distributed systems. Preliminary performance evaluation shows
that, compared to 2pc, loca performs at least similar to 2pc, but loca does
increase throughput and reduce latency in high-contention scenarios with
independent events.

82

4
Automated Validation of State-Based
Client-Centric Isolation with tla+

Abstract Clear consistency guarantees on data are paramount for the design and imple-
mentation of distributed systems. When implementing distributed applications, developers
require approaches to verify the data consistency guarantees of an implementation choice.
Crooks et al. define a state-based and client-centric model of database isolation. This chap-
ter formalizes this state-based model in tla+, reproduces their examples and shows how to
model check runtime traces and algorithms with this formalization. The formalized model
in tla+ enables semi-automatic model checking for different implementation alternatives
for transactional operations and allows checking of conformance to isolation levels. We
reproduce examples of the original paper and confirm the isolation guarantees of the
combination of the well-known 2-phase locking and 2-phase commit algorithms. Using
model checking this formalization can also help finding bugs in incorrect specifications.
This improves feasibility of automated checking of isolation guarantees in synthesized
synchronization implementations and it provides an environment for experimenting with
new designs.

This chapter is previously published as: Tim Soethout, Tijs van der Storm, and
Jurgen J. Vinju. “Automated Validation of State-Based Client-Centric Isolation
with TLA+”. In: Software Engineering and Formal Methods. SEFM 2020 Collocated
Workshops - ASYDE, CIFMA, and CoSim-CPS, Amsterdam, The Netherlands, September
14-15, 2020, Revised Selected Papers. Edited by Loek Cleophas and Mieke Massink.
Volume 12524. Lecture Notes in Computer Science. Springer, 2020, pages 43–57.
doi: 10.1007/978-3-030-67220-1_4

83

https://doi.org/10.1007/978-3-030-67220-1_4

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

4.1 Introduction

Automatically generating correct and performant implementations from high-
level specifications is an important challenge in computer science and software
engineering. Ideally one makes high-level specifications, which completely
describe the functional and relevant parts of an application, without having to
bother with low-level implementation details at the same time. Implementation
is left to specialized tools and approaches that benefit from automated model
checking and other debugging tools.

A benefit of high-level specifications is that they enable more specialized and
fine-tuned implementations than general purpose implementation strategies,
which in essence have to take into account all possible variations of opera-
tions users can define. High-level domain knowledge offers the potential to
automatically generate and optimize code, e.g. removing locks and blocking
for improved performance when it can derive that this is never necessary the
specific situation.

Such optimizations often involve managing concurrency and parallelism
on accessing data. These optimizations of course need to be correct w.r.t. the
specification: data consistency needs to be guaranteed. Application logic defines
the functional consistency and transaction isolation manages the consistency
of concurrent operations. Historically, isolation concerns have been outsourced
to database systems, using general purpose transactions and similar constructs.
These databases generally support acid transactions, with a variety of isolation
guarantees [9, 32], where Serializability is the strongest guarantee.

In order to optimize the performance of specialized implementations, some
parts of the general purpose transaction mechanism are incorporated either
in the application itself or in the database implementation. When developing
these specialized implementations of higher-level specifications, we need to
be sure that they guarantee the acid properties, or, if not, to what extent.
The seminal definition of isolation levels is given by Adya [1]. Adya uses
transaction histories, where transactions have dependencies on each other
based on accessing the same data. If a cycle can be found in the graph of these
dependencies, an isolation anomaly is present. Crooks et al. [23] model a state-
based and client-centric approach to isolation and prove that it is equivalent to
Adya’s formalization.

Various tools are available which try to find or visualize isolation anoma-
lies [59, 61, 63]. Many rely on specific scripted error scenarios to show anoma-
lies. The elle tool [59] can be used to validate traces of implementations using

84

4.2 Background: State-Based Client-Centric Consistency

Adya’s formalization, but still required careful setup and tuning of a test setup.
It infers the histories Adya requires from client-centric observed transactions.
Crooks’ formalization is defined from a client-centric perspective and is directly
defined in terms of observed transactions. The state-based and client-centric
isolation definitions of Crooks et al. are referenced as Crooks’ Isolation (ci)
throughout this chapter.

This chapter describes an approach using formal methods to (semi-)auto-
matically validate the isolation level of observed transactions using ci. First,
we give an introduction to ci and a formalization of it in tla+. Next we discuss
how this formalization is used to validate the consistency guarantees of a
transaction algorithm using two-phase commit (2pc) with two-phase locking
(2pl), and use it to find a specification bug.

The formalization of ci and the tla+ model checker enable rapid checking of
multiple isolation levels of different synchronization algorithms. This technique
can be used to both validate observed transactions from run-time systems and
of formalizations of algorithms.

The main contributions of this chapter are:
1. Formalization of the core of ci in tla+ and updated definitions to allow

incremental model checking (section 4.3).
2. Reproduction of the claims and properties [23] using model checking

(section 4.4).
3. Formalization of 2pl/2pc in tla+ and validation of Serializability using

model checking of the ci tla+ formalization (section 4.5).
4. An example of finding isolation bugs in the algorithm specification of 2pl/

2pc (section 4.5.3).
Section 4.6 discusses results, limitations and future work based on this ap-
proach. We conclude in section 4.7. All source code can be found on Zen-
odo [97].

4.2 Background: State-Based Client-Centric Consistency

Crooks et al. [23] define a state-based and client-centric consistency model
(ci) for reasoning about isolation levels. It defines predicates to state if a set of
observed transactions occurs under a given isolation level. The main concepts
of ci are transactions and executions. A transaction is a sequence of operations,

85

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

S0
�

A 7→ 100
B 7→ 100

�

T1−→

S1
�

A 7→ 150
B 7→ 50

�

T2−→

S2
�

A 7→ 165
B 7→ 55

�

Figure 4.1 Example execution with initial state S0 for transactions
T1 = 〈r(A, 100), r(B, 100), w(A, 150), w(B, 50)〉 and
T2 = 〈r(A, 150), r(B, 50), w(A, 165), w(B, 55)〉.

consisting of reads and writes which includes observed keys and values: r(k, v)
/ w(k, v). An execution represents a possible ordering of a set of transactions
with the resulting intermediate database states. A state is a mapping from all
database keys to a specific value. Within an execution each following state only
differs in the values written by the intermediate transaction on the previous or
parent state.

Figure 4.1 shows an example execution of two bank accounts A and B, which
both have a balance of €100 in the initial state S0. Transaction T1 is money
transfer: €50 is deposited from account A and withdrawn from account B,
realized using two reads and two writes. Transaction T2 is paying of interest:
10% of the balance is added to both accounts; this transaction also involves
two reads and two writes. Note that from a starting state and an ordering
of transactions the other states can be derived by applying the intermediate
transaction’s writes.

For a set of observed transactions T to satisfy an isolation level I , a commit
test CT for I should hold for a possible execution e of T : ∃e : ∀t ∈ T : CTI(t, e).
The commit test for serializability, for example, is that all reads in a transaction
must be able to have read their value from the direct parent state. In our
example all the values of T1’s and T2’s read operations are the same as their
parent state’s values for each corresponding key, e.g. T1’s r(A, 100) can read
from T1’s parent S0’s A 7→ 100.

Another isolation level is Snapshot Isolation, where the commit test requires
that all reads of a single transaction can be read from the same earlier, not
necessarily parent, state, which represents the database snapshot.

86

4.3 Formalizing ci in tla+

4.3 Formalizing ci in tla+

tla+ [69] is a formal specification language for action-based modeling of
programs and systems. PlusCal [70] is an abstraction on top of tla+ for
concurrent and distributed algorithms and compiles to tla+. In practice tla+

is used to model distributed algorithms and systems [18, 41, 45, 75, 79]. tla+

models states and transitions. A specification defines an initial state and atomic
steps to a next state. Complex state machines and their transitions can be
represented this way. Multiple concurrently-running state machine define their
local steps and the global next step non-deterministically picks one machine to
progress each step. This captures all possible interleavings of these multiple
machines.

ci is formalized as properties that hold on a tla+ state. This
enables querying the system if an initial database state together
with a set of observed transactions satisfies an isolation level, e.g.,
Serializability(initalState, setOfTransactions). When using tla+ to formally spec-
ify an algorithm, this isolation property is added as an invariant during model
checking. tla+’s model checker tlc can then check the isolation guarantees at
every state in the algorithm’s execution and produce a counterexample if the
invariant is violated.

To formalize ci, we assume the following tla+ definitions:

1 State ≡ [Keys→ Values]
2 Operation ≡ [op: {"read", "write"}, key: Keys, value: Values]
3 Transaction ≡ Seq(Operation)
4 ExecutionElem ≡ [parentState: State, transaction: Transaction]
5 Execution ≡ Seq(ExecutionElem)

The system State is modeled as a mapping from keys to values. Keys and Values
are left abstract on purpose here, since they differ per concrete model. In tla+

sets and set membership are often used. [Keys→ Values] represents the set of
possible tuples of Keys and Values, we bind this to State to easily reference this
later in the specification. Operations are a read or write of a value on a key and
a Transaction is a sequence of these operations. An Execution is represented as
a sequence of transactions with their parent state.

87

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

Listing 4.1 tla+ ReadStates
1 ReadStates(execution, operation, transaction) ≡
2 LET Se ≡ SeqToSet(executionStates(execution))
3 sp ≡ parentState(execution, transaction)
4 IN { s ∈ Se: * s ∈ Se

5 ∧ beforeOrEqualInExecution(execution, s, sp) * a: s
∗
→ sp

6 ∧ ∨ s[operation.key] = operation.value * b1: (k, v) ∈ s
7 * b2: ∃w(k, v) ∈ ΣT

8 ∨ ∃ write ∈ SeqToSet(transaction):
9 ∧ write.op = "write" ∧ write.key = operation.key
10 ∧ write.value = operation.value
11 * b2: w(k, v)

to
→ r(k, v)

12 ∧ earlierInTransaction(transaction, write, operation)
13 ∨ operation.op = "write"
14 }

As intuitively sketched earlier ci checks if values could have been read from
earlier states. The following definition of RS (“read states”) captures this for
an execution e and an operation o = r(k, v):

RSe(o) =
§

s ∈ Se

�

�

�

�

s
∗
→ sp

a

∧
�

(k, v) ∈ s

b1

∨ (∃w(k, v) ∈ ΣT : w(k, v)
to
→ r(k, v))

b2
�

ª

Read states are a subset of the states in the execution Se, which are: (a) up to
and including the parent state sp in the execution; (b1) have the same key and
value as the operation o = r(k, v); or (b2) there exists a write operation w(k, v)
with the same key and value earlier in the same transaction’s operations (ΣT).

The tla+ version of this definition is shown in listing 4.1. These read states are
defined for each operation given an execution. tla+’s syntax allows grouping
of conjunctions (∧) and disjunctions (∨) by vertical indentation. The func-
tion executionStates denote the sequence of states in an execution. parentState
extracts the parent state of a transaction given an execution. LET .. IN has the
standard semantics. The rest of ReadStates (lines 4 to 5) follows the ci defini-
tion quite literally, except that the third alternative (line 13) is not captured
in the ci definition for RS above, but represents the “convention [that] write
operations have read states too” [23] to include all states up until the parent
state for writes.

88

4.4 ci examples

A state is complete when all reads of a transaction could have read their
values from it. It is the intersection of the states in which each operation of the
transaction could read from. The following definition is extended to take into
account transactions without operations to support the iterative construction
of transactions, starting with the empty ones:

completee,T (s)≡ s ∈

�

⋂

o∈ΣT

RSe(o)∩
¦

s′ ∈ Se|s′
∗
→ sp

©

�

We omit the tla+ version (Complete) for the sake of brevity, but it closely
follows the mathematical definition, just like ReadStates did compared to RS.

A commit test CT I(T, e) determines if a set of transactions T is valid under an
isolation level I and execution e. For a set of transactions to satisfy an isolation
level, there needs to exist at least one possible ordering, for which the commit
test holds for all transactions. Transactions describe the values that a client
observes including the actual values read and written. The values observed
by the client are compatible with an ordering of the transactions that satisfies
the isolation level. This is why it is sufficient for a single possible execution
ordering to satisfy the commit test. The specific commit test for an isolation
level I abstracts over which reads are valid for I .

Different isolation-level commit tests are shown in table 4.1, both math-
ematically and in tla+. Note that the ci definitions and their tla+ coun-
terparts are very similar. The definitions of NoConf, Preread, strictBefore and
beforeOrEqualInExecution can be found in listing 4.2.

4.4 ci examples

The static examples of the ci-paper are reproduced using tla+’s model checker
tlc and the ASSUME operator. The model checker checks if the assumed prop-
erty is valid. Figure 4.2 shows a minimal example of transactions ta to te, which
are checked for four different isolation levels given initial state s0. tlc checks
the assumptions and all evaluate to TRUE. The source code [97] reproduces
more checks on this example.

Bank Transfer Example The bank transfer example introduced by Crooks et al.,
shows the difference between Snapshot Isolation and Serializability. Alice and
Bob simultaneously take money out of their joint current and savings accounts,

89

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

Listing 4.2 tla+ helper definitions for ci
1 WriteSet(transaction) ≡ *WT = {k|w(k, v) ∈ ΣT }
2 LET writes ≡ { operation ∈ SeqToSet(transaction) : operation.op = "write" }
3 IN { operation.key : operation ∈ writes }
4
5 NoConf(execution, transaction, state) ≡ * no-confT (s)≡∆(s, sp)∩WT = ;
6 LET Sp ≡ parentState(execution, transaction)
7 delta ≡ { key ∈ DOMAIN Sp : Sp[key] 6= state[key] }
8 IN delta ∩ WriteSet(transaction) = {}
9
10 Preread(execution, transaction) ≡ * prereade(T)≡ ∀o ∈ ΣT : RS e(o) 6= ;
11 ∀ operation ∈ SeqToSet(transaction): ReadStates(execution, operation, transaction) 6= {}
12
13 * T1 <s T2

14 strictBefore(t1, t2, timestamps) ≡ timestamps[t1].commit < timestamps[t2].start
15 beforeOrEqualInExecution(execution, state1, state2) ≡ * s1

∗
→ s2

16 LET states ≡ executionStates(execution)
17 IN Index(states, state1) <= Index(states, state2)

Table 4.1 Commit tests and corresponding tla+ definitions.

Isolation Level Commit Test tla+ definition

Serializability completee,T (sp) Complete(e, T, parentState(e, T))
Snapshot Isolation ∃s ∈

Se.completee,T (sp)∧
no-confT (s)

∃ s ∈ toSet(states(e)):
Complete(e, T, s) ∧ NoConf(e, T, s)

Read Committed prereade(T) Preread(e ,T)
Read Uncommitted True TRUE
Strict Serializability completee,T (sp)∧

∀T ′ ∈ T :
T ′ <s T ⇒ sT ′

∗
→ sT

LET Sp ≡ parentState(e, t)
IN Complete(e, T, Sp) ∧
∀ otherT ∈ transactions(e):
strictBefore(otherT, T,
,→ timestamps)
⇒ beforeOrEqualInExecution(
e, parentState(e, otherT), Sp)

90

4.4 ci examples

1 * Initial State, all 0
2 s0 ≡ [k ∈ {x,y,z} 7→ 0]
3 * Helper functions for operations
4 r(k,v) ≡
5 [op 7→ "read", key 7→ k, value 7→ v]
6 w(k,v) ≡
7 [op 7→ "write", key 7→ k, value 7→ v]
8
9 ta ≡ << w(x,1) >>
10 tb ≡ << r(y,1), r(z,0) >>
11 tc ≡ << w(y,1) >>
12 td ≡ << w(y,2), w(z,1) >>
13 te ≡ << r(x,0), r(z,1) >>
14
15 trs ≡ {ta, tb, tc, td, te}
16 ASSUME Serializability(s0, trs)
17 ASSUME SnapshotIsolation(s0, trs)
18 ASSUME ReadCommitted(s0, trs)
19 ASSUME ReadUncommitted(s0, trs)

1 * Initial state of Current and Savings
,→ accounts.

2 bInit ≡ (C :> 30)@@ (S :> 30)
3
4 talice ≡
5 << r(S,30), r(C, 30), w(C,-10) >>
6 tbob ≡
7 << r(S,30), r(C,-10)
8 (* w(S,-10) does not happen *) >>
9 bTrx ≡ {talice, tbob}
10
11 ASSUME Serializability(bInit, bTrx)
12 ASSUME SnapshotIsolation(bInit, bTrx)
13 ASSUME ReadCommitted(bInit, bTrx)
14 ASSUME ReadUncommitted(bInit, bTrx)

Figure 4.2 Running example (left) and serializable bank account example (right) from
Crooks et al. [23] in tla+.

both from the other account. The bank requires the sum of the balances of
both accounts to stay positive.

The following execution contains the transactions
Talice = 〈r(S, 30), r(C , 30), w(C ,−10)〉 and Tbob = 〈r(S, 30), r(C ,−10), abort〉. A
serializable implementation requires Tbob to abort. Talice reads both balances of
C and S and withdraws €40 from C . Tbob reads the result and aborts because
not enough balance is available for his withdraw of €40 from S:

S1
�

C 7→ 30
S 7→ 30

�

Talice−→

S2
�

C 7→ −10
S 7→ 30

�

Tbob−→

S3
�

C 7→ −10
S 7→ 30

�

The tla+ code to check this is shown on the right of figure 4.2.
The same example is considered under Snapshot Isolation with transactions

Talice = 〈r(S, 30), r(C , 30), w(C ,−10)〉 and Tbob = 〈r(S, 30), r(C , 30), w(S,−10)〉.

91

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

Both Talice and Tbob read from S1 and find that there is enough total balance
available. They both withdraw €40 from respectively C and S:

S1
�

C 7→ 30
S 7→ 30

�

Talice−→

S2
�

C 7→ −10
S 7→ 30

�

Tbob−→

S3
�

C 7→ −10
S 7→ −10

�

Snapshot Isolation allows this because both Talice and Tbob read from a
valid snapshot or complete state and there is no conflict in their writes,
because they write to different accounts. However, this violates the overall
invariant that the sum of the balances should remain positive. This is
the write skew isolation anomaly [1] and is checked by using a specifica-
tion similar to the right-hand side of figure 4.2, with modified transactions
(tbAlice ≡ << r(S, 30), r(C,30), w(C,-10) >>; tbBob ≡ << r(S, 30), r(C,30), w(S,-10) >>),
and observing that Serializability is found to be FALSE by the model checker.

4.5 Model Checking Algorithms Using ci

In contrast to the previous, static examples, where tla+’s state steps are not
used, we now look at a tla+ specification of a transactional protocol (2pl/2pc)
using states. At each step of the algorithm tlc checks if the isolation guarantees
hold.

4.5.1 Formalizing 2pl/2pc

Two-Phase Commit (2pc) combined with Two-Phase Locking (2pl) forms a
protocol used to implement acid transactions. 2pc takes care of atomicity of a
transaction and 2pl provides Serializable isolation. We extend the formalization
of 2pc by Gray and Lamport [41] to support multiple parallel transactions via
2pl.

We model 2pl/2pc in the PlusCal algorithm language, which is compiled
down to regular tla+, but provides a higher-level notation, closer to impera-
tive programming languages. PlusCal describes multiple possibly different
processes with atomic steps. During model checking, one of the processes takes
a single step, which allows processes to be interleaved. The model checker
makes sure all possible interleavings are explored.

The PlusCal encoding of 2pl/2pc consists of two types of processes: trans-
action managers and transaction resources. The actual number of processes

92

4.5 Model Checking Algorithms Using ci

Listing 4.3 PlusCal specification of 2pl/2pc manager
1 fair process tm ∈ transactions
2 begin
3 INIT: sendMessage([id 7→ self, type 7→ "VoteRequest"]);
4 WAIT: either * receive commit votes
5 await ∀ rm ∈ resources: [id 7→ self, type 7→ "VoteCommit", rm 7→ rm] ∈ msgs;
6 sendMessage([id 7→ self, type 7→ "GlobalCommit"]);
7 goto COMMIT;
8 or * receive at least 1 abort votes
9 await ∃ rm ∈ resources: [id 7→ self, type 7→ "VoteAbort", rm 7→ rm] ∈ msgs;
10 sendMessage([id 7→ self, type 7→ "GlobalAbort"]);
11 goto ABORT;
12 or * or timeout, solves deadlock when transactions lock each others resources
13 sendMessage([id 7→ self, type 7→ "GlobalAbort"]);
14 goto ABORT;
15 end either;
16 ABORT: goto Done; COMMIT: goto Done;
17 end process

is defined by model constants transactions and resources. Message passing is
modeled by a monotonically growing set of messages. This means that mes-
sages are never lost, but a recipient process might handle them out of order or
not at all.

Listing 4.3 shows the definition of the transaction manager. There is a tm
process for each of the transactions. PlusCal processes do atomic steps, each
represented by a label such as INIT:. A label can intuitively be viewed as a state
in the process’ state machine. All statements within a step are done as a single
step.

A transaction manager first sends out the VoteRequest message by
adding a tuple with the transaction’s identifier self and the message label
"VoteRequest" to the msgs set. Then its next step is WAIT in which three alterna-
tives (either ... or) can occur: 1) either it receives messages of type "VoteCommit"
of each resource occurring in the set of messages, and sends GlobalCommit;
2) or one message of type "VoteAbort" and sends GlobalAbort; 3) or it times
out and aborts (to prevent deadlock). The await construct ensures that a step
only happens if its precondition is fulfilled. tlc makes sure that all alternatives
are explored. goto’s are added to explicitly label the steps for readability in the

93

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

Listing 4.4 2pl/2pc resource in tla+

1 fair process tr ∈ resources
2 variables maxTxs = 5, * Limit number of transactions to limit search space
3 voted = {}, * Transactions which this resource voted for
4 committed = {}, * Committed transactions
5 aborted = {}, * Aborted transactions
6 state = 0; * Counter to represent state changes for CC
7 begin TR_INIT:
8 while maxTxs >= 0 do
9 either skip; * skip to not deadlock
10 or * Wait on VoteRequest
11 with tId ∈ transactions \ voted do
12 await [id 7→ tId, type 7→ "VoteRequest"] ∈ msgs;
13 either * If preconditions hold, VoteCommit, else VoteAbort
14 sendMessage([id 7→ tId, type 7→ "VoteCommit", rm 7→ self]);
15 voted := voted ∪ {tId};
16 or sendMessage([id 7→ tId, type 7→ "VoteAbort", rm 7→ self]);
17 voted := voted ∪ {tId}; aborted := aborted ∪ {tId}; goto STEP;
18 end either; end with;
19 READY: * Wait on Commit/Abort
20 either with tId ∈ voted \ committed do * receive GlobalCommit
21 await [id 7→ tId, type 7→ "GlobalCommit"] ∈ msgs;
22 committed := committed ∪ {tId};
23 operations[tId] := operations[tId] ◦ << r(self, state), w(self, state+1) >>;
24 state := state + 1;
25 end with;
26 or with tId ∈ voted \ aborted do * receive GlobalAbort
27 await [id 7→ tId, type 7→ "GlobalAbort"] ∈ msgs;
28 aborted := aborted ∪ {tId};
29 end with; end either; end either;
30 STEP: maxTxs := maxTxs - 1;
31 end while; end process;

model checker’s execution. Done is a special PlusCal label, which represents
the process being completed.

The PlusCal specification of a transaction resource, shown in listing 4.4, is
slightly more involved. The resource process has local variables (lines 1 to 6)
to track of stopping, votes, commits, aborts and resource’s state. An integer
represents the abstract state and is used when checking ci.

94

4.5 Model Checking Algorithms Using ci

When the resource is started (lines 7 to 18), it either does noth-
ing (skip) and decrements maxTxs, or receives a "VoteRequest" message.
with tId ∈ transactions \ voted denotes choosing a transaction ID tId from the
set of transactions minus the transactions already voted for. The resource can
then either VoteCommit or VoteAbort. The voted local variable keeps track
of the transactions it has already voted for and is updated to make sure to only
vote once per transaction.

Next, it becomes READY (lines 19 to 30) and waits on either GlobalCommit
or GlobalAbort, but only for transactions which it voted for, and has not
committed to yet. It keeps track of the committed and aborted transactions in
order to not send duplicate messages and to later check the atomicity of the
transactions. Each while iteration decrements maxTxs to ensure termination.

In order to model check ci it captures the read and written values in
operations (line 23) and updates its local state. Both reads and writes are
added on commit and not on vote, because if reads were added on vote, it
could be the case that the resource reads a later committed value when re-
sponding to the VoteRequest later which will always be aborted anyway. This
results in a violation of Serializability for the ci check, while it is technically
never an observed value.

4.5.2 Model Checking 2pl/2pc

As sanity check for the formalization of 2pl/2pc, first atomicity and termination
are checked:

1 Atomicity ≡
2 ∀ id ∈ transactions: pc[id]=Done⇒
3 ∀ a1, a2 ∈ resources: ¬ id ∈ aborted[a1] ∧ id ∈ committed[a2]
4
5 AllTransactionsFinish ≡ <>(∀ t ∈ transactions: pc[t] = Done)

For atomicity, when all transactions are completed (process counter pc is Done),
for all pairs of resources it should not (¬) be the case that a transaction is
aborted by one resource, but committed by the another. So all should either
commit or abort the transaction. Property AllTransactionsFinishmakes sure that
eventually (<>) all transactions complete.

To model check the isolation guarantees an instance of the ci formalization
is added, which gives access to the previously defined isolation level tests (see
section 4.4), given the initial state and the observed transactions.

95

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

Table 4.2 Run time durations of tlc on ci checks for different number of transactions
and resources n of 2pl/2pc. Results on MacBook Pro (13-inch, 2016) with
3.3GHz Intel Core i7 with 4 worker threads and allocated 8GB ram on
AdoptOpenJDK 14.0.1+7, on tlc 2.15 without profiling and using symmetry
sets for constants.

#tx n= 1 n= 2 n= 3

1 7 s 9 s 19 s
2 8 s 21 s 5m 55 s
3 11 s 1m 53 s 3 h 21m 54 s

1 ccTransactions ≡ Range(operations) * Operations without transaction IDs
2 InitialState ≡ [k ∈ resources 7→ 0] * Initial state is 0 for all resources
3
4 CC ≡ INSTANCE ClientCentric WITH Keys← resources, Values← 0..10
5 Serializable ≡ CC!Serializability(InitialState, ccTransactions)
6 SnapshotIsolation ≡ CC!SnapshotIsolation(InitialState, ccTransactions)
7 ReadCommitted ≡ CC!ReadCommitted(InitialState, ccTransactions)
8 ReadUncommitted ≡ CC!ReadUncommitted(InitialState, ccTransactions)

In this case all cases are valid when we run the tlc model checker for
transactions ≡ {t1, t2} and resources ≡ {r1, r2, r3}.

The model checker then checks the isolation guarantees for each step of the
algorithm. When the isolation test fails, it presents a counterexample. Table 4.2
gives an intuition on the relative time durations of the tlc model checker on
different numbers of transactions and resources. The model checker checks the
four ci isolation levels (Serializability, Snapshot Isolation, Read Committed,
Read Uncommitted) on each of the model’s steps. It never invalidates the
checks, so it traverses the entire state space.

4.5.3 2pl/2pc Bug Seeding

To additionally stress the formalization presented above, we have introduced
a subtle, but realistic bug in the definition of transaction resource. When the
resource is in the ready state and waiting on a GlobalCommit or GlobalAbort
message from the transaction manager, the resource should only wait for these
messages when it is the actual transaction it voted for. This is guaranteed by

96

4.5 Model Checking Algorithms Using ci

t3

t2

r2

r1

t1 wait
VR(t1)

ready
VC(t1, r1)

wait
VR(t2)

abort
GA
(t2
)

wait
VR
(t3
)

readyVC(t3, r1)
readyVC

(t
1,
r2
)

commitGC(t1)

ready

VC(t3, r2)

commit

GC
(t
3)

VC(t2, r1)
init initcommit

readyinit commitinit init

commit

init

init

init

commitabort

Figure 4.3 Non-serializable trace found for bugged 2pl/2pc specification. Horizontal
lines represent processes over time with state changes. Arrows represent
messages sent and received. Message labels are abbreviations of 2pc mes-
sages: VoteRequest, VoteCommit, GlobalAbort and GlobalCommit.

with tId ∈ voted \ committed in listing 4.4 line 20. The bug is to replace this
with with tId ∈ transactions \ committed. This means tId can faultily represent
a never-seen before transaction as well.

When this model is checked with two transactions and resources, all of the
invariants hold and no problem is found. However, with three transactions and
two resources the Serializability invariant is violated and a counterexample
with 20 steps is found within half a minute; this trace shown in figure 4.3. The
example shows that due to this bug it is possible for a resource to side-step an
in progress transaction, by responding to the GlobalCommit of a different
transaction.

First t1 and t2 request to vote and r1 votes to commit for t1, then t2 aborts due
to timeout with GlobalAbort(t2). r1 then uses this abort to abort its waiting
on t1. This is possible because with tId ∈ transactions \ committed allows r1. It
receives the GlobalAbort(t2), aborts and steps to receive the next transaction.
The model checker requires some more steps to find non-serializable behavior,
when the other transactions t1 and t3 commit and their effects are applied in
different order on r1 and r2, hence the system is not serializable.

These kinds of bugs during specification can occur naturally, for example
when specializing algorithms for specific applications with the goal of added
efficiency [103]. Using ci in model checking helps us find bugs while designing
new algorithms and also for validating claims of existing algorithms.

97

Chapter 4 Automated Validation of State-Based Client-Centric Isolation with tla+

4.6 Discussion and Future Work

The formalization of ci in tla+ is relatively straightforward. The definitions
for the base abstractions, such as State and Execution, influence the whole
formalization. Staying as close as possible to the mathematical model however,
results in quite verbose output, since there are no labels on transactions. The
definition on read states was improved to support incremental model checking,
starting with empty transactions.

The main limitation of using model checking to find isolation violations is
the state explosion when the numbers of processes grows. As seen in table 4.2,
running times grow rapidly and model checking becomes infeasible when
more transactions are added. Since the model checker evaluates the isolation
guarantees in every algorithm state we assume, however, that most isolation
violations can be found in small examples. The small scope hypothesis [56]
supports this saying that most bugs have small counterexamples. Nevertheless,
we can not be entirely sure that anomalies that only occur in larger interactions
and longer traces are found by the current approach, but it gives us confidence
in the the checked isolation level, while keeping it feasible.

There is a lot of research focusing on proving distributed consistency prop-
erties. Model checking tools, such as Uppaal [12], Spin [55], LTSMin [15],
mCRL2 [44] and tla+ [69] are used to verify distributed systems and algo-
rithms as well as real-world implementations and protocols [39, 45, 75, 79].

There are also many approaches [9, 62, 86, 110] that try to balance the
trade-off between performance and data-consistency by choosing different
isolation guarantees. Our work adds to this knowledge by providing a reusable
framework to investigate and model check distributed consistency protocols.

To further evaluate the usefulness of our approach for real-life systems, it
would be insightful to reproduce known isolation bugs in older versions of
database implementations, such as found by Jepsen [59, 60] and Bailis et al. [9].
In order to do this we could either create one or more clients that capture the
observed transactions, or instrument the database to store this information for
offline model checking.

Furthermore the scripts of the isolation anomalies of Hermitage [63] can
be reproduced as tlc model checks to strengthen (our formalization of) ci.
The tla+ Toolbox also features a theorem prover. The ci formalizations could
be extended by proving certain properties, such as reproducing the proofs
on equivalence with Adya’s formalization and proving conformity to isolation
levels for specific algorithms.

98

4.7 Conclusion

Generating performant and correct implementations from high-level spec-
ifications is an attractive goal in software engineering, as it would bring the
benefits of (semi-)automatic verification to correct-by-construction implemen-
tation.

For instance, the Rebel domain-specific language has been used to specify
realistic systems (for instance, in the financial domain), from which highly scal-
able implementations are generated using novel consistency algorithms [100,
103, 108]. It is however, a far from trivial endeavour to state and prove isola-
tion guarantees of some of these algorithms. ci can be extended to support
operations on a semantically higher level than reads and writes, such as the
semantically richer operations used in Rebel. A tla+ formalization can then
be used to allows for rapid prototyping of synchronization implementation
alternatives for Rebel, while leveraging the higher-level semantics [114]. The
checking of isolation guarantees can then be automated.

4.7 Conclusion

This chapter formalizes Crooks’ state-based client-centric isolation model (ci)
in tla+ in order to check conformance to isolation levels using model checking.
The running examples of Crooks et al. [23] are reproduced and validated in
tla+. An example of a transaction implementation using two phase locking
(2pl) and two phase commit (2pc) is formalized in tla+. The tlc model
checker is used to automatically show conformance to the ci formalization.
The ci formalization is also used to find a bug in the algorithm’s formalization.

Formalizing ci in tla+ enables automatic validation of isolation guarantees
of synchronization implementations by mapping their algorithms to read and
write operations. It can be used both for checking isolation conformance of run-
time traces of (distributed) systems and of formal specification of algorithms.

99

5
Safely Exploiting Contract-Based
Return-Value Commutativity for Faster
Serializable Transactions

Abstract A key challenge of designing distributed software systems is maintaining data
consistency. We can define data consistency and data isolation guarantees – e.g. serializabil-
ity – in terms of schedules of atomic reads and writes, but this excludes schedules that would
be semantically consistent. Others use manually provided information on “non-conflicting
operations” to define guarantees that work for more applications allowing more parallel
schedules. To be safe, an engineer might avoid marking operations as non-conflicting,
with detrimental effects to efficiency. To be fast, they might mark more non-conflicting
operations than is strictly safe.
Our goal is to help engineers by automatically deriving commutative operations (using
their respective contracts) such that more parallel schedules with global consistency are
possible. We define a new general consistency and isolation guarantee named “Return-
Value Serializability” to check consistency claims automatically, and we present distributed
event processing algorithms that make use of the same “Contract-based Commutativity”
information. We validated both the definitions and the algorithms using model-checking
with tla+. Previous work provided evidence that local coordination avoidance such as
applied here has a significant positive effect on the performance of distributed transaction
systems.
Client-centric return-value commutativity promises to hit a sweet spot in design trade-
offs for business applications, such as payment systems, that must scale-out while their
operations are not embarrassingly parallel and consistency guarantees are of the highest
priority. It can also provide design feedback, indicating that some operations will simply
not scale together even before a line of code has been written.

This chapter is previously published as: Tim Soethout, Tijs van der Storm, and Jurgen
J. Vinju. “Contract-Based Return-Value Commutativity: Safely exploiting contract-
based commutativity for faster serializable transactions”. In: Proceedings of the 11th
ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and
Decentralized Control - AGERE 2021. ACM Press, 2021. doi: 10.1145/3486601.3486707

101

https://doi.org/10.1145/3486601.3486707

Chapter 5 Contract-Based Return-Value Commutativity

5.1 Introduction

Fast implementations of serializability and other strongly consistent isolation
levels are inherently complex in a distributed setting, due to the inherent
trade-off between performance and consistency. Typical approaches to increase
concurrency of distributed operations operate at the level of low-level reads
and writes. Looking at higher-level abstractions (methods, operations, etc.),
however, allows for more leniency: more schedules of operations are serializable
because the semantics of high-level operations is used directly, rather than de-
composed in their constituent parts. Weikum’s multi-level serializability [115]
is a model of how this can work. State-dependent commutativity and return-
value commutativity describe when it is safe to reorder operations without
violating serializability. For instance, deposits on the same bank account are
commutative and therefore non-conflicting. In practice this means that deposit
operations can be reordered (swapped) resulting in the same account balance,
but potentially better performance. As long as no later operations expose the
intermediate state this swap is valid under serializability.

These descriptive formalisms are not used much in practice due to use-case
specificity and the need for manual specification of non-conflicting operations.
In this chapter we propose a constructive alternative, called Contract-Based
Commutativity (cbc) that can be leveraged at run time to determine if opera-
tions are potentially commutative. Next to that we formalize (and implement),
Local-Coordination Avoidance (loca), which uses cbc to increase parallelism
in high-contention scenarios, while maintaining serializability isolation guar-
antees. In order to validate the correctness of the algorithm, the notion of
Return-Value Serializability (rv-ser), based on the same contracts as cbc, is
defined and formally specified in tla+. The loca algorithm is validated using
model checking to maintain rv-ser.

Our approach focuses on (distributed) state machines with clearly defined
operations, but can be generalized to other settings. Communication is done via
transactions of synchronized operations, in which multiple objects do atomic
synchronized transitions. For instance, a withdraw on a bank account needs
to happen atomically with a deposit on another account state machine. The
contract is that each operation has a return value and effect given an object
state.

For example, take a simple bank account, with a balance b, and
higher level operations Deposit and Withdraw. The contract is denoted as:
operation(arguments)/effect↑ return value. To prevent overdraft, Withdraws

102

5.1 Introduction

Table 5.1 All contributions, concepts and abbreviations introduced and referenced in
this chapter.

Abbr. Description Contribution or
related work

Sect.

cbc Contract-Based Commutativity (cbc), a constructive
definition to determine which operations can safely
run concurrently at run time without violation of seri-
alizability. A sufficient condition for sdc and rvc.

Contribution 5.3

cbc* Optimized variant of cbc, used in the loca implemen-
tation.

Contribution 5.3

scbc Static cbc, an encoding in smt that allows comput-
ing static cbc for state-machine models, including an
comparison between SIE and scbc.

Contribution 5.5.1

rv-ser Return-Value Serializability (rv-ser), a serializability
definition and formalization for high-level operations
in tla+ which defines if a schedule is compatible with
observed return values when swapping operations,
using the same contract as cbc.

Contribution 5.4, 5.6, 5.7

loca Local Coordination Avoidance (loca), an algorithm,
formalization and implementation leveraging conflict
relations at run time to increase concurrency. Con-
tributed conflict relations cbc* and statically deter-
mined scbc maintain rv-ser.

Contribution and
Soethout
et al. [100, 103]

5.5, 5.6, 5.7

2pl/2pc Two-Phase Locking/Two-Phase Commit, respectively
providing Isolation and Atomicity. Used as building
blocks for loca and to show rv-ser is sufficient to find
serializability violations in a bugged formalization.

Gray and
Lamport [41],
tla+ model [101]

5.5, 5.6, 5.7

IE Independent Events, a definition of independent oper-
ation pairs, guaranteeing local internal state machine
consistency, but not global serializability.

Soethout et
al. [100, 103]

5.5

SIE Subset of IE, statically determined for all possible ob-
ject states using an smt solver.

Soethout et
al. [100]

5.5

ci Client-Centric Isolation model, on which rv-ser is
inspired, based on low-level reads and writes.

Crooks et al. [23],
tla+ model [101]

5.4, 5.7

sdc State-Dependent Commutativity, a definition based
on return values, describing when schedules with
swapped operations are serializable given a specific
state.

Weikum and
Vossen [115]

5.2, 5.3

rvc Return-Value Commutativity, a definition based on re-
turn values, describing when schedules with swapped
operations are serializable given an arbitrary sequence
of previous operations.

Weikum and
Vossen [115]

5.2, 5.3

103

Chapter 5 Contract-Based Return-Value Commutativity

check if enough balance is available and only then returns an updated state:
Withdraw(a)/ if(b ≥ a) b−a else b↑b ≥ a. Deposits always return success (ok):
Deposit(a)/b+ a↑ok. The simplest way to guarantee isolation is to only have
a single operation active at any moment in time, but this also means that
operations have to wait on each other. loca with cbc allows multiple opera-
tions active at the same moment in time, but only when local object invariants
and global serializability invariants are maintained, e.g. multiple Withdraw
operations can only run in parallel if there is enough balance available for all.
cbc checks if committing or aborting the operation does not change the return
values (success of the withdraw) of the others.

Earlier variants of loca based on Independent Events [100, 103] instead of
cbc, can exhibit non-serializable behavior where operations are applied in dif-
ferent order on different objects, even though the behavior is locally consistent
and does not violate the object consistency/lifecycle definitions. This chapter
improves on this by guaranteeing serializable behavior with cbc. Since loca
parallelizes operations when they are non-conflicting, performance improve-
ments in high-contention scenarios are similar to Independent Events [100,
103] for cbc operations. The formalization of loca and rv-ser in tla+ also
enables validating of run-time schedules of implementations.

This chapter’s contributions are detailed in table 5.1 including section refer-
ences and the most important abbreviations used. Section 5.2 gives background
on the grounding of rv-ser and cbc. Sections 5.3 to 5.6 describe the main
contributions. Section 5.7 evaluates the formalizations with model checking
approach in tla+ to show that interleaved processes using loca indeed main-
tain rv-ser. Discussion of the work including threats to validity are found
in section 5.8. Lastly we discuss related work (section 5.9), and conclude
in section 5.10. All source code and reproducibility scripts are available on
Zenodo [98].

5.2 Background: State-Dependent Commutativity (sdc) and
Return-Value Commutativity (rvc)

Aguilera and Terry [2] identify two kinds of consistency: state consistency
and operation consistency. State consistency covers when an application is in
a correct state using invariants on states. This definition is very application
specific, because it is defined on application dependent states and corresponds

104

5.2 Background: State-Dependent Commutativity andReturn-Value Commutativity

to the consistency in acid. Operation consistency concerns operations that may
return values and relates to isolation in acid. This is often depicted as abstract
operations such as reads, writes on data items. Note that operation consistency
allows an application’s state to be inconsistent as long as it is not visible/incon-
sistent for clients querying/doing operations: external operation consistency is
maintained. State consistency is defined by invariants on operations and the
local object state.

Weikum and Vossen look at higher-level operations and describe State-
Dependent Commutativity and Return-Value Commutativity [115] as a way
that enables multi-level serializability. Informally, non-conflicting, commutative
operations can be swapped in a schedule while maintaining serializability.
Swapping commutative operations is a proof that the schedule is equivalent
to a serial schedule and thus also valid under serializable isolation. The main
insight is that operations are commutative on a higher semantic level, and if
their direct lower level children such as reads and writes on data are atomic
(no crossing tree arcs), they can be swapped without loss of serializability.

Non-conflicting operations are either on different objects (A.Deposit(x) and
B.Withdraw(x)); or commutative (A.Deposit(x) and A.Deposit(y)).
A schedule with operations, A.Withdraw(x) and A.Deposit(x) of transac-

tion t i on object A are abbreviated respectively as +x t i
A and −x t i

A . Schedule
−10t1

B −20t2
B +20t2

A +10t1
A is not serializable under Adya’s [1] and Crooks’[23]

reads/writes level models, since there is a cycle in the dependency graph
between transactions: t1↔ t2. However at a higher operation level it is equiva-
lent to serializable orders: −10t1

B +10t1
A −20t2

B +20t2
A and −20t2

B +20t2
A −10t1

B +10t1
A

, because it results in the same end state.

sdc State-Dependent Commutativity describes if two operations p and q
are commutative in a concrete object state σ. p and q are sdc if schedule
pqω→ qpω, where the return values of p, q and all possible later operations
ω should stay the same when p and q are swapped given state σ.

rvc Return-Value Commutativity abstracts from a concrete run-time state
and looks at all possible sequences of previous operations α, instead of only
to a state σ: αpqω→ αqpω, where also the return values should be the same
when p and q are swapped.

Return Values Both definitions depend on the notion of return values. An
operation (e.g. +20A↑ok) is invoked on an entity (A), has a name or type

105

Chapter 5 Contract-Based Return-Value Commutativity

(Deposit/+), input parameters (20) and return values (ok). All operation have
an either explicit (+50A↑nok) or implicit (GetBalanceA↑100) success (ok) or
failure (nok) return value. These return values should not differ when p and q
are swapped.

5.3 Contract-Based Commutativity: actionable sdc and rvc

sdc and rvc describe formally when sequences of operations are serializable. In
order to use this knowledge in practice we require a constructive form that can
be used at run time to determine when swapping and concurrent operations
are safe.

Contract-Based Commutativity (cbc) is geared towards local run-time com-
putability in an object, without communication with other objects. Given
in-progress operations, it determines if a new incoming operation can run con-
currently without violating consistency and isolation guarantees. cbc defines
constructive requirements, which are sufficient for sdc and rvc.

To exploit these higher level semantics cbc depends on detecting conflicting
operations. Operations on different objects are always non-conflicting and op-
erations that expose the same return values when swapped are non-conflicting
depending on the operations and the object state. In order to detect the latter,
cbc requires a contract on the operations of the object, consisting of two de-
terministic side-effect free functions. The effect determines the next internal
object’s state and the return value determine which values are exposed to the
outside.

First we look at computing dynamically cbc at run time. An object locally
determines which operations are safe to run in parallel. Next (section 5.5.1) we
look at which of these operations are always safely parallelized independently
of the run-time state. This reduces run-time computation overhead for specific
use cases. The parallel here is with respectively sdc and rvc. Dynamic cbc
is valid in a specific run-time state σ from sdc, where static cbc holds in all
possible run-time states, corresponding with all possible previous sequences of
operations α from rvc.

106

5.3 Contract-Based Commutativity: actionable sdc and rvc

Table 5.2 cbc for different return values ok / nok. Properties in braces are always
true/tautologies. ≡ is state equivalence.

cbc(s, p, q) q↑ok q↑nok

p↑ok q↑ok in s ∧
q↑ok in sp ∧
(p↑ok in s) ∧
p↑ok in sq ∧
spq ≡ sqp

q↑nok in s ∧
q↑nok in sp ∧
(p↑ok in s) ∧
(p↑ok in sq) ∧
spq ≡ sqp

p↑nok (in s) q↑ok in s ∧
(q↑ok in sp) ∧
(p↑nok in s) ∧
p↑nok in sq ∧
spq ≡ sqp

q↑nok in s ∧
(q↑nok in sp) ∧
(p↑nok in s) ∧
(p↑nok in sq) ∧
(spq ≡ sqp)

5.3.1 Computing cbc at Run Time

Consider a run-time object which receives an operation (return value yet to be
calculated). Its current internal state s is known. Now, since the operation is
part of a larger set of operations on multiple objects (transaction), it can abort
due to another object. So, before the operation is definitely committed, it is
not final and its effects can not yet be applied. The object can thus have one or
more of these tentative operations queued. When another operated arrives, it
decides wether it can already determine the return values, or wait until more
tentative operations finish.

In order to define cbc(s, p, q), for a run-time state s and operations p and q
we look at a simple abstraction, based on operations that can only return ok
and nok. Table 5.2 contains the different case distinctions possible, p and q
either return ok or nok. This directly corresponds with sdc’s pqω→ qpω. The
matching return values inω are over-approximated by equating the post state in
both orders (spq ≡ spq), since any difference in return values in later operations
can only come from difference in internal state. The first row corresponds
with cbc(s, p↑ok, q), where q has two possible return values (per column).
Operation p with return value ok is already in progress, meaning it is waiting
on the transactions to signal to commit and apply p. cbc holds if q returns
the same values in state s and sp. sp denotes state s with p’s effects applied.

107

Chapter 5 Contract-Based Return-Value Commutativity

p tautologically returns ok in s for this row, because p is already in-progress
given state s. For the q↑ok column it has to be checked if p still returns ok
when q is first applied. For q↑nok this is always the case, because effects of
nok operations are always empty, meaning that s ≡ sq. When leaving in the
tautological properties a pattern can be observed that generalizes to arbitrary
return values:

cbc(s, p, q) = q↑rvq in s ∧
q↑rvq in sp ∧
p↑rvp in s ∧
p↑rvp in sq ∧
spq ≡ spq

where q’s return value rvq is the same in s and after p in sp, and p’s return
value rvp is the same in s and after q in sq.

Above definition leads to a constructive, computable definition under the
assumption that return values can be calculated deterministically without side
effects from a state and an operation using retVal(s, o) : State× Operation→
ReturnValue. cbc is defined as follows:

cbc(s, p, q) = retVal(s, p)≡ retVal(sq, p)∧
retVal(sp, q)≡ retVal(s, q)∧

spq ≡ sqp

spq ≡ sqp might lead to false negatives (operations not being marked as cbc),
but never to false positives (operations erroneously being marked as cbc).

If spq ≡ sqp would be omitted, the definition would be wrong. For example,
when tracking a history of past deposits and withdrawals in a bank accoun t and
a later query operation (part ofω) returns this sequence, Deposit andWithdraw
should no longer be cbc. Because the history is not represented in the return
values of p and q but can be visible in later operations. Such a model with a
history sequence is thus inherently non-parallelizable, but another model, for
example tracking a set instead of sequence is. cbc can be used to detect this,
as is shown in section 5.7.

Example Consider the following example with cbc, based on money transfers
between two bank accounts without overdraft (balance≥€ 0). There are three
transactions T1 : B

€10
−→ A, T2 : B

€20
−→ A, T3 : A

€30
−→ B , transferring money between

108

5.3 Contract-Based Commutativity: actionable sdc and rvc

the accounts A to B with a respective starting balance of € 0 and € 100. Where
each transfer consists of a withdrawal (−10B) and deposit (+10A) operation on
the relevant account. AWithdraw returns nok if not enough balance is available,
otherwise ok. Deposit always returns ok.

A possible run-time trace is: +10A+30B+20A−20B−30A−10B, where all oper-
ations have ok return values. Operations are ordered differently on the different
accounts, because of arrival order.: A : 〈T1, T2, T3〉 and B : 〈T3, T2, T1〉

Applying cbc shows if this schedule is compatible with a serializable sched-
ule. A schedule is serializable when all operations of all transactions do not
interleave with other transaction’s operations. In order to find out if the cur-
rent schedule is compatible or equivalent with a serial schedule, we consider
swappable operations with respect to cbc. Operations on different objects (or
in this case accounts) are always commutative and can be swapped, so it is
sufficient to see if both accounts’ operations can be swapped to arrive at the
same transaction order.

For B to arrive at 〈T1, T2, T3〉 two cbc-swaps are required:

+30B−20B−10B
cbc(B+30,−20,−10)

=⇒ +30B−10B−20B
cbc(B,+30,−10)
=⇒ −10B−20B+30B,

where B+30 represents the state of B with effects of shown operation applied.
So, if cbc(€ 130,−20,−10) and cbc(€ 100,+30,−10) hold, these schedules
are compatible and the original schedule is serializable.

cbc(€ 130,−20,−10) = ok≡ ok∧ok≡ ok∧€ 100≡€ 100

cbc(€ 100,+30,−10) = ok≡ ok∧ok≡ ok∧€ 120≡€ 120

Both hold, so the swap is valid, and thus the original schedule is cbc-
equivalent to a serial order and thus serializable. Note that both cbc-checks
above are also checked by computing cbc(B, [+30,−20],+10) in an implemen-
tation, as covered in the next section.

A non-equivalent schedule with the same order of operations, but with
account B also starting with a state of € 0, results in not allowing the same
swaps and therefore not being serializable, since cbc(€ 0,+30,−10) does not
hold:

cbc(€ 30,−20,−10) = ok≡ ok∧ok≡ ok∧€ 0≡€ 0

cbc(€ 0,+30,−10) = ok≡ ok∧ok≡ nok∧€ 20≡€ 30

This property can be calculated at run time, because all arguments are
available locally. When more operations are in progress, the new incoming

109

Chapter 5 Contract-Based Return-Value Commutativity

operation should be cbc with all of them, meaning it can be swapped to become
the earliest operation in progress. When an incoming operation is not cbc it
need to be delayed until offending in-progress operations commit or abort.

5.3.2 cbc for Multiple In-progress Operations

The approach sketched so far only considers a pair of two operations. This
section describes the induction step from cbc(s, o1, oi) to cbc(s, [o1, .., on], oi),
where o1, .., on represent multiple in-progress operations.

For example, first no operations are in progress on an object. A first oper-
ation o1, part of a transaction t1 can start processing. Due to other (slower)
participants, it is not known if the o1 actually commits and if o1’s effects should
be applied. In a locking implementation, another arriving operation o2 has to
wait unit t1 commits or aborts. However, if cbc(s, o1, o2) holds, o1 and o2 can
effectively be swapped, without changing the return values of both. Schedules
o1o2 and o2o1 are compatible, because cbc(s, o1, o2) holds. Therefore o2 can
also be started. Now there are two operations in progress.

When another operation o3 arrives, it effectively must be swappable with
both in-progress operations in order to stay serializable, because all swapping
orders need to be compatible.

cbc with multiple in-progress operations, represented as a list of operations
in the second argument, is reducible to cbc with a single in-progress operation:

cbc(s, [o], oi) = cbc(s, o, oi)

cbc(s, [o1, .., on−1, on], oi) = cbc(s, [o1, .., on−1], oi)∧ (A)
cbc(s1..n−1, on, oi)∧ (B)
cbc(s, [o1, .., on−1], on) (C)

cbc holds when: (A) oi is cbc without the last operation in progress; (B) oi is
cbc with the last in-progress operations in the state with all earlier operations
applied (s1..n−1); and (C) also the last in-progress operation on is cbc with all
previous in-progress operations.

An implementation can skip calculating part C, because arriving at an in-
coming operation oi at cbc(s, [o1, .., on], oi), means that cbc(s, [o1, .., on−1], on)
is already determined at an earlier stage, when on was the incoming operation.
This means that an implementation can compute cbc as follows:

cbc*(s, O, oi) = ∀on ∈ O.cbc(s1..n−1, on, oi) (5.1)

110

5.4 Return-Value Serializability

where O is de sequence of in-progress operations. This optimized version of
cbc, dubbed cbc*, is used in the loca implementation in section 5.5 to achieve
serializable isolation with increased concurrency.

5.4 Return-Value Serializability

Definitions of isolation guarantees, such as Adya [1], use read and write
operations to determine violations. In order to also define these guarantees
on higher level operations and fairly evaluate algorithms leveraging cbc, this
section introduces Return-Value Serializability (rv-ser). rv-ser defines which
schedules are serializable w.r.t. commutative operations and is formalized in
tla+, which enables model checking of schedules of operations and algorithms
which capture such schedules. The definitions follow a structure similar to a
client-centric isolation model from Crooks et al. [23], referred to as Crooks’
Isolation (ci), and the formalization in tla+ builds on earlier work [101].

Crooks’ Isolation This client-centric model of database isolation defines which
sets of observed transactions, consisting of read and write operations with
their values, are valid under different isolation levels. For each level, such as
serializability, a commit test defines if the set complies. Only a single possible
ordering of transactions, adhering to the commit test has to exist. This means
that the observed transaction could have occurred under that isolation level.

∃e ∈ E.∀t ∈ T : CTI(t, e)

defines for an isolation level I , and its commit test CTI , where E is the set of
all possible orderings of transactions (executions) and T is the set of observed
transactions. Executions E consist of transactions as a whole, constructed by
applying the writes of the transaction to the previous state. Commit tests check
if reading from earlier state is valid. In this chapter we focus on serializability,
but the approach can be extended to different levels. The commit test for
serializability under ci specifies that all reads should be able to read the
observed value from the direct parent state.

rv-ser The main insight for rv-ser is to not look at reads and writes, or try to
map higher operations to lower level reads/writes, but to consider operations
at a higher level as a whole. This is based on multi-level serializability by

111

Chapter 5 Contract-Based Return-Value Commutativity

Weikum and Vossen [115], which states that if operations are not interleaving
on a lower-level, they can be swapped on the higher level if non-conflicting,
while maintaining serializability. Similar to the client-centric approach, rv-ser
considers observed values from the operations, in this case the values returned
by the operations. For low levels this corresponds to the read or written values,
but for higher level operations, this is different, e.g. aWithdraw or Depositmight
just return ok or nok to signal operation success of failure and a GetBalance
operation returns a single balance value.

As commit test for serializability, rv-ser defines that newly computed return
values for all operations should be the same as the observed return values:

∀o↑o′ ∈ T.retVal(sp, o)≡ o′ (5.2)

where o′ represents the observed return value, which should be equivalent to
the return values in o’s parent state in the execution sp.

The main differences with Crooks’ Isolation are:
Operations consist of observed return values, a retVal function to calculate
return values given arbitrary state and an effect function to calculate next
state eff(s, o). This is the same contact as for cbc.
Commit test checks return values, instead of read/write values

Examples Consider the same execution schedule as before, now including re-
turn values: +10A↑ok;+30B↑ok;+20A↑ok;−20B↑ok;−30A↑ok;−10B↑ok consist-
ing of three transactions: T1 = 〈+10A↑ok,−10B↑ok〉, T2 = 〈+20A↑ok,−20B↑ok〉
and T3 = 〈−30A↑ok,+30B↑ok〉.

Belowwe see the execution of 〈T1, T2, T3〉. An execution consists of data(base)
states with keys and values, each next state is determined by applying the
operations of the relevant transactions.

s0
�

A 7→ 0
B 7→100

�

T1−→

s1
�

A 7→10
B 7→90

�

T2−→

s12
�

A 7→30
B 7→70

�

T3−→

s123
�

A 7→ 0
B 7→100

�

For all transactions, as per the commit test above (equation (5.2)) all
operations have the same return values given the parent state in this exe-
cution as the observed return value, e.g. for T2: retVal(s1,+20A) = ok and
retVal(s1,−20B) = ok. This means that this execution is serializable, and there-
fore the original schedule is compatible and also serializable.

112

5.5 Local Coordination Avoidance (loca)

The other example with the same schedule, except B’s starting balance is
also 0, results in a different execution. Note that Withdraw operations do not
update the balance when not enough balance is available.

s0
�

A 7→0
B 7→0

�

T1−→

s1
�

A 7→10
B 7→ 0

�

T2−→

s12
�

A 7→30
B 7→ 0

�

T3−→

s123
�

A 7→ 0
B 7→30

�

Now the commit test for T2 fails: retVal(s1,+20A) = ok and retVal(s1,−20B) =
nok, which are different from the observed return values in the schedule. Other
executions with different transaction orderings also fail the commit test. This
means that this schedule is not rv-ser.

rv-ser in tla+ rv-ser is formalized in tla+ and confirms these examples.
tla+ [69] is a formal specification language for action-based modeling of
programs, algorithms and (distributed) systems [18, 41, 45, 75, 79]. tla+

models states and transitions and its accompanying model checker tlc checks
properties on each state, providing counterexamples with error traces. This
formalization enables checking sets of observed transactions, and validating
if algorithms (tracking observed transactions) implement rv-ser. The source
code and instructions on how to run are found on Zenodo [98]. In section 5.7
we see that rv-ser finds serializability bugs in a known serializable algorithm
(Two-Phase Locking) when bug-seeded and validates loca which leverages
cbc to be serializable.

5.5 Local Coordination Avoidance (loca)

The loca algorithm leverages cbc* in a local object at run time, in order to
increase concurrency and with that improve throughput and latency, while
maintaining (return-value) serializability. It supports statically computed cbc
pairs or computes cbc at run time based on current state, and effects and return
values of operations using equation (5.1). loca is also implemented [100, 103]
using the Akka actor framework, using 2pc for atomicity. loca is compatible
with different consensus or atomic commit algorithms, such as Raft [82] and
Paxos [68].

loca in a nutshell loca is an algorithm that can be locally run in a (distributed)
object that receives commands to execute. It requires a conflict relation, such

113

Chapter 5 Contract-Based Return-Value Commutativity

Table 5.3 Static commutative (scbc) of bank account operations. Static independency
(SIE) values shown abbreviated in braces. E1 in rows, E2 in columns. Accept
(A) and Reject (R) for SIE correspond to Go for scbc since scbc does not
distinguish between direct accepts and rejects, because failing preconditions
do not necessarily abort the transaction. Delay corresponds with No.

scbc(E1, E2) Open Deposit Withdraw Interest

Open No No Go (R) No
Deposit No (R) Go No No (A)
Withdraw Go (R) No (A) No No (A)
Interest No (R) No (A) No Go

as cbc, to determines when it is safe to run multiple operations concurrently.
If objects need to synchronize with other objects loca uses the two-phase
commit (2pc) protocol in order to assure atomicity: either all objects do the
operation, or none. Two-phase locking (2pl) is used to ensure isolation, but
different conflict relations result in different isolation guarantees. loca with
cbc as conflict relation is (return-value) serializable.

When a loca object receives an operation, it starts a 2pc resource manager
to handle communication with other objects. If other operations are already
in progress, it first checks if the incoming operation is compatible (using the
conflict relation) with already in-progress operations. If non-compatible the
operation is delayed until compatibility is detected or all in-progress operations
finish.

5.5.1 loca with Independent Events

In earlier work loca was used with (Statically) Independent Events ((S)IE) [100,
103]. In this chapter we maintain the global algorithm (and implementation)
and swap in cbc in order to achieve serializability.

Static cbc at compile time using smt A subset of cbc, dubbed static cbc (scbc),
is independent of the current run-time state, e.g. deposits are always allowed,
independent of the actual amount or balance. Determining scbc offline results
in less computational overhead at run time. Table 5.3 shows static scbc and how
values differ with SIE for a simple bank account example. Both are generated by
leveraging an smt-solver (z3 [76]) in which the resource’s preconditions, effects

114

5.6 Model Checking loca and rv-ser

and states are modeled (or generated from another specification), similarly to
SIE’s analysis [100].

scbc is a subset of cbc: scbc(p, q) = ∀s.cbc(s, p, q), denoting which opera-
tions are always cbc independently of a specific run-time state, corresponding
to rvc. The smt-solver finds these pairs of non-conflicting operations by search-
ing for counterexamples where operations do conflict.

SIE is more lenient because it assumes that in-progress operations are valid
on the resource (return ok). In order to maintain rv-ser, scbc is more strict
and also requires operations to be swapped without exposing different return
values next to the ok or nok of an operation. Also note that scbc does not
have any Reject since it considers nok to be just another return value.

Since this analysis is offline, loca can use the results to reduce computational
overhead at run time.

5.6 Model Checking loca and rv-ser

In this section we look at two algorithms for synchronization and atomic
commitment, their formalization in tla+ and their conformance to rv-ser.
We also seed bugs and wrong input models to validate that the model checker
finds mistakes with counterexamples in section 5.7. This shows that loca is
indeed rv-ser.

rv-ser is formalized similarly to ci [101] in tla+. The formalization of
2pl/2pc and cbc are structured similarly to the formalization of 2pl/2pc and
Crooks’ Isolation [23] in related work [101]. Full tla+ source code is available
online [98].

rv-ser Transactions are encoded as sequences of operations, which consist
of operation types, parameters and observed return values. tla+ module ex-
tensions enable modularization by extending different models, representing
different objects with their own operations, internal state and effect functions.
The rv-ser and cbc definitions only require RetVal(s,o) and Eff(s,o) functions to
be present. rv-ser itself is a direct specification of commit test in equation (5.2).
rv-ser is checked with the property: RVSerializability(InitialState, transactions).
This enables a) “unit testing” by model checking hard coded values and b)
model checking of conformance for algorithms represented in tla+ or PlusCal.

115

Chapter 5 Contract-Based Return-Value Commutativity

2pl/2pc The formalization of 2pl/2pc specifies two processes: the transaction
manager and the resource manager. The transactions manager asks multiple re-
sources to vote on an operation of the transaction. If all accept, the transaction
manager tells the resources to commit the operation. If one of the resources
voted abort, the manager aborts all operations in the transactions. This guar-
antees atomic commit: either all resources commit the transaction, or none.
The assumptions are, without loss of generality, that messages between these
resources are a monotonically growing shared set, meaning that they are never
lost, but can be received out of order.

When a resourcemanager commits an operation, the operationwith observed
return value is tracked. The model checker tlc checks if the operations are
valid under rv-ser for each execution state. It turns out this is indeed the case
for models up to at least 3 transactions and resources.

loca The formalization of loca follows the same format as the 2pl/2pc for-
malization, except the resource manager can have multiple transactions in
progress at the same moment in time, hence the improved concurrency. Af-
ter handling messages, the resource processes the queued (committed) and
delayed operations when applicable. Committed operations are tracked for
rv-ser property validation by the model checker. loca only allows operations
in parallel that pass the constructive cbc from property equation (5.1).

loca’s pseudo-specification is found in listing 5.1 and follows the message
contract of a 2pc resource manager. The main difference with 2pl/2pc is the
simultaneous receiving of all message types of 2pl/2pc representing being
in multiple transactions at the same time when operations are cbc*. Vari-
able operations tracks the observed operations per transaction, which are in
turn checked to be rv-ser. The either/or construct denotes that any of these
branches can occur when running the algorithm, which is important for defin-
ing the whole state space. The algorithm also branches at pick s.t., which picks
a value such that the right hand side is true. Global variables are defined on top,
where {} and [] respectively represent (empty) sets and sequences. Appending
(+=) to sequences is at the end. Removing (-=) removes all instances of the
element from the set or sequence.

loca’s formalization is generic in the sense that it requires only two functions
(Eff and RetVal) and InitialState available that capture domain knowledge. CBC*

uses these functions and follows equation (5.1). Multiple conflict relations can
be configured, including IE, SIE, cbc and scbc.

116

5.6 Model Checking loca and rv-ser

Listing 5.1 loca formalization
1 queued = {}; inProgress = []; delayed = [];
2 state = InitialState; operations = {}
3
4 while true:
5 # receive any of the 2PC messages
6 on receive of VoteRequest:
7 either # Either vote yes
8 o = pick s.t. CBC*(state, inProgress, o)
9 inProgress += o
10 reply VoteCommit(o)
11 or # vote no/abort
12 reply VoteAbort(o)
13 or # or delay until dependent operations finish
14 o = pick s.t. ¬CBC*(state, inProgress, o)
15 delayed += o
16 on receive of GlobalCommit(o):
17 queued += o # queue for commit
18 on receive of GlobalAbort(o):
19 inProgress -= o
20 delayed -= o
21
22 # Apply all applicable queued (ready for commit/apply) operations
23 while Head(inProgress) ∈ queued:
24 inP = Head(inProgress)
25 # track per transaction for RV-SER-check, including observed return value
26 operations[inP.tId] += <inP, RetVal(inP, state)>;
27 state = Eff(inP, state); # Apply Eff to state
28 inProgress -= inP
29 queued -= inP
30 # if next delayed is CBC, then start voting
31 while CBC*(state, inProgress, Head(delayed)):
32 o = Head(delayed)
33 either
34 reply VoteCommit(o)
35 inProgress += o
36 or
37 reply VoteAbort(o)
38 delayed -= o

117

Chapter 5 Contract-Based Return-Value Commutativity

5.7 Initial Validation

Bug seeding In order to validate our definition of both cbc and rv-ser we
introduce some bugs so that the model checker finds them in:

the formalization of 2pl/2pc, where a resource could commit a different
transaction than already voted for. The rv-ser property found an error trace,
showing that it is capable of detecting non-serializability in algorithms.
the formalization of loca with cbc rules for a bank account, and a bug
where delayed (non-cbc) operations where not correctly aborted the model
checker found an error trace where the resource processes terminate with
still in-progress operations.
the formalization of loca, when not checking for cbc-enabled operations,
and thus allowing all operations to occur and vote instead of delay. rv-ser
is violated and a counterexample is found, with a non-serializable schedule.
the formalization of loca with static SIE, where it finds non-rv-ser traces
for non-commutative operation pairs. This shows that SIE is not serializable
and rv-ser detects this correctly.
the formalization of cbc with spq ≡ sqp left out and the account specification
changed to track a list of previous transfers on Withdraw and Deposit. The
checker finds a problematic example where the order of transfers is different
on different accounts.

2pl/2pc is rv-ser To confirm the formalization of rv-ser we introduce a bug in
the 2pl/2pc formalization, for which the model checker should find a problem-
atic case. The formalization is serializable for read/write level operations [101],
so if the same bug is also found by rv-ser, it gives us more confidence of its
correctness.

The bug in the formalization allows resources to abort after voting for a
different transaction. The counterexample exploits this by aborting an earlier
accepted transaction, therefore violating atomicity. Eventually this leads to
different resources committing to transactions in different orders. The rv-ser
model check finds operations which expose values which are not observable
under serializability.

loca with cbc* is rv-ser The formalization of loca is model checked with a
bank account instance for the RetVal and Eff functions. For small numbers of
objects and transactions, it does not violate rv-ser, as designed.

118

5.8 Discussion

When a bug is introduced where delayed operations are not correctly aborted,
the model checker finds a counterexample where not all in-progress events
are handled.

loca without cbc* is not rv-ser When introducing a bug similar to the loca
formalization, where resources can commit transactions not yet voted for, rv-
ser finds a counterexample where a balance is returned by GetBalance that
would not be visible in a serializable schedule. This strengthens our claim
that rv-ser defines serializability and that cbc* is sufficient for achieving
serializability.

loca with SIE is not rv-ser In order to validate both cbc* and rv-ser, loca is
configured to use a conflict relation as defined by SIE (see table 5.3). The model
checker finds an error set of transactions, containing a pair of Withdraw and
Deposit operations. That are SIE, but not cbc*, since the effect of an in-progress
Withdraw never influences the acceptance of a Deposit. However, in order to
be cbc it should also be possible to swap the operations without changing the
return value. In this case a Deposit coming earlier can switch a Withdraw↑nok
to Withdraw↑ok, when availability of enough balance is dependent on the
Deposit. The rv-ser property is sufficient to find such is problem. This gives
us confidence that cbc* indeed leads to rv-ser behavior and also that rv-ser
is a sufficient for cbc, and thus serializability.

cbc requires spq ≡ sqp The previous examples do not show the need for spq ≡
sqp in cbc, since there are no later operations that read non-directly changed
state. If the account operations also store the history of transfers in internal
state and directly exposes this in the return value, this becomes problematic,
because a future query operation can now expose this in a non-serializable
fashion. In this case the history becomes ordered differently for different objects,
which is not serializable. The found counterexample shows this.

5.8 Discussion

cbc, rv-ser and models cbc and rv-ser support use of higher-level operations
or complete models, with as much tool support as possible. rv-ser enables
automatic checking using model checkers of specific scenarios and models.

119

Chapter 5 Contract-Based Return-Value Commutativity

A change in the modeling approach can have big impact in performance,
e.g. a Covid vaccination appointment could be a modeled as lots of separate
timeslot objects, for which concurrency needs to be managed individually.
Another modelling approach where timeslots are grouped per location and
time and a counter of the total available slots at that time. This is similar to
an AddRemove counter crdt[85, 93], which does not require coordination.
Tradeoffs in performance/modeling become explicit by analyses with (s)cbc.
Now this tradeoff a business decision backed by data, instead of a problem of
the implementers.

Contract cbc requires a quite strong contract on all operations with associated
deterministic, side-effect-free functions. Applications have to be modelled in
this sense to reap the benefits. In related work [100], a similar constraint is
valid in up to 61% of operations for realistic use cases. We expect cbc to hold
similarly.

IE and rv-ser Another conflict relation compatible with loca is IE [100, 103]
(IE(s, p↑ok, q) = retVal(sp, q)≡ retVal(s, q)). IE however, is not serializable, since
does not consider ω or the swapped states, allowing different orderings on
multiple objects, also for non-commuting operations.

rv-ser defines which instances of IE are non-serializable. However, a subset
of IE operations, coinciding with cbc is still serializable, i.e. the commutative
parts.

loca with cbc* computes more (just as IE) at run time than 2pl/2pc, so
this is really beneficial if waiting/blocking/locks become the bottleneck, and
spare cpu power is available. Due to graceful degradation to 2pl/2pc with no
in-progress and non-cbc operations, performance is always on par or better
than 2pl/2pc in practice [100, 103].

All discussed conflict relations are related: SIE ⊆ IE, cbc ⊆ IE, scbc ⊆ cbc,
scbc ⊆ SIE. IE is the “most concurrent”. Each static variant is stricter than its
dynamic counterpart.

Previous performance evaluations using (s)IE [100, 103] show that loca
increases throughput and reduces latency in high-contention scenarios. Since
scbc has similar Go results, as shown in table 5.3, performance improvement
of loca with (s)cbc will be on par with loca with (s)IE, since performance
evaluation would follow the same pattern.

loca with cbc gives serializable isolation guarantees, which is closer to what
modellers and business experts expect when working with modeling languages

120

5.8 Discussion

such as Rebel. Subtle non-serializable behavior of loca with IE can be a problem
for them. Also, one can model with serializability in mind, but swap out cbc for
IE when more performance is needed and extra studying the specific behavior.

SIE [100] has two variants (Accept/Reject) in order to reduce overhead
and increase parallelism at run time: either directly vote commit or abort
an incoming operation. Since an abort vote directly finishes the transaction
for that resource, it no longer has to consider this operation when handling
other incoming operations. For some more domain specific use cases, such as
Rebel [107, 108] for SIE, specialized static analyses based on some grouping of
return values can be useful, but it is not generalizable.

Similarly to Adya’s [1] and Crooks’ [23] formalizations, rv-ser does only
consider committed transactions. Transactions can abort by different functional
(failing preconditions) and non-functional (deadlock, time-out, etc) reasons.
One can argue that operations aborted for functional reasons, should still abort
when swapped, but this is out of scope for this chapter and could be encoded
in the return values of committed operations. 2pl/2pc and loca only emit
operations of committed transactions. Model checking with tla+ specification
of return-value serializability does indeed find that all possible executions
produced this way are serializable.

5.8.1 Threats to Validity

Limitations
This approach focuses on distributed objects that communicate via messages or
methods and, to guarantee serializable isolation, requires that these methods
are the only way to change and query the object state. This is a good fit for
generating an implementation from higher level domain models, but might
not be for low-level implementations, where extra care has to be taken to not
break the abstraction.

State space explosion The model checking in the validation is run only on
small model instances and on a single bank account example. The state space
explosion that comes with larger model instances (more objects and transac-
tions) make it unfeasible to model check due to time constraints. However,
in line with the small scope hypothesis [56], we assume that most isolation
violations can be found in small examples. Anomalies with larger error traces
or complex interleaving of multiple objects, transactions and mixed use cases

121

Chapter 5 Contract-Based Return-Value Commutativity

might not be found with the current approach. The definition of rv-ser can be
implemented separately to improve performance and thus increase feasibility.

5.9 Related Work

cbc is powered by contacts and models of objects. This fits well with Domain-
Driven Design [31] and Command-Query Responsibility Segregation. More
work [11, 17] is being done on reusing models to increase parallelism and
performance.

Coordination Avoidance, Confluence and calm Confluence[50] looks at observ-
able behavior. A program is considered confluent if it produces the same set of
outputs for all orderings of its input. Changes in the order of messages do not
influence the observable outcomes, such as the return values. Invariant conflu-
ence is a necessary and sufficient condition for coordination avoidance [10]: a
coordination-free execution. Non-invariant-confluent operations require coor-
dination for correctness. This is similar to what loca with cbc guarantees: a
subset of operations can be run concurrently without coordination. For non-cbc
operations, coordination or delay is required to maintain correctness.

The calm theorem [50] describes that monotonic programs only move for-
ward, and never back. They do not need to retract any output. loca with cbc
should never have to retract a value returned to a client and maintains them
when operations are swapped internally. loca, cbc* and scbc-tooling are a
constructive approach towards calm programs, including runtime performance
optimizations.

Conflict-free Replicated Data Types [85, 93] are data structures that allow
updates without coordinating. However, they are non-trivial to use, due to
limited operations. loca with cbc allows programmers and designers to write
models and code as they would normally and automatically enables high-
performance where cbc allows this.

Observable Atomic Consistency [118], related to RedBlue Consistency [72],
makes distinction between commutative and totally ordered operations. Com-
mutative operations can interleave on different replicas, but as soon as total
operation is requested the replicas synchronize and other (commutative) oper-
ations should wait. In a sense, loca with cbc achieves the same by allowing
commuting operations to swap and interleave. It differs in providing both

122

5.10 Conclusion

run-time and static approaches to automatically detect this. loca does not
focus on replicas at the moment, but could be extended to support this.

5.10 Conclusion

Data consistency and performance are a trade-off in many cases. Coordination
is required to keep data in sync. However, commutative operations can be done
without coordination, because the order of operations does not influence the
resulting state and observed return values.

This chapter focuses on return-value commutativity, which looks at the client-
perspective of higher level operations. Swapped operations should return the
same return values when operations are executed in different order. If this
is the case, non-serializable schedules of lower level read/write operations,
are serializable on a higher level, because swapped operations are identical
from client perspective to a serializable schedule. This insight enables using
invariants from higher level operations to allow more schedules and with that
improve throughput and latency.

We propose Return-Value Serializability (rv-ser), a definition of higher level
operations, which defines when a schedule is serializable with respect to the
observed return values. Next to that we define, Contract-Based Commutativity
(cbc), an implementable definition leading to rv-ser. The Local-Coordination
Avoidance (loca) algorithm uses an optimized constructive variant (cbc*)
of cbc to allow swapping of cbc operations at run time, which results in
improved parallelism where possible. This leads to reduction in high-contention
bottlenecks, which increases performance and reduces latency. rv-ser and
loca are formalized in tla+ and validated by seeding bugs, which are detected
by a model checking.

Static cbc (scbc) is the subset of statically determinable cbc operations,
e.g. depositing money can always done in parallel. An algorithm can use this
information to shortcut potentially expensive dynamic cbc computations at
run time. scbc is determined for a set of operations by using an smt solver.
We compare scbc for a bank account example to a non-serializable conflict
relation SIE. The tla+ formalization also detects non-serializability of SIE and
confirms serializability of static and dynamic cbc.

Commutativity-based rescheduling of higher-level operations is often dis-
cussed, but not often used in practice, because it requires (manual) defining
of the conflicting operations. Our approach enables automatically deriving

123

Chapter 5 Contract-Based Return-Value Commutativity

of conflicting operations at both run and compile time and we believe this is
a sweet-spot between over-specifying and error-prone manual specifying of
conflicting operations. It also lowers the bar for model driven approaches for
distributed objects, where modellers write intuitive model based on serializable
isolation semantics, and our tools can optimize for speed when it is safe.

124

6
Design and Architecture

Abstract All contributions in this thesis and evaluations thereof are backed by running
software.
The generated runtime rebel-runtime-lib was created for Rebel. The Path-Sensitive Atomic
Commit and the Local-Coordination Avoidance algorithms are part of this runtime. The
generated application is reactive, event sourced and actor based. It supports high-availability,
horizontal scalability, and enterprise-grade persistence.
Performance and scalability evaluations are done in a public cloud, using a fit-for-purpose,
but generalizable experiment runner.
The rebel-conflictors toolkit was created to automatically determine both Statically Inde-
pendent Events and Static Contract-Based Commutativity for Rebel specification using the
z3 smt solver.
And finally tla+ formalizations of Contract-Based Commutativity and Return-Value Serial-
izability were created to model check the isolation guarantees of the novel algorithms.

6.1 Introduction

This chapter introduces and explains the different software components that
are used in the research conducted in the rest of the thesis.

rebel-runtime-lib: A Rebel [105] runtime based on Akka [3] actors, imple-
menting the loca algorithm
ing-rebel-generators: Code generation module in Rascal for generating
rebel-runtime-lib code from Rebel specifications. The translation is straight-
forward because rebel-runtime-lib does the heavy lifting.
rebel-conflictors: Automated derivation of non-conflicting operations using
smt solver z3.

125

Chapter 6 Design and Architecture

– rebel-sie: Automated SIE derivation for Rebel specifications
– rebel-cbc: Automated cbc derivation for Rebel specifications
experiment-runner: Experiment runner for reproducible scalability experi-
ments on Amazon Web Services (aws)
isolation-specs: tla+ formalizations of ci, cbc and rv-ser

Figure 6.1 shows how the different software components interact. Exter-
nal Rebel specifications are input for ing-rebel-generators, which generates
rebel-runtime-lib implementations and a experiment-runner based on the speci-
fications. The experiment-runner runs performance benchmarks based on exter-
nal experiment configuration on the generated implementation and reports the
results. The same specifications are analysed by the rebel-conflictors using smt
solving to determine which operations are non-conflicting. The resulting SIE
and scbc operation pairs serve as input to the loca and psac algorithms imple-
mented in rebel-runtime-lib. Output execution traces of the rebel-runtime-lib
can be analysed with the tla+ formalization of rv-ser in isolation-specs to
analyse isolation properties.

Table 6.1 gives an indication of the size of the different components in lines
of code, their licenses and where to find the source code. ing-rebel-generators,
rebel-sie and rebel-cbc are implemented using the Rascal meta-programming
language [65].

6.2 Distributed Actors in rebel-runtime-lib

This section focuses on rebel-runtime-lib. This library package contains multiple
important parts: a runtime for rebel specifications based on actors, build in
a type-safe fashion in Scala. It also contains the psac (chapter 2) / loca
(chapters 3 and 5) implementation using the domain knowledge from the
Rebel specifications. loca supports multiple (and combinations of) conflict
relations IE (chapter 2), SIE (chapter 3), cbc (chapter 5) and scbc (chapter 5).
Part of the package is also the experiment runner and a consistency checker.

Architecture The implementation follows the the state machine models with
events similar to Rebel specifications. Each rebel specification is a state machine
class in Scala [81], which needs to specify the state machines lifecycle, the
events and their guards and effects. A generic base class – capturing the

126

6.2 Distributed Actors in rebel-runtime-lib

Listing 6.1 Simplified interface trait that describes the Rebel specification and contract.
1 trait RebelSpecification[S <: Specification] {
2 type Spec = S
3 type RState = S#State
4 type RData = S#RData
5 type RDomainEvent = S#RDomainEvent
6 type SpecEvent = S#Event
7
8 def initialState: RState
9 def allStates: Set[RState]
10 def finalStates: Set[RState]
11 def initialData: RData = Uninitialised
12
13 /** Given current state and command, determines reachable state. */
14 def nextState: PartialFunction[(RState, SpecEvent), RState]
15
16 /** Guards of the contract */
17 def checkPreConditions(data: RData, now: DateTime)
18 : PartialFunction[SpecEvent, RebelConditionCheck]
19 /** Local effects of the contract */
20 def applyPostConditions(data: RData, domainEvent: RDomainEvent): RData
21
22 /**@return a set of other objects/specification involved in operation. */
23 def syncOperations(now: DateTime, transactionId: TransactionId)
24 : PartialFunction[(SpecEvent, RData), Set[SyncOperation]]
25
26 /** A function that takes an in-progress event and an incoming event, and returns if the incoming

,→ event can safely be started without checking pre-conditions. Generated by rebel-
,→ conflictors.

27 *@return true if incoming event can be started without checks */
28 def alwaysCompatibleEvents: PartialFunction[(S#Event, S#Event), Boolean]
29
30 /** A function that takes an in-progress event and an incoming event, and returns if the incoming

,→ event can be directly declined without checking pre-conditions. Generated by rebel-
,→ conflictors.

31 *@return true if incoming event can be declined fast without checks */
32 def failFastEvents: PartialFunction[(S#Event, S#Event), Boolean]
33 }

127

Chapter 6 Design and Architecture

rebel-runtime-lib

ing-rebel-
generators

experiment-
runner

isolation-specs

Rebel
Specifications

rebel-conflictors

rebel-sie rebel-cbc

Experiment
Configuration

Is data input for

Interacts with

Generates

name Software
component

name External
input

Legend

name Grouped
components

Figure 6.1 Abstracted data flow graph of the software components presented in this
chapter. Dashed boxes mark grouped components, straight edged boxes
external parties and rounded boxes are software components.

contract – makes sure that runs as a persistent actor in the Akka cluster, and
responds to its defined operations. Rebel runtime actors have to implement this.
ing-rebel-generators automates this for Rebel specifications. Listing 6.1 shows a
simplified interface with definitions for guards, effects and static non-conflicting
operations (alwaysCompatibleEvents and failFastEvents). An implementation of
this interface for a bank account is found in appendix A.2. Note that the
interface is generically set up, so Rebel specifics can be factored out when
needed.

The deployment and implementation follows a reactive architecture [16, 26]
Instances of the state machine classes are run as actors on top of the Akka actor
toolkit [3]. Each actor instance is a running lightweight – non-os – process
which sends en receives messages.

Actors [53] are a useful abstraction in distributed systems, popularized by
the Erlang programming language [7]. Each actor runs somewhere on a cluster
of servers, and is reachable by a virtual address. This means that changes in
deployments of actors are transparent to their callers. The message passing
approach makes sure that delays and out of order delivery of messages (due to

128

6.2 Distributed Actors in rebel-runtime-lib

Table 6.1 Software Components with metadata: Programming Language, Source Lines
of Code (sloc) excluding comments, License, Github url/Zenodo doi.

Component sloc Programming
Language

License Zenodo

rebel-runtime-lib Scala cc by 4.0a [96] e

– core 2950 Scala
– tests 2629 Scala
– benchmarks 1827 Scala
– performance 785 Scala
ing-rebel-generatorsb 652 Rascal Proprietary n/a
rebel-sie 844 Rascal cc by 4.0a [96, 98] c

rebel-cbc 1336 Rascal cc by 4.0a [98] c

experiment-runner 1609 Scala cc by 4.0a [99] e

isolation-specs 1041 tla+ cc by 4.0a [97, 98] cd

a Creative Commons Attribution 4.0 International: https:
//creativecommons.org/licenses/by/4.0/

b Only code used directly for rebel-runtime-lib generation is counted.
c https://github.com/cwi-swat/cbc-artifacts
d https://github.com/cwi-swat/tla-ci
e https://github.com/cwi-swat/rebel-runtime-lib

the inherent underlying transport layer) are made explicit in the programming
model. Due to this distributed nature, actors can be deployed over a cluster
of servers – often called nodes. This enables scalability, by allowing them to
spread out over a cluster of nodes.

The actors are made resilient to failure by employing an event sourced archi-
tecture: Each state changing operation is persisted to a distributed database, in
order to allow seamless recovery of said actor on another node, without data
loss. Our implementation makes use of builtin modules of the Akka toolkit for
this.

This architecture is the foundation of a scalable, resilient, enterprise-grade
implementation [3, 17, 26, 83].

Synchronized Operations On the Rebel level, instances of state machines com-
municate by synchronized events. These events are only enabled when other

129

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/cwi-swat/cbc-artifacts
https://github.com/cwi-swat/tla-ci
https://github.com/cwi-swat/rebel-runtime-lib

Chapter 6 Design and Architecture

referenced state machines’ events are also enabled. All of these events should
happen in the same atomic step or none should happen. An example is the Book
operation of a MoneyTransfer state machine. Book synchronizes with Deposit
and Withdraw on respective the receiving and paying account.

At the implementation side this requires two ingredients: Concurrency con-
trol – to make sure multiple operations do not lead to invalid state – and
an atomic commitment algorithm – to make sure all involved objects do the
operation or none. Operations are the run-time equivalent of the events on the
specification side.

Concurrency control is handled by the Two-Phase Locking (2pl) protocol,
which guarantees serializable isolation. 2pl uses locking to make sure no
concurrent operations are done on an object. An object can only be locked
by one operation, so this ensures that an object is only accessed by a single
operation at the same moment, and no other operations access or change state
that would make the guards of the in-progress operation invalid.

For atomic commitment the implementation uses a well-known blocking
protocol, Two-Phase Commit (2pc). In 2pc all involved objects first vote to
commit and later commit and persist the updates. This makes sure that none
or all operations will do the operation.

The implementation combines these two protocols to implement acid [46]
transactions. 2pl to disallow multiple operations on an object and 2pc to make
sure all involved objects allow and do their respective operations. When an
object votes for the 2pc transaction, it locks itself via 2pl. Upon 2pc commit
or abort the 2pl lock is released. For durability (d in acid) all state changing
operations are persisted to data store to make sure the internal state can be
recovered in event of failure. See section 2.4.2 and appendix A.2 for more info
on this.

In the case that an operation synchronizes with more objects, nested tree-
based 2pc [115] is used. This adds the extra involved objects to the transaction
and they should also vote before the commit is issued. The implementation of
syncOperations (in listing 6.1) captures the involved objects.

loca as concurrency control Instead of 2pc as concurrency control, which only
allows a single operations to be active at the same time in an object, this
dissertation provides loca which enables multiple operations to be when they
are non-conflicting. Multiple variants of this are presented: Independent Events
(chapters 2 and 3) and Contract-Based Commutativity (chapter 5). Listings 2.1
and 5.1 presents loca’s pseudocode and a formalization.

130

6.2 Distributed Actors in rebel-runtime-lib

Filter
A Day At The Rebel Lib

/system/testActor96

/system/testActor96

/user/TestAccount

/user/TestAccount

TellState(None)

CurrentState(New,Uninitialised)

RebelCommand(RDE(OpenAccount(NL1,1E+2 EUR),20200127T160432.549+0100,topen))

CommandDecider RDE(OpenAccount(NL1,1E+2 EUR),

20200127T160432.549+0100,topen) DynamicAccept

releasing topen from Vector(); Unstashing all

EntityCommandSuccess(RDE(OpenAccount(NL1,1E+2 EUR),20200127T160432.549+0100,topen))

TellState(Some(topen))

CurrentState(Opened,Initialised(AccountData(Some(1E+2 EUR))))

RebelCommand(RDE(Deposit(1E+2 EUR),20200127T160432.549+0100,tdeposit))

CommandDecider RDE(Deposit(1E+2 EUR),

20200127T160432.549+0100,tdeposit) DynamicAccept

releasing tdeposit from Vector(); Unstashing all

EntityCommandSuccess(RDE(Deposit(1E+2 EUR),20200127T160432.549+0100,tdeposit))

TellState(Some(tdeposit))

CurrentState(Opened,Initialised(AccountData(Some(2E+2 EUR))))

Rebel Debug Sequence Diagram
 http://127.0.0.1:8081/account-open.html

1 of 1
 23/12/2021, 10:28

Figure 6.2 Message Flow Visualizer showing a sequence diagram of a simple unit test
of rebel-runtime-lib.

loca checks the incoming operation against each of the in-progress opera-
tions. Then it starts a 2pc transaction participant for each operation that the
non-conflict relation. Multiple different non-conflict operations can also be
chained. This way first the cheaper static variants can be used, to later fall-back
to the more expensive dynamic versions when conflicting.

Consistency checker Since the implementation uses an event sourced ap-
proach, all operations are captured in an event log. Using the Rebel semantics
such a log of operations can be checked. The event log is replayed in order and
guards and effects are checked. This way any violated by smartly interleaving
operations differently can be checked against the local object lifecycle. In ear-
lier days of the implementation design this gave the necessary confidence of
correctness of the implementation approach.

Message Flow Visualization rebel-runtime-lib also includes a web based visual-
ization of actor messages, displaying a filterable sequence diagram. An example
of an open account command on an account is shown in figure 6.2. This is useful
when debugging bugs and retrace origin of messages. Many unit tests contain
diagram output for debugging and extra manual verification of correctness.

131

Chapter 6 Design and Architecture

6.3 Experiment Runner

The experiment runner powers the scalability and cloud performance evalua-
tion of chapter 2. This tool runs experiment scripts in a reproducible fashion
on the Amazon Web Services cloud infrastructure and captures the relevant
logs, metrics and other artifacts created.

The features of the experiment runner include:
Experiments defined in yaml (using hocon1).
Inheritance of experiment definitions
Automated deployment of application and dependencies (based on Docker)
and running of experiment
Overriding of properties via command line arguments
Exponential back-off when waiting for aws to catch up, for example when
starting containers, or when being rate limited.
Fetching of aws logs to text files and InfluxDB data to csv files
Fetching of file system resources after experiment, such as Java Flight
Recorder files, and Gatling performance run reports
Spreading containers over available server instances and starting the next
experiment as soon as servers became available, either by finished previous
experiments or newly added ones
Headless operation, for overnight runs with error recovery
Specific where needed (Rebel, Java Flight Recorder, InfluxDB, jms metrics
and aws integration), generic where possible.
Automated aggregation of Gatling performance load runs and running of r
reports
Usage of Spot instances and automated decommissioning of server instances
to reduce cost.
Listing 6.2 shows an example configuration file for the experiment runner.

Configuration items are inherited from included experiments. Local values
override inherited ones. This experiment runs Gatling performance load runner
with the AllToAllSimulation class.

The experiment runner generates multiple experiment runs from a single
scenario configuration file. Two variants are defined, these are compared to
each another. Everywhere where lists ([X]) are used it is possible to mix and

1 https://github.com/lightbend/config/blob/master/HOCON.md

132

https://github.com/lightbend/config/blob/master/HOCON.md

6.4 rebel-conflictors: rebel-sie and rebel-cbc

Listing 6.2 Example experiment configuration file
1 include "SyncAndNoSyncXNClosed.conf"
2 batch {
3 description = "2PCvsPSACClosedContention1000"
4 default = {
5 simulation-classes = ["com.ing.corebank.rebel.simple_transaction.closedsystem.

,→ AllToAllSimulation"]
6 performance-throttles = [500]
7 user-counts = [250]
8 durations = [10m]
9 performance-configs = [{
10 rebel.scenario.number-of-accounts = 1000
11 }]
12 }
13 n = {
14 cluster-sizes = [1, 3, 6, 9, 12]
15 }
16 variants = [
17 {
18 description = "10002PC"
19 },
20 {
21 description = "1000PSAC"
22 app-configs = [{
23 rebel.sync.max-transactions-in-progress = 8
24 }]
25 }
26]
27 }

match variants. In this example multiple cluster-sizes are defined, so different
independent experiment runs with different numbers of application servers
are run.

6.4 rebel-conflictors: rebel-sie and rebel-cbc

Both SIE and scbc, discussed in chapters 3 and 5, are static variants of IE and
cbc. This means that operations are independent for all possible run-time

133

Chapter 6 Design and Architecture

states. Our tools, based on smt solving, use the Rascal meta-programming
language and the z3 smt solver. Part of the solution is a conversion from Rebel
specifications to smt-lib clauses.

For a specified Rebel state-machine definition, smt code is generated and
assertions for SIE or scbc are added. This reuses code for simulations using
smt by Stoel’s Rebel [105, 108]. The different non-conflicting relations are
defined as smt properties. The z3 smt solver is iteratively queried for all pairs
of operations for that state machine. The result is presented in a table or
as a Scala partial function taking operation combinations to be used in the
generated code.

The source code is available on Zenodo [96, 98] and on github.2

6.5 Verifying Isolation in tla+ with isolation-specs

The design of the tla+ specifications for cbc and rv-ser is modular. Both
of course share the contracts. Different files define the object’s contract, the
loca and 2pl/2pc algorithms, examples and rv-ser definitions. They are
combined via inheritance and model checking configuration. Configuration
options consists of number of participants and transactions, and algorithms and
non-conflict relation used (SIE, cbc, a faulty version or combinations thereof).

The object’s contract is specified in a separate file and needs to contain func-
tions for the return values and effects given an operation and state. Optionally
they also define SIE and scbc operations pairs. Both the definitions for rv-ser
and loca use this contract to respectively determine if return values are valid
in a serial ordering, and to start concurrent processing.

tla+’s model checker tlc can used to verify if an execution – a sequence
of operations on multiple objects – is rv-ser. Both manually entered execu-
tions, executions generated by an implementation or executions when model
checking loca can be checked.

The source code is available on Zenodo [97, 98] and github.3

2 https://github.com/cwi-swat/cbc-artifacts/tree/main/SCBC
3 https://github.com/cwi-swat/tla-ci & https://github.com/cwi-swat/cbc-artifacts

134

https://github.com/cwi-swat/cbc-artifacts/tree/main/SCBC
https://github.com/cwi-swat/tla-ci
https://github.com/cwi-swat/cbc-artifacts

6.6 Summary

6.6 Summary

All of these software component support avoidance of coordination in a direct
or indirect way. rebel-runtime-lib contains the implementations of loca and
psac algorithms and an experiment runner for reproducible scalability and
performance experiments on cloud infrastructure. loca supports different
non-conflicting operations and combination thereof:

run-time variants IE and cbc, defined in rebel-runtime-lib;
compile-time variants SIE and scbc, which are determined by the
rebel-conflictors, which determine – using smt solving – the operations
pairs that are always compatible to run concurrently. rebel-sie and rebel-cbc
generate these pairs for a state machine definition containing the contract
of guards, effects and return values.

ing-rebel-generators contains a code generator which translates Rebel spec-
ifications to a rebel-runtime-lib program. The runtime is based on the Akka
actor toolkit, which provides building blocks for a scalable and resilient imple-
mentation. To validate the isolation guarantees of the different loca variants,
isolation-specs contains tla+ formalizations of cbc and rv-ser. This is used
to model check one-off execution traces, or check conformance to rv-ser of
algorithms, such as loca and 2pl/2pc.

135

7
Conclusion

Enterprise it landscapes are complex and hard to maintain. Creating re-
silient and available applications is also non-trivial. Communicating distributed
components are a prerequisite for resiliency and availability, but also for low
latency for global users. Simply, because hardware or software breaks down
and information takes time to travel over the globe. Model Driven Engineering
and Domain Specific Languages are a way to manage this complexity, by sepa-
rating business logic from implementation. Creating an implementation from
such models is still hard, however correct by construction implementations can
be created leveraging contracts captured in the models.

This chapter revisits the research questions from chapter 1 and consolidates
the answers from the different chapters.

7.1 Research Questions

rqs 1 to 3 focus on similar but different aspects: Firstly, the focus is on deter-
mining how coordination can be avoided. Secondly, how this can be done at
run time, and thirdly how parts of this can already be preprocessed at compile
time.

137

Chapter 7 Conclusion

7.1.1 rq 1: Local Coordination Avoidance with Independent Operations

Research Question 1 (rq 1):
When can coordination between two operations be avoided without
violating isolation and consistency requirements?

This question focuses on the requirements for avoiding coordination. This
question has multiple answers based on two different notions of correctness:
the local object consistency and the global isolation requirements. First we
looked at a generic sufficient conditions.

Consistency here means that the local objects invariants are always adhered
to. The objects in this research are always defined with a contract, consisting
of guards on which operations are allowed and effects which side-effect-free
compute the next local state. State machine formalizations, such as the domain
specific language Rebel, are compatible with this contract definition, where
the guards encode both the state transitions and the enabledness – whether
an operation is allowed in the current state – of operations.

Local Consistency Chapter 3 defines the Independent Events (IE) property,
which is a relation of two operations on an object. Two operations are indepen-
dent if and only if the outcome of the the first operation does not change the
validity of the second. Effectively, this means that independent of the actual
commit or abort of the first, the second operation stays accepted or rejected. In
other words: Does the eventual abort or commit of the in-progress operations
influence the guard’s outcome of a new incoming operations? If not, then
the incoming operations can also already start, because it never has to be
retracted, e.g. a withdrawal on a bank account can already start if there is
enough balance available independent of an already in-progress withdrawal’s
or deposit’s effect.

IE guarantees local linearizable consistency – separate operations adhere
to a strict serial order and local objects always adhere to their invariants as
defined by the contract.

Global Isolation For isolation guarantees ordering of operations on different
objects are also taken into account, next to the single object being consistent
with respect to its own lifecycle and contract. Chapter 5 defines the Contract-
Based Commutativity (cbc) property which defines when operations on a

138

7.1 Research Questions

single object can always be reordered, without influencing observable behavior
in the form of return values. A reordering never results in retraction of an
observed return value. When all objects only run operations concurrently
when cbc holds, the operations can always be reordered into an equivalent
serializable schedule.

cbc is formalized in tla+ in chapter 5. This enables automatic verification
of traces of operation schedules, either from implementations or manually
entered schedules.

7.1.2 rq 2: Local Coordination Avoidance at Run Time

Research Question 2 (rq 2):
How can coordination avoidance between two or more operations be
achieved at run time?

All non-conflicting relations IE and cbc, mentioned at the previous research
question, are used a by run-time algorithm Local Coordination Avoidance
(loca). If the relation holds the second operation can already start processing,
since its acceptance or rejection will never have to be retracted in the future.
This is exploited by the Path-Sensitive Atomic Commit (psac) (chapter 2) and
loca (chapters 3 and 5) algorithms at run time. psac is a version of loca where
IE is used for the non-conflict relation.1

At run-time, loca uses the property to determine if a new incoming operation
is conflicting with any of the in-progress operations. Conceptually it creates
a tree of possible outcomes, where each path from root to leaf represents a
possible outcome, representing all possibilities of in-progress operations either
aborting or committing.

1Although psac internally uses two-phase commit for Atomic Commit, this is not
where the algorithm’s contribution lies. psac (and loca) use two-phase locking
for concurrency control, with the difference is not locking for non-conflicting
operations.

139

Chapter 7 Conclusion

7.1.3 rq 3: Local Coordination Avoidance at Compile Time

Research Question 3 (rq 3):
How can coordination avoidance between two operations be determined
at compile time?

loca requires a non-conflict relation, such as IE and cbc. However, the
algorithm is not concerned with the precise computation thereof.

IE and cbc follow the function signature State × Operation × Operation →
Boolean. However a short-cut can be made when Operation × Operation →
Boolean returns the same for all possible states. This allows an implementation
to do less computation, because it does not have to calculate IE or cbc.

Statically Non-Conflicting Operations Both IE and cbc have an static counter-
part defined in their respective chapters 3 and 5. Chapter 3 expands on this by
placing IE in a larger frame of independent (IE) events and its subset statically
independent events (SIE). Statically Independent Events (SIE) are a subset of
IE, for which the actual run-time state does not influence if operation pairs
are IE or not, e.g. deposits can always run concurrently since their guards
always hold independent of the run-time balance. Statically Contract-Based
Commutativity (scbc) is a subset of cbc, with the similar rule that run-time
state does not influence adherence to cbc. These different properties relate as
depicted in the Introduction, figure 1.3.

The rebel-conflictors Toolkit, based on smt solving, computes SIE and scbc
operations for a specific object with contracts. This pre-computing at compile-
time reduces the computational costs at run time.

7.1.4 rq 4: Performance Benefits in High Contention Scenarios

Research Question 4 (rq 4):
What are the performance benefits for local coordination avoidance and
in which scenarios do they hold?

Chapter 2 contains an elaborate performance evaluation based on scalable
cloud infrastructure. Details on the implementation and experiment runner
are found in chapter 6. loca with IE reaches up to 1.6 times more throughput

140

7.1 Research Questions

than 2pl/2pc in high-contention scenarios. Latency and throughput are always
on par or better compared to 2pl/2pc, also in low-contention scenarios.

A performance evaluation on a smaller scale for SIE is found in chapter 3,
corroborating the larger scale results from chapter 2. Since cbc is a subset of
IE, it is expected that performance improvements for loca with cbc operations
are similar to the performance results found for loca with (S)IE. However, this
remains to be confirmed in future work.

Chapter 3 contains a preliminary study of how often SIE operation pairs occur
in real applications. It found that up to 61% of operation pairs are statically
independent for an ing payments use case and the tpc-c benchmark. This
is promising for all kinds of real world applications. In practice even more
operations are IE and cbc than compile-time SIE.

7.1.5 rq 5: Isolation Guarantees

Research Question 5 (rq 5):
What are the isolation guarantees when using the different non-conflict
relations, and how do they relate?

In chapter 2 we have shown that psac and IE are not serializable. The local
lifecycle of the object is always consistent and correct, but non-serializable
behavior can occur when considering groups of objects. Operations can arrive
in different orders and due to the increased concurrency it can occur that
operations of the same transaction are handled in different order on different
objects, e.g. a transaction overview list differs in order or different account
balances occur when interest is applied in different orders. Chapter 2 provides
a non-serializable example, and chapter 5 reproduces such a counterexample
using model checking with tla+.

We created a model and formalization of serializability based on higher-level
operations based on Crooks’ [23] and Weikum’s [114] insights that schedules
of operations are equivalent to serializability when looking respectively at the
observed outcomes and higher level operations. As the first step chapter 4 we
formalized Crooks’ isolation model [23] in tla+. This model is based on low-
level reads andwrites. The next step in chapter 5 extends this formalization with
higher-level operations from the contracts. Looking at high-level operations
allows more possible orders of operations to conform to serializability as long
as their observable behavior does not change, e.g. for multiple deposits which

141

Chapter 7 Conclusion

only return success it does not matter what the exact in between balance is, as
long as they stay successful and the final balance is correct. This is formalized
as Return-Value Serializability (rv-ser) in tla+ in chapter 5. cbc is a sufficient
condition for rv-ser, so loca with cbc implements serializability, while also
increasing throughput and improving latency.

7.2 Discussion and Further Directions

In conclusion, when contracts are available, loca (with cbc) is a drop in
replacement for other concurrency control mechanisms. With cbc it provides
serializable isolation guarantees, and with psac linearizability for the objects.
Its performance is on par with 2pc – or when using other atomic commitment
protocols, at least as good as those – and improves in high-contention scenarios
with cbc operations.

loca itself and the statically non-conflicting operations toolkit
rebel-conflictors can act as a indicator where bottlenecks occur.

The research conducted and its evaluation scripts and result data, and source
code – where possible – are available as Zenodo artifacts [95, 96, 97, 98] for
transparency and reproducibility purposes.

7.2.1 Implications for Research

One of the major challenges for current distributed applications – which al-
most all applications are in this cloud era – is performance and responsivity.
Without coordination fast and local decisions can be made and application
can scale independently. The calm theorem [50] defines when coordination
is not necessary. However it is still an open question on how to do this. This
dissertation describes a path towards this. Models and contracts of applications
are analyzed to (automatically) show where coordination is not required. For
the places where coordination is necessary, the requirements and contracts
can either be changed to not require it anymore or considered necessary evil
for this problem domain. Either way, it becomes clear when programs can be
sped up by avoiding coordination.

This research focuses its application on distributed objects and actors, but can
also be applied in microservice architectures and other middleware solutions.

142

7.2 Discussion and Further Directions

Many model driven engineering approaches may very well already capture
enough information for the contracts required by loca. This means that loca
can be embedded in implementations or generated code for these models, and
can benefit from the improved throughput and latency.

This research presents loca, which used 2pc for atomicity and 2pl for
concurrency control. Its novel part lies in replacing 2pl with less strict locking
when operations are compatible. An implication for Paxos [68] and other
consensus protocols is that this less strict locking also be applied in their
concurrency control mechanisms. The concept of non-conflicting operations
not limited to 2pl and 2pc.

7.2.2 Implications for Practitioners

Coordination Avoidance formalizations, such as Return-Value Serializability
and Contract-Based Commutativity, and implementations, such as loca or
static analysis tools, such as the rebel-conflictors, can be used to detect po-
tential scalability bottlenecks in applications. This gives a low-entry bar for
practitioners to detect these in their applications to either change the program
to remove the bottlenecks, or avoid them at run time.

Applications can partially be modelled with contracts – ideally the most
communicating parts. On the borders between, more conventional approaches
for concurrency control that fall back to more coordination can be used.

loca can also be embedded in various low code platforms, where contracts
are often already available in some form.

Microservice architectures where each microservice has its own data store
needs to guarantee isolation at the application level, either via locking with
2pc or using the saga pattern [35]. loca can be implemented for distributed
transactions involving multiple microservices and help to improve throughput
by not blocking on non-conflicting operations.

The introduction section 1.2.1 discusses an example where a performance bot-
tleneck is solved bymodeling the business domain differently. A high-contention
tax bank account is kept available using a shadow wash account, which does
all the small transactions in a batch to stay within duration limits. These kinds
of model changes are not always necessary when using an algorithm such as
loca, which automatically takes non-conflicting operations off the critical path.
The added benefit is that ad-hoc bugs by embedding concurrency control in the
model are prevented, e.g. keeping the shadow account’s blocked/unblocked

143

Chapter 7 Conclusion

status in sync with the original account’s status. This means less specialized
changes are required in models for performance reasons and the models only
concern actual business functionality.

7.2.3 Further Directions

Since this dissertation is conducted in the context of ing Bank, this section
focuses on research outcomes and applications relevant within the financial
industry.

This work can function as a stepping stone into domain expert tooling which
detects potential high-contention performance bottlenecks. By analyzing the
models and contracts of applications, it detects where operations are not stati-
cally independent or contract-based commutative. Together with (expected)
load data, bottlenecks can be identified and a different modeling strategy can
be used.

A large gain from loca lies in the run-time variant, since more information is
available. This depends on the run-time state, so some bottlenecks determined
at compile using the static variants, are not a problem in practice. The real
bottlenecks can be detected by instrumenting the runtime or capturing metrics
on how often coordination can and can not be avoided. e.g. the earlier example
from section 1.2.1 where big batch transactions of a tax account are taken off
the critical path by using a wash account.

Further Research Some important open research questions are validation on a
larger set of models with contracts. Another direction is determining of other
isolation levels than serializability (with cbc). In many use cases isolation
levels with less guarantees are good enough.

Related to this is determining fail isolation guarantees on higher level opera-
tions for psac and IE. Strictly looking at reads and writes only, psac guarantees
only read uncommitted, which is low in the hierarchy of isolation guarantees.
In practice psac always guarantees that local objects never read uncommitted
values on the contract’s operations levels.

loca’s design is based on single objects for which local decisions are made
in a single replica. In order to increase availability and scalability, and reduce
response times, a multiple replicas approach should be made. This means
that replicated objects need to kept in sync. For commutative operations this

144

7.2 Discussion and Further Directions

can be eventual, but for other operations not, depending on the consistency
requirements. This is related to RedBlue consistency [72] and CvRDTs [118].

Further Implementation For adoption of loca and tooling, a small dedicated
implementation library should be created. Application teams can embed this
in their implementation. The contracts can then be specified as annotations on
the operations or in an embedded domain specific language.

loca can be used on a small scale in a small application. This way some
production application can start using this. Validation of loca at scale will
be helpful in its adoptance. For this a reusable stand-alone library should be
created, which only contains loca and contract abstractions. The current im-
plementation is coupled to a Rebel runtime, but set up modularly, so extraction
and reuse is possible.

145

Bibliography

[1] Atul Adya. “Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions”. en. PhD thesis. USA:
Massachusetts Institute of Technology, 1999, page 198 (cited on pages 6,
10, 84, 92, 105, 111, 121).

[2] Marcos K. Aguilera and Douglas B. Terry. “The Many Faces of Consis-
tency”. In: IEEE Data Eng. Bull. 39.1 (2016), pages 3–13. url: http:
//sites.computer.org/debull/A16mar/p3.pdf (cited on page 104).

[3] Akka. 2018. url: https://akka.io (visited on 2018-12-21) (cited on
pages 37, 72, 125, 128, 129).

[4] James C. Corbett et al. “Spanner: Google’s Globally Distributed
Database”. In: ACM Trans. Comput. Syst. 31.3 (2013), 8:1–8:22 (cited
on page 78).

[5] Peter Alvaro. “Data-centric Programming for Distributed Systems”.
PhD thesis. University of California, Santa Cruz, USA, 2015. url: http:
//www.escholarship.org/uc/item/2296w4q3 (cited on page 8).

[6] GeneM. Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities”. In: Proceedings of the April 18-20,
1967, spring joint computer conference on - AFIPS ’67 (Spring). Volume 30.
AFIPS Conference Proceedings. ACM Press, 1967, pages 483–485. doi:
10.1145/1465482.1465560 (cited on page 44).

[7] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent pro-
gramming in ERLANG. Prentice Hall, 1993. isbn: 978-0-13-285792-5
(cited on page 128).

[8] Peter Bailis. “Coordination Avoidance in Distributed Databases”. PhD
thesis. University of California, Berkeley, USA, 2015. url: http://www.
escholarship.org/uc/item/8k8359g2 (cited on pages 9, 54, 55, 78).

[9] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. “Highly available transactions. virtues and limi-
tations”. In: Proc. VLDB Endow. 7.3 (Nov. 2013), pages 181–192. issn:
2150-8097. doi: 10.14778/2732232.2732237 (cited on pages 3, 6, 26, 84,
98).

147

http://sites.computer.org/debull/A16mar/p3.pdf
http://sites.computer.org/debull/A16mar/p3.pdf
https://akka.io
http://www.escholarship.org/uc/item/2296w4q3
http://www.escholarship.org/uc/item/2296w4q3
https://doi.org/10.1145/1465482.1465560
http://www.escholarship.org/uc/item/8k8359g2
http://www.escholarship.org/uc/item/8k8359g2
https://doi.org/10.14778/2732232.2732237

Bibliography

[10] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. “Coordination avoidance in database sys-
tems”. In: Proc. VLDB Endow. 8.3 (Nov. 2014), pages 185–196. issn:
2150-8097. doi: 10.14778/2735508.2735509 (cited on pages 9, 24, 54, 60,
122).

[11] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. “Putting consistency
back into eventual consistency”. In: Proceedings of the Tenth European
Conference on Computer Systems - EuroSys ’15. ACM Press, 2015, 6:1–
6:16. isbn: 9781450332385. doi: 10.1145/2741948.2741972 (cited on
pages 51, 54, 60, 78, 122).

[12] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pet-
tersson, and Wang Yi. “UPPAAL - a Tool Suite for Automatic Verifi-
cation of Real-Time Systems”. In: Hybrid Systems. Volume 1066. Lec-
ture Notes in Computer Science. Springer, 1995, pages 232–243. doi:
10.1007/BFb0020949 (cited on page 98).

[13] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley,
1987. isbn: 0-201-10715-5. url: http://research.microsoft.com/en-
us/people/philbe/ccontrol.aspx (cited on page 27).

[14] Ted J. Biggerstaff. A Perspective of Generative Reuse. Technical report
MSR-TR-97-26. Dec. 2001, page 43. url: https://www.microsoft.com/en-
us/research/publication/a-perspective-of-generative-reuse/ (cited on
page 5).

[15] Stefan Blom, Jaco van de Pol, and Michael Weber. “LTSmin: Distributed
and Symbolic Reachability”. In: Computer Aided Verification. Edited
by Tayssir Touili, Byron Cook, and Paul Jackson. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pages 354–359. isbn: 978-3-642-
14295-6 (cited on page 98).

[16] Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson. Reactive
Manifesto. 2021. url: https://www.reactivemanifesto.org/ (visited on
2021-10-29) (cited on pages 3, 128).

[17] Susanne Braun, Annette Bieniusa, and Frank Elberzhager. “Advanced
Domain-Driven Design for Consistency in Distributed Data-Intensive
Systems”. In: Proceedings of the 8th Workshop on Principles and Prac-
tice of Consistency for Distributed Data. EuroSys ’21: Sixteenth Euro-

148

https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1007/BFb0020949
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://www.microsoft.com/en-us/research/publication/a-perspective-of-generative-reuse/
https://www.microsoft.com/en-us/research/publication/a-perspective-of-generative-reuse/
https://www.reactivemanifesto.org/

pean Conference on Computer Systems. Online United Kingdom: ACM,
Apr. 26, 2021, pages 1–12. isbn: 978-1-4503-8338-7. doi: 10/gjs3st
(cited on pages 4, 122, 129).

[18] Marc Brooker, Tao Chen, and Fan Ping. “Millions of Tiny Databases”.
In: 17th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020.
Edited by Ranjita Bhagwan and George Porter. USENIX Association,
2020, pages 463–478 (cited on pages 87, 113).

[19] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. “Serializable isolation
for snapshot databases”. In: ACM Trans. Database Syst. 34.4 (Dec. 2009),
pages 1–42. issn: 0362-5915, 1557-4644. doi: 10.1145/1620585.1620587
(cited on page 51).

[20] Cassandra. 2019. url: https : / / cassandra . apache . org/ (visited on
2019-07-31) (cited on pages 38, 78).

[21] Steve Cook, Conrad Bock, Pete Rivett, Tom Rutt, Ed Seidewitz, Bran
Selic, and Doug Tolbert. Unified Modeling Language (UML) Version
2.5.1. Standard. Object Management Group (OMG), Dec. 2017. url:
https://www.omg.org/spec/UML/2.5.1 (cited on page 6).

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. “Benchmarking cloud serving systems with YCSB”.
In: Proceedings of the 1st ACM symposium on Cloud computing - SoCC
’10. Edited by Joseph M. Hellerstein, Surajit Chaudhuri, and Mendel
Rosenblum. ACM Press, 2010, pages 143–154. isbn: 9781450300360.
doi: 10.1145/1807128.1807152 (cited on page 51).

[23] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. “Seeing
is Believing. A Client-Centric Specification of Database Isolation”. In:
Proceedings of the ACM Symposium on Principles of Distributed Comput-
ing. Edited by Elad Michael Schiller and Alexander A. Schwarzmann.
ACM, July 2017, pages 73–82. isbn: 9781450349925. doi: 10.1145/
3087801.3087802 (cited on pages 6, 7, 55, 84, 85, 88, 91, 99, 103, 105,
111, 115, 121, 141).

[24] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming
- methods, tools and applications. Addison-Wesley, 2000. isbn: 978-0-
201-30977-5. url: http://www.addison-wesley.de/main/main.asp?page=
englisch/bookdetails%5C&productid=99258 (cited on page 4).

149

https://doi.org/10/gjs3st
https://doi.org/10.1145/1620585.1620587
https://cassandra.apache.org/
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/3087801.3087802
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails%5C&productid=99258
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails%5C&productid=99258

Bibliography

[25] Jeffrey Dean and Luiz André Barroso. “The tail at scale”. In: Commun.
ACM 56.2 (Feb. 2013), page 74. issn: 0001-0782. doi: 10.1145/2408776.
2408794 (cited on page 56).

[26] Andrzej Debski, Bartlomiej Szczepanik, Maciej Malawski, Stefan Spahr,
and Dirk Muthig. “A Scalable, Reactive Architecture for Cloud Applica-
tions”. In: IEEE Softw. 35.2 (Mar. 2018), pages 62–71. issn: 0740-7459.
doi: 10.1109/ms.2017.265095722 (cited on pages 4, 38, 128, 129).

[27] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudre-Mauroux. “OLTP-Bench. an extensible testbed for benchmarking
relational databases”. In: Proc. VLDB Endow. 7.4 (Dec. 2013), pages 277–
288. issn: 2150-8097. doi: 10.14778/2732240.2732246 (cited on page 51).

[28] Renate R. Eilers. “Fine-Grained Model Slicing for Faster Verification”.
Master’s thesis. Utrecht University, 2018 (cited on page 14).

[29] Tamer Eldeeb and Phil Bernstein. Transactions for Distributed Actors in
the Cloud. Technical report. Oct. 2016. url: https://www.microsoft.com/
en-us/research/publication/transactions-distributed-actors-cloud-2/
(cited on page 53).

[30] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger.
“The Notions of Consistency and Predicate Locks in a Database System”.
In: Commun. ACM 19.11 (1976), pages 624–633. doi: 10.1145/360363.
360369. url: https://doi.org/10.1145/360363.360369 (cited on page 55).

[31] Eric Evans and Eric J Evans. Domain-driven design - tackling complexity
in the heart of software. Addison-Wesley, 2004. isbn: 978-0-321-12521-7
(cited on pages 4, 122).

[32] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil,
and Dennis E. Shasha. “Making Snapshot Isolation Serializable”. In:
ACM Transactions on Database Systems 30.2 (2005), pages 492–528.
doi: 10.1145/1071610.1071615 (cited on page 84).

[33] Wan Fokkink. Distributed Algorithms, second edition: An Intuitive Ap-
proach. The MIT Press. MIT Press, 2018. isbn: 9780262345521. url:
https://mitpress.mit.edu/books/distributed-algorithms-second-edition
(cited on page 3).

[34] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2012. isbn: 978-0-321-12742-6 (cited on page 9).

150

https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1109/ms.2017.265095722
https://doi.org/10.14778/2732240.2732246
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/1071610.1071615
https://mitpress.mit.edu/books/distributed-algorithms-second-edition

[35] Hector Garcia-Molina and Kenneth Salem. “Sagas”. In: Proceedings
of the Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, San Francisco, CA, USA,
May 27-29, 1987. Edited by Umeshwar Dayal and Irving L. Traiger.
ACM Press, 1987, pages 249–259. doi: 10.1145/38713.38742. url: https:
//doi.org/10.1145/38713.38742 (cited on page 143).

[36] Gatling. 2018. url: https://gatling.io/ (visited on 2018-07-23) (cited
on page 41).

[37] Seth Gilbert and Nancy A. Lynch. “Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services”. In:
SIGACT News 33.2 (2002), pages 51–59. doi: 10.1145/564585.564601.
url: https://doi.org/10.1145/564585.564601 (cited on page 7).

[38] Patrice Godefroid. Partial-Order Methods for the Verification of Con-
current Systems. Volume 1032. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1996. isbn: 9783540607618. doi: 10.1007/3-
540-60761-7 (cited on page 54).

[39] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and
Alastair R. Beresford. “Verifying strong eventual consistency in dis-
tributed systems”. In: PACMPL 1.OOPSLA (2017), 109:1–109:28 (cited
on pages 78, 98).

[40] Jim Gray. “Notes on Data Base Operating Systems”. In: Operating
Systems, An Advanced Course. Edited by Michael J. Flynn, Jim Gray,
Anita K. Jones, Klaus Lagally, Holger Opderbeck, Gerald J. Popek, Brian
Randell, Jerome H. Saltzer, and Hans-Rüdiger Wiehle. Volume 60.
Lecture Notes in Computer Science. Springer, 1978, pages 393–481.
isbn: 3-540-08755-9. doi: 10.1007/3-540-08755-9_9 (cited on pages 24,
27).

[41] Jim Gray and Leslie Lamport. “Consensus on Transaction Commit”.
In: ACM Transactions on Database Systems 31.1 (2006), pages 133–160.
doi: 10.1145/1132863.1132867 (cited on pages 10, 87, 92, 103, 113).

[42] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993. isbn: 1-55860-190-2 (cited on
pages 3, 6, 55, 60).

[43] Brendan Gregg. Systems Performance: Enterprise and the Cloud. Pearson
Education, 2014 (cited on page 11).

151

https://doi.org/10.1145/38713.38742
https://doi.org/10.1145/38713.38742
https://doi.org/10.1145/38713.38742
https://gatling.io/
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1145/1132863.1132867

Bibliography

[44] Jan Friso Groote and Mohammad Reza Mousavi.Modeling and Analysis
of Communicating Systems. MIT Press, 2014. isbn: 978-0-262-02771-7
(cited on page 98).

[45] Jason Gustafson and Guozhang Wang. Hardening Kafka Replica-
tion. https://github.com/hachikuji/kafka-specification. 2020 (cited on
pages 87, 98, 113).

[46] Theo Haerder and Andreas Reuter. “Principles of transaction-oriented
database recovery”. In: ACM Comput. Surv. 15.4 (Dec. 1983), pages 287–
317. issn: 0360-0300, 1557-7341. doi: 10.1145/289.291 (cited on pages 7,
25, 26, 130).

[47] David Harel. “Statecharts: A Visual Formalism for Complex Systems”.
In: Sci. Comput. Program. 8.3 (1987), pages 231–274. doi: 10.1016/0167-
6423(87)90035-9. url: https://doi.org/10.1016/0167-6423(87)90035-9
(cited on page 6).

[48] Pat Helland. “Opinion”. In: 2007 First ACM/IEEE International Confer-
ence on Distributed Smart Cameras. IEEE, 2007, pages 132–141. isbn:
9781424413546. doi: 10.1109/icdsc.2007.4357494 (cited on page 24).

[49] Pat Helland. “Don’t Get Stuck in the “Con” Game: Consistency, con-
vergence, and confluence are not the same! Eventual consistency and
eventual convergence aren’t the same as confluence, either”. In: ACM
Queue 19.3 (2021), pages 16–35. doi: 10.1145/3475965.3480470. url:
https://doi.org/10.1145/3475965.3480470 (cited on pages 6, 7).

[50] Joseph M. Hellerstein and Peter Alvaro. “Keeping CALM: When Dis-
tributed Consistency is Easy”. In: CoRR abs/1901.01930 (2019). arXiv:
1901.01930. url: http://arxiv.org/abs/1901.01930 (cited on pages 8, 54,
78, 122, 142).

[51] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. “Flat combin-
ing and the synchronization-parallelism tradeoff”. In: Proceedings of
the 22nd ACM symposium on Parallelism in algorithms and architectures
- SPAA ’10. ACM Press, 2010, pages 355–364. isbn: 9781450300797. doi:
10.1145/1810479.1810540 (cited on pages 55, 79).

[52] Ludovic Henrio and Justine Rochas. “Multiactive objects and their
applications”. In: Logical Methods in Computer Science 13.4 (2017)
(cited on page 80).

152

https://doi.org/10.1145/289.291
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1109/icdsc.2007.4357494
https://doi.org/10.1145/3475965.3480470
https://doi.org/10.1145/3475965.3480470
https://arxiv.org/abs/1901.01930
http://arxiv.org/abs/1901.01930
https://doi.org/10.1145/1810479.1810540

[53] Carl Hewitt, Peter Bishop, Irene Greif, Brian Smith, Todd Matson, and
Richard Steiger. “Actor induction and meta-evaluation”. In: Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of
programming languages - POPL ’73. ACM Press, 1973, pages 235–245.
doi: 10.1145/512927.512942 (cited on pages 4, 37, 128).

[54] Brandon Holt, Jacob Nelson, Brandon Myers, Preston Briggs, Luis Ceze,
Simon Kahan, and Mark Oskin. “Flat combining synchronized global
data structures”. In: 7th International Conference on PGAS Programming
Models. 2013, page 76 (cited on page 79).

[55] Gerard J. Holzmann. The SPIN Model Checker - Primer and Refer-
ence Manual. Addison-Wesley, 2004. isbn: 978-0-321-22862-8 (cited
on page 98).

[56] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006. isbn: 978-0-262-10114-1 (cited on pages 98, 121).

[57] JMH. OpenJDK: Java Microbenchmark Harness. 2019. url: https://
openjdk.java.net/projects/code-tools/jmh (visited on 2019-07-30) (cited
on page 73).

[58] J.R. Jordan, J. Banerjee, and R.B. Batman. “Precision locks”. In: Proceed-
ings of the 1981 ACM SIGMOD international conference on Management
of data - SIGMOD ’81. Edited by Y. Edmund Lien. ACM Press, 1981,
pages 143–147. isbn: 0897910400. doi: 10.1145/582318.582340 (cited on
page 55).

[59] Kyle Kingsbury and Peter Alvaro. “Elle: Inferring Isolation Anomalies
from Experimental Observations”. In: CoRR abs/2003.10554 (2020).
arXiv: 2003.10554 (cited on pages 84, 98).

[60] Kyle Kinsbury. Jepsen: Distributed Systems Safety Research. http://-
jepsen.io/. 2020 (cited on page 98).

[61] Kyle Kinsbury. Knossos. https://github.com/jepsen-io/knossos. 2020
(cited on page 84).

[62] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly, 2016.
isbn: 978-1-4493-7332-0. url: http : / / shop . oreilly . com/product /
0636920032175.do (cited on pages 9, 24, 26, 98).

[63] Martin Kleppmann. Hermitage: Testing Transaction Isolation Levels.
https://github.com/ept/hermitage. 2020 (cited on pages 84, 98).

153

https://doi.org/10.1145/512927.512942
https://openjdk.java.net/projects/code-tools/jmh
https://openjdk.java.net/projects/code-tools/jmh
https://doi.org/10.1145/582318.582340
https://arxiv.org/abs/2003.10554
http://shop.oreilly.com/product/0636920032175.do
http://shop.oreilly.com/product/0636920032175.do

Bibliography

[64] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. “Local-first software: you own your data, in spite of the
cloud”. In: Proceedings of the 2019 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, Athens, Greece, October 23-24, 2019. Edited by
Hidehiko Masuhara and Tomas Petricek. ACM, 2019, pages 154–178.
doi: 10.1145/3359591.3359737. url: https://doi.org/10.1145/3359591.
3359737 (cited on page 4).

[65] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. “RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation”. In:
SCAM. IEEE Computer Society, 2009, pages 168–177 (cited on pages 72,
126).

[66] Alex Kok. “Property-based testing Rebel semantics in the gener-
ated code”. Master’s thesis. University of Amsterdam, 2017 (cited on
page 14).

[67] Sebastiaan la Fleur. “Static Analysis of Symbolic Transition Systems
with Goose”. Master’s thesis. University of Twente, Mar. 2018 (cited on
page 14).

[68] Leslie Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput.
Syst. 16.2 (1998), pages 133–169. doi: 10.1145/279227.279229. url:
https://doi.org/10.1145/279227.279229 (cited on pages 113, 143).

[69] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002. isbn: 0-3211-
4306-X (cited on pages 55, 87, 98, 113).

[70] Leslie Lamport. The PlusCal Algorithm Language - Microsoft Research.
https://www.microsoft.com/en-us/research/publication/pluscal-
algorithm-language/ (cited on page 87).

[71] Costin Leau. Spring data redis-retwis-j. 2013. url: https://docs.spring.
io/spring-data/data-keyvalue/examples/retwisj/current/ (cited on
page 51).

[72] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M.
Preguiça, and Rodrigo Rodrigues. “Making Geo-Replicated Systems Fast
as Possible, Consistent when Necessary”. In: OSDI. USENIX Association,
2012, pages 265–278 (cited on pages 78, 122, 145).

154

https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/

[73] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,
and Ding Yuan. “Don’t Get Caught in the Cold, Warm-up Your JVM:
Understand and Eliminate JVM Warm-up Overhead in Data-Parallel
Systems”. In: OSDI. USENIX Association, 2016, pages 383–400 (cited
on page 50).

[74] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and
how to develop domain-specific languages”. In: ACM Comput. Surv.
37.4 (2005), pages 316–344. doi: 10.1145/1118890.1118892. url: https:
//doi.org/10.1145/1118890.1118892 (cited on pages 4, 6).

[75] Microsoft. High-Level TLA+ Specifications for the Five Consistency Levels
Offered by Azure Cosmos DB. https://github.com/Azure/azure-cosmos-
tla. 2020 (cited on pages 87, 98, 113).

[76] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient
SMT Solver”. In: TACAS. Volume 4963. Lecture Notes in Computer
Science. Springer, 2008, pages 337–340 (cited on pages 60, 64, 72,
114).

[77] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. “Ex-
tracting More Concurrency from Distributed Transactions”. In: 11th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. Edited by Jason Flinn
and Hank Levy. ACM Press, 2014, pages 479–494. isbn: 1880446820.
doi: 10.1145/238721. url: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/mu (cited on page 54).

[78] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Tappan Morris.
“Phase Reconciliation for Contended In-Memory Transactions”. In:OSDI.
USENIX Association, 2014, pages 511–524 (cited on pages 54, 55, 79).

[79] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. “How Amazon web services uses
formal methods”. In: Commun. ACM 58.4 (Mar. 2015), pages 66–73.
issn: 0001-0782, 1557-7317. doi: 10.1145/2699417 (cited on pages 87,
98, 113).

[80] Patrick E. O’Neil. “The Escrow transactional method”. In: ACM Trans.
Database Syst. 11.4 (Dec. 1986), pages 405–430. issn: 0362-5915, 1557-
4644. doi: 10.1145/7239.7265 (cited on page 54).

155

https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/238721
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/mu
https://doi.org/10.1145/2699417
https://doi.org/10.1145/7239.7265

Bibliography

[81] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala.
Artima, 2008. isbn: 9780981531601. url: https://books.google.nl/
books?id=MFjNhTjeQKkC (cited on page 126).

[82] Diego Ongaro and John K. Ousterhout. “In Search of an Understand-
able Consensus Algorithm”. In: 2014 USENIX Annual Technical Confer-
ence, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014. Edited
by Garth Gibson and Nickolai Zeldovich. USENIX Association, 2014,
pages 305–319. url: https : / /www . usenix . org / conference / atc14 /
technical-sessions/presentation/ongaro (cited on page 113).

[83] Orleans. 2018. url: https ://dotnet .github . io/orleans/ (visited on
2018-12-21) (cited on pages 53, 129).

[84] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems, Third Edition. Springer New York, 2011. isbn: 9781441988348.
doi: 10.1007/978-1-4419-8834-8 (cited on pages 24, 27).

[85] Nuno M. Preguiça, Carlos Baquero, and Marc Shapiro. “Conflict-free
Replicated Data Types (CRDTs)”. In: CoRR abs/1805.06358 (2018).
arXiv: 1805.06358. url: http://arxiv .org/abs/1805.06358 (cited on
pages 3, 54, 120, 122).

[86] Nuno M. Preguiça, Carlos Baquero, and Marc Shapiro. “Conflict-Free
Replicated Data Types CRDTs”. In: Encyclopedia of Big Data Technologies.
Springer, 2019 (cited on pages 10, 98).

[87] Francois Raab, Walt Kohler, and Amitabh Shah. “Overview of the TPC
benchmark C: The order-entry benchmark”. In: Transaction Processing
Performance Council, Tech. Rep (2013) (cited on pages 46, 51, 60, 69).

[88] Reactors. 2018. url: http://reactors.io/ (visited on 2018-12-21) (cited
on page 53).

[89] Kun Ren, Alexander Thomson, and Daniel J. Abadi. “An Evaluation of
the Advantages and Disadvantages of Deterministic Database Systems”.
In: PVLDB 7.10 (2014), pages 821–832 (cited on page 79).

[90] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso
Pierantonio. “Supporting the understanding and comparison of low-
code development platforms”. In: 46th Euromicro Conference on Soft-
ware Engineering and Advanced Applications, SEAA 2020, Portoroz, Slove-
nia, August 26-28, 2020. IEEE, 2020, pages 171–178. doi: 10.1109/

156

https://books.google.nl/books?id=MFjNhTjeQKkC
https://books.google.nl/books?id=MFjNhTjeQKkC
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://dotnet.github.io/orleans/
https://doi.org/10.1007/978-1-4419-8834-8
https://arxiv.org/abs/1805.06358
http://arxiv.org/abs/1805.06358
http://reactors.io/
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036

SEAA51224.2020.00036. url: https://doi.org/10.1109/SEAA51224.2020.
00036 (cited on page 5).

[91] Douglas C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engi-
neering”. In: Computer 39.2 (2006), pages 25–31. doi: 10.1109/MC.2006.
58. url: https://doi.org/10.1109/MC.2006.58 (cited on page 4).

[92] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. “Open
Versus Closed: A Cautionary Tale”. In: 3rd Symposium on Networked
Systems Design and Implementation (NSDI 2006), May 8-10, 2007, San
Jose, California, USA, Proceedings. Edited by Larry L. Peterson and
Timothy Roscoe. USENIX, 2006. url: http://www.usenix.org/events/
nsdi06/tech/schroeder.html (cited on pages 42, 45).

[93] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.
“Conflict-Free Replicated Data Types”. In: SSS. Volume 6976. Lecture
Notes in Computer Science. Springer, 2011, pages 386–400 (cited on
pages 8, 78, 120, 122).

[94] Tim Soethout. “Exploiting models for scalable and high throughput dis-
tributed software”. In: Proceedings Companion of the 2019 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and Ap-
plications: Software for Humanity, SPLASH 2019, Athens, Greece, October
20-25, 2019. Edited by Yannis Smaragdakis. ACM, 2019, pages 35–37.
doi: 10.1145/3359061.3361073 (cited on page 20).

[95] Tim Soethout. Path-Sensitive Atomic Commit: Local Coordination Avoid-
ance for Distributed Transactions Evaluation Data. Oct. 2019. doi: 10.
5281/zenodo.3405371 (cited on pages 19, 26, 42, 142).

[96] Tim Soethout. Static Local Coordination Avoidance for Distributed Objects
Artifacts. Sept. 2019. doi: 10.5281/zenodo.3405232 (cited on pages 20,
61, 72, 75, 129, 134, 142).

[97] Tim Soethout. TimSoethout/TLA-CI: TLA+ Specifications Used in “Au-
tomated Validation of State-Based Client- Centric Isolation with TLA+”.
Zenodo. July 2020. doi: 10.5281/zenodo.3961617. url: https://github.
com/TimSoethout/tla-ci (cited on pages 20, 85, 89, 129, 134, 142).

[98] Tim Soethout. TimSoethout/cbc-artifacts: Artifacts for AGERE’21 paper
“Contract-Based Return-Value Commutativity: Safely exploiting contract-
based commutativity for faster serializable transactions”. Zenodo. Sept.
2021. doi: 10 .5281/zenodo.5497756. url: https ://github.com/cwi-
swat/cbc-artifacts (cited on pages 20, 104, 113, 115, 129, 134, 142).

157

https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
http://www.usenix.org/events/nsdi06/tech/schroeder.html
http://www.usenix.org/events/nsdi06/tech/schroeder.html
https://doi.org/10.1145/3359061.3361073
https://doi.org/10.5281/zenodo.3405371
https://doi.org/10.5281/zenodo.3405371
https://doi.org/10.5281/zenodo.3405232
https://doi.org/10.5281/zenodo.3961617
https://github.com/TimSoethout/tla-ci
https://github.com/TimSoethout/tla-ci
https://doi.org/10.5281/zenodo.5497756
https://github.com/cwi-swat/cbc-artifacts
https://github.com/cwi-swat/cbc-artifacts

Bibliography

[99] Tim Soethout. cwi-swat/rebel-runtime-lib: Rebel runtime based on LoCA.
Version zenodo. Mar. 2022. doi: 10.5281/zenodo.6381708. url: https:
//github.com/cwi-swat/rebel-runtime-lib (cited on page 129).

[100] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Static local
coordination avoidance for distributed objects”. In: Proceedings of the
9th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control - AGERE 2019. ACM Press,
2019, pages 21–30. isbn: 9781450369824. doi: 10.1145/3358499.3361222
(cited on pages 19, 28, 50, 54, 59, 99, 103, 104, 113–115, 120, 121).

[101] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Automated Val-
idation of State-Based Client-Centric Isolation with TLA+”. In: Software
Engineering and Formal Methods. SEFM 2020 Collocated Workshops -
ASYDE, CIFMA, and CoSim-CPS, Amsterdam, The Netherlands, Septem-
ber 14-15, 2020, Revised Selected Papers. Edited by Loek Cleophas and
Mieke Massink. Volume 12524. Lecture Notes in Computer Science.
Springer, 2020, pages 43–57. doi: 10.1007/978-3-030-67220-1_4 (cited
on pages 20, 83, 103, 111, 115, 118).

[102] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Contract-
Based Return-Value Commutativity: Safely exploiting contract-based
commutativity for faster serializable transactions”. In: Proceedings of
the 11th ACM SIGPLAN International Workshop on Programming Based
on Actors, Agents, and Decentralized Control - AGERE 2021. ACM Press,
2021. doi: 10.1145/3486601.3486707 (cited on pages 20, 101).

[103] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju. “Path-Sensitive
Atomic Commit - Local Coordination Avoidance for Distributed Transac-
tions”. In: The Art, Science, and Engineering of Programming 5.1 (2021),
page 3. doi: 10.22152/programming-journal.org/2021/5/3 (cited on
pages 19, 23, 66, 97, 99, 103, 104, 113, 114, 120).

[104] Open API Specification. 2018. url: https://github.com/OAI/OpenAPI-
Specification (visited on 2018-09-25) (cited on page 166).

[105] Jouke Stoel. Rebel. 2020. url: https://github.com/cwi-swat/rebel
(visited on 2020-01-10) (cited on pages 14, 25, 35, 125, 134).

[106] Jouke Stoel. Rebel. 2020. url: https://github.com/cwi-swat/rebel2
(visited on 2020-01-10) (cited on pages 14, 25, 35).

158

https://doi.org/10.5281/zenodo.6381708
https://github.com/cwi-swat/rebel-runtime-lib
https://github.com/cwi-swat/rebel-runtime-lib
https://doi.org/10.1145/3358499.3361222
https://doi.org/10.1007/978-3-030-67220-1_4
https://doi.org/10.1145/3486601.3486707
https://doi.org/10.22152/programming-journal.org/2021/5/3
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/cwi-swat/rebel
https://github.com/cwi-swat/rebel2

[107] Jouke Stoel, Tijs van der Storm, and Jurgen Vinju. “Modeling with
Mocking”. In: 2021 IEEE 14th International Conference on Software
Testing, Validation and Verification (ICST). 2021, pages 59–70. doi:
10.1109/ICST49551.2021.00018 (cited on pages 14, 121).

[108] Jouke Stoel, Tijs van der Storm, Jurgen Vinju, and Joost Bosman.
“Solving the bank with Rebel: On the design of the Rebel specification
language and its application inside a bank”. In: Proceedings of the 1st
Industry Track on Software Language Engineering - ITSLE 2016. ACM
Press, 2016, pages 13–20. isbn: 9781450346467. doi: 10.1145/2998407.
2998413 (cited on pages 2, 14, 25, 35, 37, 60, 72, 99, 121, 134).

[109] Michael Stonebraker and Ariel Weisberg. “The VoltDB Main Memory
DBMS”. In: IEEE Data Eng. Bull. 36.2 (2013), pages 21–27 (cited on
page 78).

[110] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems -
principles and paradigms, 2nd Edition. Pearson Education, 2007. isbn:
978-0-13-239227-3 (cited on pages 4, 39, 72, 98).

[111] Thanusijan Tharumarajah. “Runtime testing generated systems from
Rebel specifications”. Master’s thesis. University of Amsterdam, 2017
(cited on page 14).

[112] Rene van Gasteren. “Natural Language Generation from Rebel Spec-
ifications”. Master’s thesis. University of Amsterdam, 2016 (cited on
page 14).

[113] Wiebe van Geest. “Dependent Types for Invariants in Session Types”.
Master’s thesis. TU Delft, 2018 (cited on page 14).

[114] Gerhard Weikum. “Principles and Realization Strategies of Multilevel
Transaction Management”. In: ACM Transactions on Database Systems
16.1 (Mar. 1991), pages 132–180. issn: 0362-5915. doi: 10.1145/103140.
103145 (cited on pages 99, 141).

[115] Gerhard Weikum and Gottfried Vossen. Transactional Information Sys-
tems. Elsevier, 2002. isbn: 9781558605084. doi: 10.1016/c2009-0-27891-3
(cited on pages 6, 7, 39, 54, 102, 103, 105, 112, 130).

[116] Peter D. Wessels. “Leveraging behavioural domain models in Model-
Driven User Interface Development with GLUI”. Master’s thesis. Uni-
versity of Twente, June 2018 (cited on page 14).

159

https://doi.org/10.1109/ICST49551.2021.00018
https://doi.org/10.1145/2998407.2998413
https://doi.org/10.1145/2998407.2998413
https://doi.org/10.1145/103140.103145
https://doi.org/10.1145/103140.103145
https://doi.org/10.1016/c2009-0-27891-3

Bibliography

[117] Jordi W. M. Wippert. “Change Impact Analysis for Rebel Specifications”.
Master’s thesis. Utrecht University, 2020 (cited on page 14).

[118] Xin Zhao and Philipp Haller. “Observable atomic consistency for
CvRDTs”. In: Proceedings of the 8th ACM SIGPLAN International Work-
shop on Programming Based on Actors, Agents, and Decentralized Control
- AGERE 2018. ACM Press, 2018, pages 23–32. isbn: 9781450360661.
doi: 10.1145/3281366.3281372 (cited on pages 54, 78, 122, 145).

160

https://doi.org/10.1145/3281366.3281372

APath-Sensitive Atomic Commit

A.1 Example 2pl/2pc and psac diagrams with abort

Figures A.1 and A.2 show the same example situation as used in section 2.3.1,
but in this case the first action 2pc transaction aborts. We see at figure A.1. 3
and figure A.2. 4 that action −€30 is aborted by the 2pc coordinator. With
psac −€50 still starts, since both outcomes (commit and abort) where taken
into account.

A.2 Actor class definition

The library using Akka expects the Rebel specifications to implement a Scala
trait RebelSpec. A simplified version of the Scala code generated from the
Account example of listing 2.2 is shown in listing A.1.

The algebraic data types AccountState and AccountCommand model respec-
tively the Rebel state machine states and actions . The methods initialState,
allStates, and finalStates encode metadata of the life cycle of an entity. The
method nextState encodes how transitions are performed and via which events.
The preconditions and actions’ effects required for psac are known from the
Rebel specification and generated into the actor code. checkPre checks the pre-
conditions for each incoming action. As a result, the method apply calculates
the new state of the account given the current state and action.

Finally, the syncOps method returns a set of operations between entities
that must be synchronized as per the sync construct. Since the Account class
requires no synchronization it returns the empty set.

The Rebel library contains a restful http api which derives endpoints for all
the specifications and actions. These are used to trigger actions on the actors.

161

A Path-Sensitive Atomic Commit

 −€30𝐶1

2P
C

Start −€30

Abort −€30

2P
C

Start -€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€100
apply -€50
€50

€100

Success −€50

Failure −€30

1

2

3

4

Account Entity
2PL/2PC

time

Delay -€50

€100
 (−€50)

Initial balance: €100

Account Entity
PSAC

 −€30𝐶1

2P
C

Start −€30

Abort −€30

2P
C

Start −€50

Commit −€50

 −€50𝐶2

€100
 (−€30)

€100
 (−€30)
 (−€50)

€100
 (−€30)
defer −€50

€100
apply -€50
€50

Success −€50

Failure −€30

1

2

3

4

Initial balance: €100

Figure A.1 Vanilla Two-Phase Commit Figure A.2 Path-Sensitive Atomic Commit

162

A.2 Actor class definition

Listing A.1 Generated Scala code for the Rebel Account entity (slightly simplified)
1 class AccountActor extends RebelFSMActor
2 with RebelSpec[AccountState, AccountData, AccountCommand]{
3 val initialState: AccountState = Init
4 val allStates : Set[AccountState] = Set(Blocked, Closed, Init, Opened)
5 val finalStates : Set[AccountState] = Set(Closed)
6
7 def nextState: PartialFunction[(AccountState, AccountCommand), AccountState] = {
8 case (Uninit, _: Open) => Opened
9 case (Opened, _: Withdraw) => Opened
10 case (Opened, _: Deposit) => Opened
11 case (Opened, _: Close) => Closed
12 }
13
14 def checkPre(data: AccountData, now: DateTime)
15 : PartialFunction[AccountCommand, CheckResult] = {
16 case OpenAccount(accountNumber, initialDeposit) =>
17 checkPreCondition(initialDeposit ≥ EUR(50.00))
18 case Close() =>
19 checkPreCondition(data.get.balance.get == EUR(0.00))
20 case Withdraw(amount) =>
21 checkPre(amount > EUR(0.00)) combine
22 checkPre(data.get.balance.get - amount ≥ EUR(0.00))
23 case Deposit(amount) =>
24 checkPreCondition((amount > EUR(0.00)))
25 }
26
27 def apply(data: AccountData): PartialFunction[AccountCommand, AccountData] = {
28 case OpenAccount(accountNumber, initialDeposit) =>
29 Initialized(AccountData(accountNumber = Some(accountNumber),
30 balance = Some(initialDeposit)))
31 case Withdraw(amount) =>
32 data.map(r => r.copy(balance = r.balance.map(_ - amount)))
33 case Deposit(amount) =>
34 data.map(r => r.copy(balance = r.balance.map(_ + amount)))
35 }
36
37 def syncOps(data: RData): PartialFunction[AccountCommand, Set[SyncOp]] = Set.empty
38 }

163

A Path-Sensitive Atomic Commit

Listing A.2 Generated code corresponding to the sync action in the MoneyTransfer
1 def syncOps(data: MoneyTransferData)
2 : PartialFunction[MoneyTransferCommand, Set[SyncOp]] = {
3 case Book(amount, from, to) => Set(
4 SyncAction(ContactPoint(Account, from), Withdraw(amount)),
5 SyncAction(ContactPoint(Account, to), Deposit(amount))
6)
7 }

The translation of the MoneyTransfer class follows the same pattern. However,
in this case the method syncOps does not return the empty set. It is shown in
listing A.2. Each sync action is translated to a SyncAction with a ContactPoint,
which enables sending messages to the sync participant living somewhere in
the cluster, and the action on the sync participant itself.

A.3 Detailed Rebel implementation using Akka

FSM Each Rebel specification describes a single financial product. Each of
these products can have multiple instances, which we call entities, that can be
identified by their unique Rebel @key. This nicely maps to an actor definition
per specification, where each running instance of this actor is an entity. Since
a specification describes a state machine we piggyback on the Akka Domain
Specific Language (dsl) for Finite State Machines (fsm). Akka fsm provides
constructs for States, Data and Transitions. Notable features are Timeouts
when no commands are received and batching of events to the persistence
layer for improved performance.

Cluster The Akka cluster feature allows us to run our application on multiple
servers, by supplying a mechanism to add extra nodes to the Akka cluster and
location-transparently send messages to actors on remote cluster nodes. Akka
takes care of the setting up of the cluster and and the joining and leaving of
nodes. This is what allows our application to scale horizontally in the number
of nodes and therefore total the number of running actors and the amount
system resources.

164

A.3 Detailed Rebel implementation using Akka

Sharding Rebel specifications allow interaction with other specification in
pre-, postconditions and synchronised actions. Other entities can be accessed
by using the specification name and identity (@key), e.g. Account[this.from].
The identity referenced, can be from a specification field or event field.

Akka Sharding allows us to distribute the running actors over the cluster
nodes. Each cluster node can start a shard region, which is used to send
messages to a certain type of actor somewhere in the cluster. An actor can be
reached by a unique logical identifier. The sharding feature makes sure that for
each unique identifier only one actor is active in the whole cluster. If a message
is send to an identity that is not yet running, the corresponding actor will be
started somewhere in the sharding cluster.

Rebel identity nicely maps to the logical identity of Akka Sharding. In the
target application we use a sharding region per specification. This allows us
to send messages to each individual actor, without knowing or caring on
which node it is running in the actual Actor Cluster. If the entity is not yet
created, Sharding will make sure it is started and usable. This is called location
transparency.

Persistence Sharding allows us to distribute the actors over the system and
makes sure only once actor is running per entity. In order to be able to durably
store the data and state of an entity we use Akka Persistence.

Akka Persistence is based on Event Sourcing (es) and Command Query
Responsibility Segregation (cqrs). This means that for each event that a Rebel
entity can process, a Command and an Event is defined. Respectively denoting
the intention to let the event happen and the immutable proof that the event
occurred.

Event sourcing means that we create an immutable log of all sequential
immutable events that happened.

In our application this means that for each actor corresponding with a Rebel
entity we store the incoming command after a precondition check in our
persistency layer1 as an intention to execute this command. After successfully
persisted, the command is executed. If valid an event of the transition will be
committed to the persistence layer and side effects to the internal state will

1We use Cassandra, but many more journaling plugins are available. The queries are
configured to write and read with Quorum, so we know that each command is
persisted safely before it is handled.

165

A Path-Sensitive Atomic Commit

be executed. Akka Persistence makes sure other incomming commands are
delayed until the in-progress command is handled completely.

The result of recording all the events in a persisted log is that we can restart
an actor and replay all the events that happened and get it back into the last
committed state. Because Sharding makes sure there is only one actor with
the same logical identity running at a single moment, we can be sure that only
a single persistent actor is writing to the log and know that its internal entity
level state is consistent.2

In the event of an actor or cluster node crashes, the entity can be restarted
on another node without loss of data. This also means that the persistency guar-
antees are heavily dependent on the guarantees of the underlying persistence
journal implementation.

As persistence backend we use Cassandra 3. This is a production-ready
backend for Akka Persistence and also the mostly used.

HTTP The Rebel events are exposed as rest endpoint for each logical identifier
on which commands can be triggered to the corresponding actors.3 This uses
Akka http for non-blocking io and can be automatically derived from the
available generated specification and event implementations. We use the circe
json library to automatically derive json encoders and decoders for each of
the events, based on the generated case classes. This means that for the entire
rest interface almost no additional code has to be generated, next to the field
and event definitions. A Scala worksheet file is available to manually generate
example json-documents that the system accepts.

An Open api specification[104] definition is generated which corresponds to
the generated rest interface. This allows for easy consumption of the interface.

These endpoints are used for the experiment by the load generator.

2Also because the actor only handles a single message and therefore a single command
at the same time

3 url template: post /specification-name/:id/event-name

166

BPosters

This appendix contains all the posters created and presented during the
research for this dissertation.

167

B
PostersGoal: Scaling Backend for DSL

Challenge: Synchronisation is hard

Leveraging Domain Knowledge

Context: Reactive Architecture

Scaling the Bank
Tim Soethout (tim.soethout@ing.com)

Approach: Baseline + Improvement

Preliminary Results

Ongoing Work

tim.soethout@ing.com

Backend for implementing (non-)functional
requirements

Performant Synchronisation

Atom transaction — All involved entities should step, or none.

Two-Phase Commit is safe, well-known implementation

Locking, so not strict highly-available

Scales reasonably for evenly distributed load over entities

(embarrassingly parallel).

Busy entities with high contention can become bottleneck.

1. Make sure baseline infrastructure (Akka) performs as expected.

2. Implement sync in known correct way:  

Two-Phase Commit (2PC)

3. Improve synchronisation performance by leveraging domain

knowledge:

Control Dependent Atomic Commit

Evaluate performance improvement of CDAC

Also on realistic ING use case

Reordering variant of CDAC (static detection)

Transaction Account From Account To

uninit

validated

Start

booked

Book

failed

Fail

uninit

opened

Open

Withdraw

closed

Close

uninit

opened

Open

Deposit

closed

close

el
are
al

ght

r-
-

ducts,
al
to

-
te
se
al

nd
ys-
ld
d
es

ec-

nsis-

systems
of

ts
a-

event Open(initialDeposit: Money) {

preconditions {

initialDeposit >= EUR 0.00;

}

postconditions {

new this.balance == initialDeposit;

}

}

event Withdraw(amount: Money) {

preconditions {

amount > EUR 0.00;

this.balance - amount >= EUR 0.00;

}

postconditions {

new this.balance == this.balance - amount;

}

}

event Deposit(amount: Money) {

preconditions {

amount > EUR 0.00;

}

postconditions {

new this.balance == this.balance + amount;

}

}

Conditions on Transaction:

event Book(amount: Money, to: Iban, from: Iban) {

sync {

Account[from].withdraw(amount);

Account[to].deposit(amount);

}

}

Baseline Akka is horizontally scalable?

Two-Phase Commit gives decent performance for many use cases:

Low volume or

Low contention

Example Rebel specifications for Account and Transaction 
(left) Pre- & post-conditions & sync
(right) state machine of specification

10000

20000

30000

40000

2 4 6 8

N

X
(N
)

Throughput (X(N)) vs number of nodes (N) of increasingly complex baseline Akka functionality

Vanilla Akka HTTP

+ Sharding

+ Persistent Write

Account Entity
CDAC

-€30
Start -€30

Commit -€30

Start -€50

Commit -€50

-€50

€100
 (-€30)

€100
 (-€30)
 (-€50)

€100
 (-€30)
 -€50

€100
 -€30
 -€50 =
€70
 -€50 =
€20

Balance:
€100

Done -€50

Done -€30

1

2

3

4

-€30
Start -€30

Commit -€30

Start -€50

Commit -€50

-€50

€100
 (-€30)

€70
 -€50 =
€20

€100
 -€30 =
€70

Balance:
€100

Done -€30

Done -€30

1

2

3

4

Actual state
 (waiting on update)
 queued/committed update

Account Entity
Vanilla 2PC

Precondition:
Balance €0

time

Delay -€50

€100
 (-€50)=
€70

Vanilla 2PC:

1. Withdraw €30 action arrives;

triggers 2PC

2. Withdraw €50 arrives, delayed

because entity is locked

3. -€30 commits, effect applied; -€50

2PC starts

4. -€50 commits, effect applied 

CDAC:

1. Withdraw €30 action arrives;

triggers 2PC

2. Meanwhile Withdraw €50 arrives;

triggers 2PC; allowed, because not

dependent on in any in progress

transactions’ outcome

3. -€50 commits first, effect is queued

4. -€30 commits, both effect applied in

order

Hypothesis: CDAC results in lower latency by dynamically

detecting independent actions to run in parallel.

Reactive actor-based Architecture:

Each entity is an actor — natural mapping from/to specification

Actors are consistency boundaries

Event sourcing for persistence

Sharding and Location-transparency for scaling and resiliency

+ Actor Creation

Figure B.1 Poster presented at the satis’18 summer school. cdac is an earlier name for psac.

168

Scaling the Bank

Goal: Scaling Backend for DSL

Challenge: Synchronisation is hard

Leveraging Domain Knowledge

Context: Reactive Architecture

Tim Soethout (tim.soethout@ing.com)

Approach: Baseline + Improvement

Results

Future Work

tim.soethout@ing.com

Backend for implementing (non-)functional
requirements

Performant Synchronisation

Atomic transaction — All involved entities should step, or none

Two-Phase Commit is safe, well-known implementation

Locking, so not strict highly-available

Scales reasonably for evenly distributed load over entities

(embarrassingly parallel).

Busy entities with high contention can become bottleneck.

1. Make sure baseline infrastructure (Akka) performs as expected.

2. Implement sync in known correct way:  

Two-Phase Commit (2PC)

3. Improve runtime synchronisation performance by leveraging

domain knowledge:

Path-Sensitive Atomic Commit

Static offline analysis of independent actions

Formal evaluation of PSAC

Transaction Account From Account To

uninit

validated

Start

booked

Book

failed

Fail

uninit

opened

Open

Withdraw

closed

Close

uninit

opened

Open

Deposit

closed

close

independent

PSAC, and

congestion sce-

and further

ction 6).

ducts

in collab-

complexity

speci�ca-

current- and

speci�ca-

communication with

testing, and exe-

xample Rebel

identity

invariants, and life

Account

account

account

withdrawals

ransitions

specification Account(accountNumber: Iban @key, balance: Money)

lifecycle

initial init → opened: Open

opened → opened: Withdraw, Deposit

→ closed: Close

final closed

events

event Open(initialDeposit: Money)

preconditions : initialDeposit ≥ EUR 0.00

postconditions: post.balance ≡ initialDeposit

event Withdraw(amount: Money)

preconditions : amount > EUR 0.00, balance - amount ≥ EUR 0.00

postconditions: post.balance ≡ pre.balance - amount

event Deposit(amount: Money)

preconditions : amount > EUR 0.00

postconditions: post.balance ≡ pre.balance + amount

event Close()

specification Transaction

lifecycle

initial init → booked: Book

final booked

events

event Book(amount: Money, to: Iban, from: Iban)

sync:

Account[from].Withdraw(amount)

Account[to].Deposit(amount)

PSAC and 2PC have similar scalability

PSAC improves on 2PC on highly congested entities

Two-Phase Commit gives decent performance for many use cases:

Low volume or

Low contention

Example Rebel specifications for Account and Transaction 
(left) Pre- & post-conditions & sync
(right) state machine of specification

0k

1k

2k

3k

4k

0 5 10 15 20 25

N

X
(N

)

variant 10002PC 10002PC linear 1000PSAC 1000PSAC linear

Throughput (X(N)) vs number of nodes (N) of high-contention use case

2PC

Account Entity
PSAC

­€30

2P
C

Start ­€30

Commit ­€30

2P
C

Start ­€50

Commit ­€50

­€50

€100
 (­€30)

€100
 (­€30)
 (­€50)

€100
 (­€30)
 ­€50

€100
 ­€30
 ­€50 =
€70
 ­€50 =
€20

Balance:
€100

Done ­€50

Done ­€30

1

2

3

4

­€30

2P
C

Start ­€30

Commit ­€30

2P
C

Start ­€50

Commit ­€50

­€50

€100
 (­€30)

€70
 ­€50 =
€20

€100
 ­€30 =
€70

Balance:
€100

Done ­€50

Done ­€30

1

2

3

4

Legend: Actual state
 (pending update)
 queued/committed update

Account Entity
Vanilla 2PC

Precondition:
Balance €0

time

Delay ­€50

€70
 (­€50)

Vanilla 2PC:

1. Withdraw €30 action arrives;

triggers 2PC

2. Withdraw €50 arrives, delayed

because entity is locked

3. -€30 commits, effect applied; -€50

2PC starts

4. -€50 commits, effect applied 

PSAC:

1. Withdraw €30 action arrives;

triggers 2PC

2. Meanwhile Withdraw €50 arrives;

triggers 2PC; allowed, because not

dependent on in any in progress

transactions’ outcome

3. -€50 commits first, effect is queued

4. -€30 commits, both effect applied in

order

PSAC results in higher throughput by dynamically detecting

independent actions to run in parallel.

Reactive actor-based Architecture:

Each entity is an actor — natural mapping from/to specification

Actors are consistency boundaries

Event sourcing for persistence

Sharding and Location-transparency for scaling and resiliency

PSAC

Figure B.2 Poster presented at the sen symposium’19.

169

B
Posters

Banking on Domain Knowledge for
Faster Distributed Transactions

Tim Soethout

Context: Domain models capture business logic

Distributed applications are hard
Easy to mix up implementation details and business logic
dsls can help: capture domain knowledge without
implementation details

Goal: From DSL to scalable application
Source: Synchronizing state machines domain models with

guards and effects

Sync

Booking a transfer =
Withdrawing money + Depositing money

Account

opened
open close

withdraw, deposit

Account

opened

withdraw, deposit

open close
Money Transfer

validated
start

book

fail

Figure 1. Synchronized operation of Money Transfer between two Bank
Accounts

Target: Scalable and correct implementation

Challenge: Inherent trade-off between isolation and
performance

Consistency / Isolation ⇐⇒ Scalability / Performance

More coordination ⇒ Less room for performance
Less coordination ⇒ More room for optimization

Approach: Reduce coordination using Domain
Knowledge

Leverages semantic knowledge from domain models to safely
increase parallism
Clear on consistency/isolation trade-off (WIP)

Based on Independent Events [2]:
An incoming operation is accepted or rejected, independent of an

in-progress event’s commit or abort

How: Local Coordination Avoidance (LoCA)

Safely increase parallel transactions on (distributed) resources
Dynamic LoCAD [3]: run time discovery of independent
events;
e.g. multiple withdraws are always safe in parallel when
enough balance is available
Static LoCAS [2]: offline discovery using smt-solver, reducing
run-time overhead;
e.g. multiple deposits are always safe in parallel because it only
adds balance

LoCA Account

Balance: €100

+€10

€ € ✔
VoteAccept(+€10)

+€20

✔
VoteAccept(+€20)

Commit(+€20)

Delay +€20 effect

CommitAck(+€20)

Commit(+€10)

Apply +€10

Balance: €110

CommitAck(+€10)

Apply +€20

Balance: €130

1.

2.

3.

Figure 2. Parallel operations on LoCAS

1. LoCAS votes to accept a €10
deposit operation;

2. before commit, another €20
deposit operation starts
because independent of the
outcome of the first the
second’s preconditions hold;

3. effects are applied in arrival
order.

Parallel operations when statically or dynamically determined
they never inviolate local entity consistency

Results
Increased throughput and latency in high-contention scenarios

●●●●

●
●
●

●

●●
●

●

●●●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

0k

1k

2k

3k

0 10 20

Batch Size

T
h
ro

u
g
h
p
u
t
(t

p
s
)

Variant ● ● ● ●2PC LoCA
D

LoCA
S

LoCA
SD

Figure 3. Scalability of LoCA variants in a high-contention scenario

Current Work: Closing the loop
LoCA is not always serializable:

A state-based client-centric database isolation model in tla+
determines the isolation guarantees of algorithms [1]
Semantic Isolation: adapt to fairly determine serializability for
semantically higher-level operations

Full circle: No silver bullet, in the end we can only help business
experts to make the trade-off by providing clear feedback

References

[1] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju.
Automated validation of state-based client-centric isolation with TLA+.
In Software Engineering and Formal Methods. SEFM Collocated Workshop - ASYDE, 2020, LNCS.
doi:10.1007/978-3-030-67220-1_4.

[2] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju.
Static local coordination avoidance for distributed objects.
In 9th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized Control - AGERE 2019.
doi:10.1145/3358499.3361222.

[3] Tim Soethout, Tijs van der Storm, and Jurgen J. Vinju.
Path-sensitive atomic commit - local coordination avoidance for distributed transactions.
The Art, Science, and Engineering of Programming, 5(1):3, 2021.
doi:10.22152/programming-journal.org/2021/5/3.

tim.soethout@ing.com

Figure B.3 Poster presented at the sen symposium’20 and ict Open’20.

170

Path-Sensitive Atomic Commit: Local Coordination
Avoidance for Distributed Transactions

Tim Soethout, Tijs van der Storm, Jurgen J. Vinju

Goal: Domain Knowledge to Faster Transactions

Large distributed (enterprise) software systems are complex
Consistency / Isolation ⇐⇒ Scalability / Performance
dsls and models capture domain knowledge without
implementation details
Scope: Distributed concurrent objects with async messaging

From:
Domain Models

Sync

Booking a transfer =
Withdrawing money + Depositing money

Account

opened
open close

withdraw, deposit

Account

opened

withdraw, deposit

open close
Money Transfer

validated
start

book

fail

To:
Scalable/correct implementation

0k

100k

200k

300k

0 5 10 15

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
)

Problem: Bottleneck on high-contention objects
Tax office bank account:

Strong consistency requirements
Strict time bounds
Many tax and benefits money transfers
Potential bottleneck for high contention

Implementing Sync with 2pl/2pc
Two-Phase Locking (2pl): Concurrency Control: Single object, No
concurrent access to object
Two-Phase Commit (2pc): Atomic Commitment: Multiple objects,
Well-understood and Often used

Combined 2pl/2pc: Serializable Isolation guarantees
A lot of waiting, but enough balance for both, right? =⇒

Approach: Reduce coordination w/ Domain
Knowledge

Insight: Enough balance for both withdrawals and
the commit or abort of first operation does not influence second

Increase parallelism where it is safe

Enter Path-Sensitive Atomic Commit (psac):

Operations in parallel, when safe
Less waiting/locking of objects
Extra computing time vs. waiting on message IO

2pl/2pc vs. psac

€70

apply −€50

€20

Success −€50

Commit −€50

€70

 (−€50)

Start −€50

2
P

C

Commit −€30

Success −€30

€100

apply −€30

€70

Delay −€50

−€50

2
P

C

Start −€30

€100

 (−€30)

−€30

Account Object

2PL/2PC

time

Initial balance: €100

€100

apply −€30

defer −€50

€70

apply −€50

€20

Success −€30

Commit −€30

€100

 (−€30)

defer −€50

Success −€50

Commit −€50

2
P

C

Start −€50

€100

 (−€30)

 (−€50)

−€50

2
P

C

Start −€30

€100

 (−€30)

Account Object

PSAC

−€30

Initial balance: €100

Evaluation: Performance with varying contention
Message passing actors implementation of 2pl/2pc and psac.
Experiment data/results available @ doi:10.5281/zenodo.3405371

2pl/2pc is special case of psac with parallelism disabled
Experiments with varying contention:

NoSync – Operations without synchronization
Sync – Uniform money transfers over 100.000 accounts
Sync1000 – Uniform money transfers over 1000 accounts

Results

Similar throughput for NoSync & Sync, not enough contention

0.0k

1.0k

2.0k

3.0k

4.0k

0 5 10 15 20 25

Number of nodes

T
h
ro

u
g
h
p
u
t
(t

p
s
)

variant 10002PL/2PC 1000PSAC

Under high-contention Sync1000: Up to 1.8 times higher
median throughout

Conclusion

High contention bottleneck with 2pl/2pc
Safe parallelism with psac; currently looking into isolation
guarantees
Promising for creating high-performant implementations from
models

‹Programming› 2021, paper doi:10.22152/programming-journal.org/2021/5/3 tim.soethout@ing.com

Figure B.4 Poster presented at the <programming> conference’21.

171

Executive Summary

Large-scale enterprise it systems are complex and hard to maintain. Domain
models can help to manage complexity and separate implementation from
business functionality.

Consistency and isolation guarantees on data are paramount in these sys-
tems, especially in the financial domain. The sector requires approaches and
directions to maintain these guarantees and provide high performance, while
implementing the domain models correctly.

Using contracts – consisting of operations with guards and effects of domain
entities – the novel run-time algorithm Local-Coordination Avoidance runs
more operations concurrently than general purpose algorithms, while main-
taining consistency and isolation guarantees. This is backed by Return-Value
Serializability, which is a formalization of high-level serializability, based on
domain operations instead of low-level reads and writes. A (distributed) object
locally computes Local-Coordination Avoidance with Contract-Based Commu-
tativity. When all objects do this, this leads to global serializable behavior.

Performance evaluation on cloud hardware shows that throughput is in-
creased up to 1.6 times in high-contention scenarios for non-conflicting opera-
tions and latency is on par or better.

Local-Coordination Avoidance can increase throughput for large-scale, highly
scalable applications, while the underlying functional business logic does not
have to change, even though more performance is gained. In the worst case it
becomes clear where in the modeling these bottlenecks lie, and thus where
functionality can be changed to circumvent this.

Recommendations for ing Bank

Isolation guarantees on transactions spanning multiple micro-services are
often under-defined, e.g. should a long-running new account request be
stopped when later in the process the earlier-approved customer is a fraud-
ster or not? How does the software guard this? Historically, databases take
care of this by rolling back transactions if earlier checks are invalidated,
with calls to different distributed micro-services this is not automatically
in place. ing can decide to implement the Local-Coordination Avoidance

173

Executive Summary

algorithm inside micro-services, its middleware or software sdk to manage
isolation, without blocking other operations.
ing can decide to create an Akka-based platform, leveraging the software
and research results, to replace core banking and other software.
ing can asses where in current applications speed-up using non-conflicting
operations is possible. Either by statically analyzing the code base and
models to detect when operations are always non-conflicting or at run time
by instrumenting existing applications to detect non-conflicting operations.
ing could consider that a new niche of scalable applications is forming
that – under different kinds of loads – still perform well, and thus that
historical changes in domain logic because of performance issues (e.g. tax
wash accounts, offline batch processing and shadow bookkeeping) are no
longer necessary.
ing could consider that when aiming for an always online worldwide bank,
that always available and fast-response times to customer (web) requests
requires local decisions operations without coordination.

174

Titles in the IPA Dissertation Series since 2019

S.M.J. de Putter. Verification of Con-
current Systems in a Model-Driven
Engineering Workflow. Faculty of
Mathematics and Computer Science,
TU/e. 2019-01

S.M. Thaler. Automation for Infor-
mation Security using Machine Learn-
ing. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova. Prac-
tical General Top-down Parsers. Fac-
ulty of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Prob-
lems. Faculty of Mathematics and
Computer Science, TU/e. 2019-05

J. Moerman. Nominal Techniques and
Black Box Testing for Automata Learn-
ing. Faculty of Science, Mathematics
and Computer Science, RU. 2019-06

V. Bloemen. Strong Connectivity and
Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2019-07

T.H.A. Castermans. Algorithms for Vi-
sualization in Digital Humanities. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2019-08

W.M. Sonke. Algorithms for River
Network Analysis. Faculty of Math-
ematics and Computer Science,
TU/e. 2019-09

J.J.G. Meijer. Efficient Learning and
Analysis of System Behavior. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API evo-
lution on API consumers and how this
can be affected by API producers and
language designers. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency
Verification. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2019-13

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational
and Declarative Views. Faculty of Sci-
ence and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Computer
Science, RU. 2020-02

R.A. van Rozen. Languages of Games
and Play: Automating Game Design &

Enabling Live Programming. Faculty
of Science, UvA. 2020-03
B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. 2020-04
N. Naus. Assisting End Users in Work-
flow Systems. Faculty of Science,
UU. 2020-05
J.J.H.M. Wulms. Stability of Geo-
metric Algorithms. Faculty of Math-
ematics and Computer Science,
TU/e. 2020-06
T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty of
Mathematics and Computer Science,
TU/e. 2020-07
P. van den Bos. Coverage and Games
in Model-Based Testing. Faculty of Sci-
ence, RU. 2020-08
M.F.M. Sondag. Algorithms for Co-
herent Rectangular Visualizations. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2020-09
D.Frumin. Concurrent Separation
Logics for Safety, Refinement, and Secu-
rity. Faculty of Science, Mathematics
and Computer Science, RU. 2021-01
A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Sci-
ence, VUA. 2021-02
P. Derakhshanfar. Carving Informa-
tion Sources to Drive Search-based
Crash Reproduction and Test Case Gen-
eration. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Sci-
ence, TUD. 2021-03

K. Aslam. Deriving Behavioral Speci-
fications of Industrial Software Com-
ponents. Faculty of Mathematics and
Computer Science, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2021-05

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and
Computer Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled Auto-
mated Reasoning. Faculty of Math-
ematics and Computer Science,
TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Pro-
gramming Environments for DSLs. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2022-04

G.F.C. Dupont. Network Security
Monitoring in Environments where
Digital and Physical Safety are Criti-
cal. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2022-06

	Acknowledgements
	1 Introduction
	1.1 Background
	1.1.1 Consistency and Isolation
	1.1.2 Coordination Avoidance

	1.2 Coordination in Distributed Systems
	1.2.1 Coordination Avoidance by Example

	1.3 Context within ING Bank
	1.4 Approach
	1.4.1 Research Questions
	1.4.2 Local-Coordination Avoidance

	1.5 Origins of the Chapters

	2 Path-Sensitive Atomic Commit: Local Coordination Avoidance for Distributed Transactions
	2.1 Introduction
	2.2 Background: Distributed Transactions
	2.3 Path-Sensitive Atomic Commit (PSAC)
	2.3.1 PSAC in action
	2.3.2 PSAC Algorithm

	2.4 Implementation: Rebel and Akka
	2.4.1 Rebel: a DSL for Financial Products
	2.4.2 Executing Rebel on Akka

	2.5 Performance Evaluation
	2.5.1 Research Objectives
	2.5.2 Deployment Setup
	2.5.3 Baseline Experiments: Akka Scalability
	2.5.4 Synchronization Experiments: PSAC vs 2PL/2PC

	2.6 Discussion
	2.6.1 Threats to Validity
	2.6.2 Limitations
	2.6.3 Evaluation

	2.7 Related work
	2.8 Further Directions
	2.9 Conclusion

	3 Static Local Coordination Avoidance for Distributed Objects
	3.1 Introduction
	3.2 Independent Events
	3.2.1 Bank Account Example
	3.2.2 Independent Events
	3.2.3 Statically Independent Events
	3.2.4 Computing SIE
	3.2.5 Always Accept or Always Reject?

	3.3 Local Coordination Avoidance (LoCA)
	3.3.1 Static LoCA

	3.4 Evaluation
	3.4.1 Independence in Realistic Scenarios (rq 1)
	3.4.2 Throughput and Latency (rq 2)

	3.5 Discussion
	3.6 Related Work
	3.7 Future Work
	3.8 Conclusion

	4 Automated Validation of State-Based Client-Centric Isolation with TLA+
	4.1 Introduction
	4.2 Background: State-Based Client-Centric Consistency
	4.3 Formalizing CI in TLA+
	4.4 CI examples
	4.5 Model Checking Algorithms Using CI
	4.5.1 Formalizing 2PL/2PC
	4.5.2 Model Checking 2PL/2PC
	4.5.3 2PL/2PC Bug Seeding

	4.6 Discussion and Future Work
	4.7 Conclusion

	5 Safely Exploiting Contract-Based Return-Value Commutativity for Faster Serializable Transactions
	5.1 Introduction
	5.2 Background: State-Dependent Commutativity and Return-Value Commutativity
	5.3 Contract-Based Commutativity: actionable SDC and RVC
	5.3.1 Computing CBC at Run Time
	5.3.2 CBC for Multiple In-progress Operations

	5.4 Return-Value Serializability
	5.5 Local Coordination Avoidance (LoCA)
	5.5.1 LoCA with Independent Events

	5.6 Model Checking LoCA and RV-SER
	5.7 Initial Validation
	5.8 Discussion
	5.8.1 Threats to Validity

	5.9 Related Work
	5.10 Conclusion

	6 Design and Architecture
	6.1 Introduction
	6.2 Distributed Actors in rebel-runtime-lib
	6.3 Experiment Runner
	6.4 rebel-conflictors: rebel-sie and rebel-cbc
	6.5 Verifying Isolation in TLA+ with isolation-specs
	6.6 Summary

	7 Conclusion
	7.1 Research Questions
	7.1.1 RQ 1: Local Coordination Avoidance with Independent Operations
	7.1.2 RQ 2: Local Coordination Avoidance at Run Time
	7.1.3 RQ 3: Local Coordination Avoidance at Compile Time
	7.1.4 RQ 4: Performance Benefits in High Contention Scenarios
	7.1.5 RQ 5: Isolation Guarantees

	7.2 Discussion and Further Directions
	7.2.1 Implications for Research
	7.2.2 Implications for Practitioners
	7.2.3 Further Directions

	References

	Bibliography
	A Path-Sensitive Atomic Commit
	A.1 Example 2PL/2PC and PSAC diagrams with abort
	A.2 Actor class definition
	A.3 Detailed Rebel implementation using Akka

	B Posters
	Executive Summary

