Radboud Repository

Radboud University Nijmegen {§

1
g

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
https://repository.ubn.ru.nl/handle/2066/248590

Please be advised that this information was generated on 2022-12-10 and may be subject to
change.

https://repository.ubn.ru.nl/handle/2066/248590

DESIGNING ROBUST AUTONOMOUS SYSTEMS

DESIGNING ROBUST AUTONOMOUS SYSTEMS

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr. J. H.J.M. van Krieken,
volgens besluit van het college voor promoties
in het openbaar te verdedigen op

vrijdag 22 april 2022

om 10.30 uur precies

door

Alexandru Constantin Serban

geboren op 10 mei 1992
Macin, Roemenié

Promotor(en):

Dr. ir. E. Poll
Prof. dr. ir. JM.W. Visser (Universiteit Leiden)

Manuscriptcommissie:

Prof. dr. L. Batina

Prof. dr. I. Crnkovic (Chalmers Tekniska Hogskola, Zweden)

Prof. dr. A. Van Deursen (Technische Universiteit Delft)

Prof. dr. K. Kersting (Technische Universitat Darmstadt, Duitsland)
Prof. dr. I. Valera (Universitiat des Saarlandes, Duitsland)

The work in the thesis has been carried out under the support of NWO through the i-CAVE
program.

% N/%70

Radboud Universiteit §

M iNe ¢ Nederlandse Organisatie voor Wetenschappelijk Onderzoek

€15 Si-cavE

Good tests kill flawed theories.
We remain alive to guess again.

Karl Popper

vii

CONTENTS

Summary xi
Acknowledgements xiii
1 Introduction 1
1.1 Smallandlargeworlds. oo 2

1.2 Researchchallenges 3

1.3 Researchplan 4
1.3.1 PartI- Designing robust systems 4

1.3.2 PartII - Designing robust components. 6

14 Researchmethodology 7

1.5 Researchoverview 8
1.5.1 Publications supporting the chapters. 8

1.5.2 Publications not used in the thesis 9

1.6 Context in machine learning or artificial intelligence. 10

1.7 Datamanagemento 10

I Designing robust systems 13
2 Software Architecture for Machine Learning 15
21 Introduction L 16

2.2 Background and related worko 16

23 Studydesign. 18

24 Results. 23
241 ResultsfromtheSLR. 23

2.4.2 Results from the interviews L. 25

243 Resultsfromthesurvey 26

25 Discussion e 31

2.6 Conclusions and futureresearch 32

3 Probabilistic Models for Software Architecture 35
3.1 Introduction L 36

3.2 Background and related worko 36

3.3 Uncertainty sources and Bayesian Networks 38

3.4 Modeling Uncertainty During Design 39

3.5 Qualitative architecture evaluation. 41

3.6 Quantitative architecture evaluation 42

3.7 Using architectural patterns to mitigate uncertainty 46

3.8 Conclusions and futureresearch 48

viii CONTENTS

4 Software Engineering for Machine Learning 51
41 Introduction 52

4.2 Background and related worko oo 53

4.3 Mining practices from literature 54

44 Studydesign.o 56

4.5 Findings on practice adoption L L. 58

4.6 Analysis of practicesand effects 63

4.7 Discussion Lo 67

4.8 Conclusions and futureresearch 68

II Designing robust components 71
5 Adversarial Machine Learning 73
51 Introduction L 74

5.2 ML background and adversarial examples 74

5.3 Methods to generate adversarial examples 78

5.4 Defences against adversarial examples 79

5.5 Discussion and Conclusions 80

56 Conclusions 82

6 Repulsive Adversarial Prototypes 83
6.1 Introduction 84

6.2 Background and related worko 84

6.3 Repulsive prototypes for robustness 0L 86

6.4 Empirical evaluation L L L L 87
6.4.1 Prototype Selection 88

6.4.2 CIFAR-10. e 89

643 CIFAR-100 e 91

6.4.4 Black-box evaluation. 92

6.5 Discussiono e e 93

6.6 Conclusions and futureresearch 95

7 Meta Adversarial Learning 97
7.1 Introduction 98

7.2 Background and related worko o000 98

7.3 Meta adversarial learning oL L Lo 99

7.4 Empirical evaluation oL oL Lo 101
741 MNIST. e 102

7.4.2 CIFAR-10. e 103

7.5 Discussiono u e 104

7.6 Conclusions and futureresearch 105

8 Verifiable Planning under Uncertainty 107
81 Introduction 108

8.2 Background and related worko 109

8.3 Strategy synthesis Lo 111

8.3.1 Learning strategies with recurrent neural networks 112

CONTENTS ix
8.3.2 Strategy extraction and evaluation. 113

8.3.3 Improving thestrategy. 114

8.3.4 Correctness and termination. L. 115

84 Empirical evaluation L Lo 115
84.1 Temporallogicexamples. 116

8.4.2 Comparison to existing POMDP examples 118

8.5 Conclusions and futureresearch 118

9 Conclusions 121
9.1 Contributions L 122

9.2 Reflection on research questions 124

9.3 Futureresearch. 127
Bibliography 129

xi

SUMMARY

Following the recent surge in adoption of machine learning, the negative impact that well-
intended but ill-considered development of these technologies can have on organisations,
users or society is now widely recognised. To address these issues, researchers, policy
makers and other stakeholders have advanced methods and guidelines for the development
of ethical, lawful and robust machine learning.

Robustness is the ability of a system to cope with errors and erroneous inputs during
execution and is considered one of the most important challenges to large scale deployment
of machine learning technologies for which technical solutions can be developed. In this
thesis we tackle several challenges related to the design, development and deployment of
robust autonomous systems. We regard autonomous systems as software systems capable to
perceive the environment they operate it, reason about it and plan future actions — where
both perception and planning are implemented using machine learning algorithms. While
we focus on a particular class of machine learning algorithms, called deep learning, many
of the practices and methods proposed generalise to the broader field of machine learning.

Since trying to achieve robustness has broad implications along each stage of the
software development life cycle for autonomous systems, we propose a holistic approach
to achieve robustness that incorporates (i) a system wide, macro perspective and (ii) an
algorithmic, micro perspective.

In the first part of the thesis we discuss the (i) macro perspective through the lens of
software engineering for autonomous systems. We tackle robustness challenges at all stages
of the development life cycle, although we focus on software architecture, which is one
of the first stages of the life cycle. We introduce and validate a catalogue of architectural
tactics that can be used to satisfy quality attributes of systems with machine learning
components and a catalogue of engineering best practices for their development. Moreover,
we introduce a software architecture evaluation method for systems with deep learning
components that focuses on their inherent uncertainty.

In the second part of the thesis we discuss the (ii) micro, algorithmic perspective. We
focus on developing robust computer vision algorithms against intentional perturbations
called adversarial examples and on developing formally verifiable deep learning based
planning algorithms. We introduce two methods that decrease or completely remove the
need to add adversarial examples to the training process, which can decrease training time
for robust computer vision algorithms by a factor of seven. Moreover, we present a method
to reduce the complexity of deep learning based planning algorithms, which makes formal
verification of these algorithms possible.

xiii

ACKNOWLEDGEMENTS

I recall the train journey back from the first interview with Erik in Amsterdam. One of
the questions he asked me was why would I like to do research and get the position. My
answer was because I thought it was fun. On the way back, reflecting on the interview, I
found my answer naive and thought would never get the position. Looking back now, no
matter how many twists and turns the PhD journey had, it never stopped being fun.

First and foremost I would like to say thank you, Erik. You’ve been more than a mentor
to me. I learned so many things from you, professionally and personally, that I would be a
completely different person without them. Thank you for your patience, for your extensive
support and for constantly pushing me out of my bubble. Your wittiness and humor made
every trip to Nijmegen fun, no matter what NS had planned that day.

To Joost, thank you for your pragmatism and vision. You taught me that ideas need to
be focused, embedded in context and practical. Thank you for also nurturing the philosophy
part of the PhD. I always enjoyed a brief digression on Wittgenstein or on the profound
differences between Popper and Kuhn.

Magiel, thank you for your support and for always being a rational voice. Our discus-
sions helped me keep my feet on the ground and put things in perspective. Also thank you
for hosting me at SIG, an experience from which I learnt the most.

Writing this thesis has been a collective effort and I am grateful to all the collaborators
who made it possible and helped brainstorm ideas. Thank you Holger, Koen, Loek, Nils,
Sangeeth and Yanja for being part of the team and the manuscript committee for reviewing
the manuscript and for providing feedback.

To the amazing people that coloured this journey, words can not describe my gratitude
for the unforgettable moments we spent together. A warm thank you to the SIG team,
from which I learnt so much about software engineering over coffee or lunch. To Dan,
Kiril and Laura for keeping the Rotterdam group together and for organising countless
trips and parties. To Aykan, Dimitris, Gaby and Moustafa for making the weekends fly. To
Bogdan for pub crawling and Sunday cappuccinos. To Enrique for being so kind. To Cris
and Mircea for endless discussions about the universe. To Xef for the pandemic adventures.
To Alin and Georgian for unconditional friendship and invaluable support. And especially
to my family for always supporting my endeavours and making the world feel small.

Constanta, February 2022
Alex

INTRODUCTION

Following decades of large scale data collection from software systems, the world is
increasingly relying on machine learning models to extract insights from data and predict
future events. Together with the proliferation of software systems across all levels of
our society, which enables the collection and integration of larger amounts of data, the
influence of machine learning models on human lives and our society is expected to increase
substantially. Machine learning is an application of artificial intelligence which builds
technical models of data to help computers learn new tasks without instructions.

Daily, we already rely on autonomous decisions made by machine learning models to
curate our e-mails and news, to guide our shopping or to choose which movies to watch.
And, unfortunately, we can already observe (unintentional) harm caused by improper
development of these technologies, such as the perpetuation of social bias in digital products
or the creation of filter bubbles.

Yet, we can expect larger unintentional harm once decisions made by machine learning
models become mission- and safety-critical, as is the case for self-driving cars or automatic
diagnostic systems. To prevent autonomous decisions from causing harm to human lives,
society, or the environment, machine learning models (and the systems they are part of)
have to be robust against a wide set of technical and societal factors.

The challenges associated with the development of robust systems that incorporate
machine learning models are well acknowledged in research and by policy makers or
advisers. For example, the European Commission published a set of guidelines for the
development of trustworthy artificial intelligence systems in Europe [106].

The guidelines make technical and societal robustness one of the three pillars for trust-
worthiness, along with ethical and lawful development. From these pillars, robustness is
considered the main challenge for which technical solutions can be developed. Nonetheless,
while the challenges associated with robustness are well acknowledged, the solutions fall
short. For example, after more than a decade of research in adversarial examples — a known
threat to robustness of machine learning models - all defences against adversarial examples
have been breached and no technical solution exists to decisively overcome this threat.

In this thesis, we propose to approach the challenges stemming from the design, devel-
opment and deployment of robust autonomous systems holistically, by tackling them both

2 1 INTRODUCTION

at a (macro) system level and by zooming in on specific (micro) algorithmic challenges. We
regard autonomous systems as software systems capable to perceive the environment they
operate in, reason about it and plan future actions - where both perception and planning
are based on machine learning models (as for instance in autonomous vehicles). While we
focus on a class of machine learning algorithms, called deep learning, many of the practices
and methods that we propose generalise to the broader field of machine learning.

We believe a holistic approach is needed to achieve robustness and tackle its broad
implications along each stage of the development life cycle: from system, data and algorithm
design, to operation and governance.

1.1 SMALL AND LARGE WORLDS

When describing statistical inference, Savage [231] used a metaphorical distinction between
small and large worlds. Making a decision in the large world, such as predicting the
outcomes of an action, entails that every relevant information describing the state of the
world is known. This is rarely the case in real life, since the complexity of the world hardly
ever reveals itself in complete detail. Instead, when faced with decisions we are bound to
only use a fraction of the potentially relevant information, equivalent to a smaller world.

The large world is a complete and highly detailed description of the information relevant
to a decision, while the small world is a less detailed or incomplete version of the large
world. For example, when Christopher Columbus set sail west towards the East Indies,
he only had access to a part of the information relevant for his trip: he knew that Earth
is spherical. He believed that the planet is smaller than it is in reality, which led to his
decision to set sail west, instead of east. Columbus made a decision based on a small world,
which turned out to be wrong in the large world, but favorable for his voyage [167].

Machine learning models can be defined using the same approach: a model is built
based on a small world with the aim of deploying it in the large world. The small world is
always an incomplete representation of the large world, which often includes favorable
assumptions. Since in the large world there may be events not modeled in the small world,
we expect these models to make mistakes once deployed.

Together with the availability of large data sets we are witnessing a prevalence of
machine learning models deployed in the large world. These models allow inductive
inference in applications where deductive inference falls short. For example, the models
are used to identify objects in streams of videos, classify them, or translate speech to text.
More broadly, the models seek solutions to problems for which writing specifications or
finding analytical solutions is currently beyond reach.

The increasing reliance on machine learning has been powered by innovations and
popularisation of machine learning models that allow a better representation of the small
world and avoid favourable assumptions. In particular, attention has focused on deep
learning models, which are very good at representing small worlds from raw data with
minimal assumptions about the structure of the worlds. Nonetheless, the popularity of
deep learning does not entail that other machine learning models are not relevant. It rather
acted as a catalyst and attracted general attention for all classes of machine learning models.
While in this thesis we focus more on deep learning, many practices and methods proposed
generalise to the broader field of machine learning.

1.2 RESEARCH CHALLENGES 3

1.2 RESEARCH CHALLENGES

The design, development and deployment of robust autonomous systems with deep learning
components raises several technical and organisational challenges. In particular, regarding
(i) how deep learning components can be integrated in a robust way in larger systems and
(i) how robust deep learning models can be developed.

To integrate deep learning components in larger systems, engineering principles that
can ensure functional and non-functional requirements, such as robustness, reliability or
availability must be applied or new principles tailored to deep learning must be developed.
A complication here is that deep learning models are considered opaque and difficult to
interpret. For example, the expressiveness of deep learning models to represent small worlds
is given by their large number of parameters. For instance, a basic image classification
algorithm has an order of 10° parameters [102]. This large number of parameters makes
reasoning about the model’s decisions and functional (or non-functional) requirements
difficult (in most cases practically impossible). It also hinders the adoption of traditional
methods for proving the correctness of algorithms, such as formal verification.

Moreover, because the performance of deep learning components is strongly connected
with the data sets describing the world, the development of software with deep learning
components requires organisations to adopt a different development process from traditional
software. For example, the evolving nature of the large world and the data driven behaviour
of deep learning components requires teams to adopt faster, experimental, data collection
and development iterations. Also, the incapacity to represent the large world based on the
data collected (the small world) requires teams to adopt a thorough strategy for monitoring
deployed models and for managing incidents. Likewise, the inherent uncertainty of deep
learning models together with their probabilistic behaviour requires teams to adopt new
strategies for software design and new tactics to satisfy non functional requirements such
as robustness, reliability, or redundancy. Therefore, the first challenge we identify is How
to develop robust systems with deep learning components?

A challenge that follows naturally is How to develop robust deep learning models?,
i.e., how to develop more robust components of a system. It is generally accepted that more
data describing the world allows training better deep learning models. However, to model
complex tasks reliable (such as image classification), larger data collections than those
available are needed. In fact, theoretical results suggest the size of the data sets needed to
reliable model complex tasks is currently beyond reach [256]. Therefore, deep learning
models rely on the favorable assumption that the data from the large world are in close
resemblance to the data from the small world.

Nevertheless, when faced with a complex and evolving large world, in which the
distribution of test data shifts naturally over time, deep learning models exhibit low robustness.
This lack of robustness manifests when the test data are slightly perturbed and severely
threatens adoption of deep learning in contexts where decisions may have a negative
impact on human lives, or on the environment [248]. For example, adding small intentional
perturbations to input data — called adversarial examples — can easily induce undesired
behaviours. This lack of robustness can be exploited by malicious actors in security sensitive
contexts [242].

4 1 INTRODUCTION

1.3 RESEARCH PLAN

The challenges mentioned above motivate a holistic approach to achieving robustness
for autonomous systems. As previously mentioned, we regard autonomous systems as
software systems capable to perceive the environment they operate in, reason about it and
plan future actions. Both perception and planning are tasks where deep learning models
excel over other machine learning models. Furthermore, recent initiatives show that
deep learning models can be used to combine perception and planning in one model and
outperform methods where the two tasks are solved separately [148]. This type of design
decisions, where some functionality can be implemented as one or many components,
further motivates the holistic approach to robustness because it involves both the system
aspect, where the components and their integration are discussed, and the algorithmic
aspect, where specific algorithms are chosen for development.

Autonomous systems also consist of multiple traditional software components, with
which deep learning components have to be integrated. In most cases, these systems have
stringent safety requirements. For example, in the context of i-CAVE! - the research
project in which this PhD thesis was carried out — the goal was to evolve vehicles into
autonomous systems by deploying computer vision and planning algorithms. We started
our journey with explicit investigations into autonomous vehicles, but soon realised that
the challenges faced in this use case generalise to the broader field of autonomous systems.

In light of the challenges mentioned above, we ask the question How do we design,
develop and deploy robust autonomous systems with deep learning components? As mentioned
above, we approach this questions at two levels: a system level that tackles robustness from
a software engineering angle, and an algorithmic level that tackles robustness from an
algorithmic angle. In the first part of the thesis we look at software engineering challenges
for building robust autonomous systems and ways to overcome them. Our work spans
all stages of the software development life cycle for autonomous systems, although we
maintain a focus on the stage where the software architecture of a system is defined. In
the second part of the thesis we look at methods to design robust deep learning models for
computer vision and planning. In particular, we discuss robustness challenges for computer
vision algorithms against intentional perturbations, also called adversarial examples and the
challenge caused by the inability to formally verify deep learning based planning algorithms.

1.3.1 PART I - DESIGNING ROBUST SYSTEMS

We begin by studying the challenges that arise when the software architecture of a system
is being defined. Software architecture is a step in the software development life-cycle that
consists of designing, documenting, evaluating and evolving software architectures [166].
At design time, decisions about the structure of the system, the communication between
components and the functional and non-functional requirements are made [237]. Moreover,
the software architecture includes decisions about running, maintaining and updating a
system in a production environment [299]. Since software architecture is one of the first
stages in the software development life-cycle, where trade-offs between quality attributes
of a system are decided, it is a natural step to begin with.

https://i-cave.nl

1.3 RESEARCH PLAN 5

Recurring solutions to issues in software architecture are abstracted to general and
reusable solutions called architectural patterns or styles. Lower level decisions with respect
to quality attributes of a system are also called architectural tactics [17]. Tactics focus strictly
on quality attributes and capture knowledge about the relationship between architectural
decisions and their outcomes in terms of improving a quality attribute of a system. In
this sense, tactics are focused on smaller issues than patterns and are more dependent to
context. For example, a tactic would address issues such as performance by deciding the
number of units of concurrency in a component, while a pattern would define the higher
level decisions about components and connectors and decide on how different instances of
the same component can run in parallel.

In Chapter 2, we address the question How can software systems be (re-)architected
to enable robust integration of deep learning components? This is one of the first steps
for integrating deep learning components in software systems and for deploying them
in the large world. To answer the question, we conducted a mixed-methods empirical
study consisting of (i) a systematic literature review to identify the challenges and their
solutions in software architecture for deep learning, (ii) semi-structured interviews with
practitioners to qualitatively complement the initial findings, and (iii) a global survey to
quantitatively validate the set of challenges and their solutions. This resulted in twenty
challenges and solutions for (re-)architecting systems with deep learning components. The
results indicate, for example, that traditional software architecture challenges (e.g., com-
ponent coupling) also play an important role when using deep learning components, but
there are also important challenges specific only to deep learning (e.g., the need for contin-
uously retraining). Moreover, the results indicate that architectural decision drivers which
should be emphasised by deep learning, such as privacy, play a marginal role compared to
traditional decision drivers, such as scalability or interoperability. Using the survey, we
were able to establish a stronger link between the solutions and software quality attributes,
which enabled us to provide twenty architectural tactics used to satisfy individual quality
requirements of systems with deep learning components. Altogether, the results from
this chapter can be interpreted as a first empirical framework that supports the process of
(re-)architecting software systems with deep learning components.

In Chapter 3, we argue that deep learning components add a new dimension to tradi-
tional software architecture design. This dimension captures the inability to verify that
deep learning components satisfy their intended functionality and are able to cope with
stochastic events coming from the operational environment [244]. Thus, it translates to
uncertainty regarding the functionality of deep learning components in the large world,
which contrasts with traditional, deterministic, software.

Although researchers in software architecture have developed methods to tackle un-
certainty at design time [71, 170] or at run-time [70], these methods focused primar-
ily on tackling uncertainty related to the parameters used to model a software system,
its context or to the instrumentation [70, 71, 170] (e.g., the uncertainty regarding hard-
ware performance [72]). However, deep learning components add a new source of un-
certainty, which was only briefly explored previously — uncertainty due to “automated
learning" [81, 163, 290].

Motivated by this gap, we address the question How to compare software architectures
with deep learning components? To answer this question, we introduce a method to evaluate

6 1 INTRODUCTION

architecture alternatives for software using both traditional and deep learning components.
The method supports reasoning over how architectural patterns can mitigate uncertainty
and enables comparison of different architectures combining deep learning and traditional
software components. While domain-agnostic and suitable for any system where uncer-
tainty plays a central role, we validate our approach using as example a perception system
for autonomous driving. We show that design patterns used in safety-critical systems [13]
can be used to decrease the uncertainty of a system with deep learning components and
lead to more robust autonomous systems.

In Chapter 4, we address the question How do teams design, develop and deploy software
with deep learning components? To answer this question, we ran a multi-vocal literature
review and compiled from the selected literature a catalogue of software engineering best
practices for deep learning applications. The practices and their perceived effects were
validated through a large survey with practitioners around the world. The results of the
survey show that the practices can be used in any context, independent of the data type or
of the algorithms used. Moreover, the results show that adoption of best practices increases
with team size and with team experience. The list of practices and the analysis of responses
provides a quantitative basis for quality assessment and improvement for teams developing
software with deep learning components.

1.3.2 PART II - DESIGNING ROBUST COMPONENTS

In the second part of the thesis, we zoom in on algorithmic robustness for perception and
planning. We focus on computer vision and planning because they play an important role
in autonomy. In particular, we are concerned with robustness of computer vision algo-
rithms against small, intentional, perturbations also called adversarial examples. Achieving
robustness against these perturbations requires to complement the training data set with
perturbed samples (adversarial training); a procedure which negatively impacts the training
time and the number of samples. In this context, we address the question How can we
reduce the impact of adversarial training on robust computer vision algorithms?

We begin in Chapter 5 with a brief introduction to adversarial examples and discuss
their implications to robustness and security of deep learning models.

Following up, in Chapter 6, we introduce a method to partition the output space of
classifiers into class prototypes with large separation and train deep learning models to
preserve the separation. The optimisation procedure to obtain the prototypes increases the
distance between their centres based on a metric defined in the attack model. Therefore,
we call the prototypes repulsive prototypes. We show empirically that models trained with
repulsive prototypes are almost as robust as adversarially trained models, without the
need to generate perturbed data for training. Moreover, models trained with repulsive
prototypes are more resilient to large perturbations than adversarially trained algorithms.

Next, in Chapter 7, we introduce a method to train robust classifiers with small training
data sets and transfer the knowledge learned about robustness between different models.
Towards this goal, we train a meta-optimiser which learns to robustly optimise a model
using perturbed samples and use the meta optimiser to transfer the knowledge learned
to new models. Thus, the method eliminates the need of adversarial training once the
meta-optimiser is trained. We show empirically that the meta-optimiser improves robust-

1.4 RESEARCH METHODOLOGY 7

ness consistently across different architectures and data sets, suggesting it is possible to
automatically patch robustness vulnerabilities.

In Chapter 8, we investigate the robustness of deep learning based planning algorithms,
where formal verification can not be applied directly because the planning algorithms are
too complex. In this context, we answer the question Can we reduce the complexity of deep
learning based planning algorithms and allow formal verification? In particular, we study the
problem of strategy synthesis for partially observable Markov decision processes, where
the strategy is synthesised by a deep learning model. To determine if the strategies adhere
to (probabilistic) temporal logic constraints is computationally intractable and theoretically
hard. In order to overcome this limitation, we introduce a method that combines techniques
from deep learning and formal verification. The strategy is learned using a recurrent neural
network and restricted to represent a finite memory strategy, which can be implemented
on a specific partially observable Markov decision process. For the resulting finite Markov
chain, formal verification techniques to be used in order to provide guarantees against
temporal logic specifications.

The thesis ends with a discussion and conclusions in Chapter 9.

1.4 RESEARCH METHODOLOGY

In the first part of the thesis we apply various methods from empirical software engineering.
In particular, we used four methods from this field: systematic literature reviews, interviews,
surveys and case studies [68].

Systematic literature reviews are widely used in empirical software engineering and
provide a structured process to identify, evaluate, and interpret the information available
regarding a research topic [68, 133, 134]. They consist of an analytical review of the available
literature, from which common themes can be distilled. Since software engineering is a
practitioner-driven process, we combined literature reviews of academic and non academic
literature [82].

Interviews are widely used to collect qualitative data about a topic and to add depth to
quantitative observations. We used interviews both in an exploratory manner, to uncover
research challenges and solutions adopted by practitioners and in a confirmatory manner,
as a way to validate research outcomes [110].

Surveys are used to identify characteristics of software engineering practitioners,
such as the solutions they adopt for various challenges. It is generally recommended to
compare survey results with other empirical methods, in order to avoid bias stemming
from the survey respondents [55, 135]. In this thesis, we combined outcomes of surveys
with systematic literature reviews and interviews, an approach that is characterised as
mixed-methods research.

Case studies are used in an exploratory manner, as initial investigations of some
phenomena in order to derive theories, or in a confirmatory manner, to test hypotheses or
existing theories [68]. In this thesis, we used case studies in a confirmatory manner, to test
the applicability of the proposed methods.

In the second part of the thesis we applied quantitative evaluation methods specific to
machine learning, i.e., we evaluated our algorithms on widely adopted benchmarks for the
problems studied [45].

8 1 INTRODUCTION

Table 1.1: Research overview, where the chapters in parentheses indirectly support the research questions.

Research Challenge Research Question Part Chapters

How can software systems be (re-)architected 1 2,(4)
to enable robust integration of deep learning
How to develop robust components
systems with deep How to compare software architectures with I 3,(2)
learning components? deep learning components?
How do teams design, develop and deploy soft- I 4,(2,8)
ware with deep learning components?

How can we reduce the impact of adversarial I 6,7, (5)
training on robust computer vision algorithms?

Can we reduce the complexity of deep learn- II 8

ing based planning algorithms and allow formal

verification?

How to develop robust
deep learning models?

1.5 RESEARCH OVERVIEW

A mapping between the three challenges introduced in Section 1.2, the research questions
from Section 1.3 and the structure of the thesis is presented in Table 1.1. We note that the
chapters in parentheses address the main research questions by either providing background
information (as is the case with Chapter 5) or by providing different perspectives to the
research question, but not fully answering it (as is the case with Chapter 4 for the first
research question).

1.5.1 PUBLICATIONS SUPPORTING THE CHAPTERS

All chapters have been published, or are under review, in peer reviewed journals and
conferences. Therefore, each chapter is self-contained and can be read independently. Only
Chapter 5 is a short summary of a previous publication, presenting only the details that
are relevant to this thesis. Below, we present a mapping between the thesis chapters and
the corresponding publications. Unless otherwise specified, the author of the thesis is also
the main contributor to the publications.

« Part I - Designing robust systems

— Chapter 2 has been published as Adapting Software Architectures to Machine
Learning Challenges, by Alex Serban and Joost Visser, at the IEEE International
Conference on Software Analysis, Evolution and Reengineering, 2022 [239].

— Chapter 3 has been published as Towards Using Probabilistic Models to Design
Software Systems with Inherent Uncertainty, by Alex Serban, Erik Poll, and
Joost Visser, at the European Conference on Software Architecture (ECSA),
2020 [244].

1.5 RESEARCH OVERVIEW 9

— Chapter 4 has been published as Adoption and Effects of Software Engineering
Best Practices in Machine Learning, by Alex Serban, Koen van der Blom, Holger
Hoos, and Joost Visser, at the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2020 [245].

« Part II - Designing robust components

— Chapter 5 is a short summary of a paper published as Adversarial Examples
on Object Recognition: A Comprehensive Survey, by Alex Serban, Erik Poll, and
Joost Visser, at ACM Computing Surveys (CSUR), 2020 [242].

— Chapter 6 is under review as Deep Repulsive Prototypes for Adversarial Robust-
ness, by Alex Serban, Erik Poll, and Joost Visser, 2020 [240].

— Chapter 7 has been published as Learning to Learn from Mistakes: Robust
optimisation for Adversarial Noise at the International Conference on Artifi-
cial Neural Networks (ICANN), by Alex Serban, Erik Poll, and Joost Visser,
2020 [243].

— Chapter 8 has been published as Counterexample-Guided Strategy Improvement
for POMDPs Using Recurrent Neural Networks, by Steven Carr, Nils Jansen, Ralf
Wimmer, Alex Serban, Bernd Becker, and Ufuk Topcu at the International Joint
Conference on Artificial Intelligence (IJCAI), 2019 [46].

For Chapter 8, the author of the thesis was responsible with the development
of the recurrent neural network used to learn a strategy for planning.

1.5.2 PUBLICATIONS NOT USED IN THE THESIS

As previously mentioned, we started our journey with explicit investigations into au-
tonomous vehicles. Therefore, some publications which were not included in this thesis
tackle various topics related to robustness of autonomous vehicles (such as developing
software architectures for robust autonomous vehicles [241, 251, 252], or investigating the
security of the communication between connected vehicles [250]). In the list below we
present these publications together with other publications [138, 247-249] to which the
author of this thesis contributed:

« Automotive specific publications:

- A Standard Driven Software Architecture for Fully Autonomous Vehicles, by
Alex Serban, Erik Poll, and Joost Visser, in Journal of Automotive Software
Engineering, 2020 [241].

— A Security Analysis of the ETSI ITS Vehicular Communications, by Alex Serban,
Erik Poll, and Joost Visser, at the Workshop on Safety, Security and Privacy in
Automotive Systems from the International Conference on Computer Safety,
Reliability, and Security (SafeComp), 2018 [250].

— Tactical Safety Reasoning. A Case for Autonomous Vehicles, by Alex Serban, Erik
Poll, and Joost Visser, at IEEE 87th Vehicular Technology Conference (VTC
Spring), 2018 [252].

10 1 INTRODUCTION

- A Standard Driven Software Architecture for Fully Autonomous Vehicles (best
paper award) at the IEEE Workshop of Automotive Software Architecture
(WASA) from the International Conference on Software Architecture (ICSA),
2018 [251].

« Other publications:

— Practices for Engineering Trustworthy Machine Learning Applications, by Alex
Serban, Koen van der Blom, Holger Hoos, and Joost Visser, at IEEE Workshop
on Al Engineering (WAIN’21) part of the International Conference on Software
Engineering (ICSE), 2021 [247].

- Safe Reinforcement Learning Using Probabilistic Shields, by Nils Jansen, Bettina
Konighofer, Sebastian Junges, Alex Serban, and Roderick Bloem, at International
Conference on Concurrency Theory (CONCUR), 2020 [138].

- Designing Safety Critical Software Systems to Manage Inherent Uncertainty, by
Alex Serban, at IEEE International Conference on Software Architecture (ICSA),
2019 [248].

— Adversarial Examples - A Complete Characterisation of the Phenomenon, by
Alex Serban, Erik Poll, and Joost Visser, available as preprint arXiv:1810.01185,
2018 [249].

1.6 CONTEXT IN MACHINE LEARNING OR ARTIFICIAL IN-
TELLIGENCE

We focus on deep learning models because, for the most part, the algorithms used for
autonomous systems (and vehicles, relevant to the i-CAVE project) are based on deep
learning. However, the practices and methods in the first part of the thesis generalise to the
broader field of machine learning. When performing the studies in Part I of the thesis, we
made no distinction between machine and deep learning. The only distinction made was
with the broader field of artificial intelligence, which is less clearly delineated and involves
many more concerns that do not have strictly technical solutions (such as ethics or law).

1.7 DATA MANAGEMENT

The data collected in the chapters and the code used to produce the results presented in
this thesis are listed below.

o Partl

— Chapter 2 — An Empirical Study of Software Architecture for Machine Learning
- Supplementary Materials, https://doi.org/10.5281/zenodo0.4564113 [2].

- Chapter 3 — Towards Using Probabilistic Models to Design Software Systems
with Inherent Uncertainty - Supplementary Materials, https://doi.org/10.5281/
zenodo.4700095 [1].

https://doi.org/10.5281/zenodo.4564113
https://doi.org/10.5281/zenodo.4700095
https://doi.org/10.5281/zenodo.4700095

1.7 DATA MANAGEMENT

11
— Chapter 4 — Towards Using Probabilistic Models to Design Software Systems 1
with Inherent Uncertainty - Supplementary Materials, https://doi.org/10.5281/

zen0do.4700095 [246]

o Partll

— Chapter 6 — Deep Repulsive Prototypes for Adversarial Robustness - Code, https:
//github.com/NullConvergence/repulsive-proto.

— Chapter 7 — Learning to Learn Adversarial - Code, https://github.com/NullConvergence/
Learning2LearnAdv.

The materials from the first part of the thesis are disseminated through the https:
//se-ml.github.io website, and through the Awesome Software Engineering for Machine
Learning reading list https://github.com/SE-ML/awesome-seml.

Chapter 5 is also supported by a tutorial presented at WIFS 2019, and available at
https://github.com/NullConvergence/tutorial_adversarialml.

https://doi.org/10.5281/zenodo.4700095
https://doi.org/10.5281/zenodo.4700095
https://github.com/NullConvergence/repulsive-proto
https://github.com/NullConvergence/repulsive-proto
https://github.com/NullConvergence/Learning2LearnAdv
https://github.com/NullConvergence/Learning2LearnAdv
https://se-ml.github.io
https://se-ml.github.io
https://github.com/SE-ML/awesome-seml
https://github.com/NullConvergence/tutorial_adversarialml

Part 1

Designing robust systems

15

ADAPTING SOFTWARE
ARCHITECTURES TO MACHINE
LEARNING CHALLENGES

Specific developmental and operational characteristics of machine learning (ML)
components, as well as their inherent uncertainty, demand robust engineering
principles are used to ensure their quality. In this chapter, we aim to determine
how software systems can be (re-)architected to enable robust integration of ML
components. Towards this goal, we conducted a mixed-methods empirical study
consisting of (i) a systematic literature review to identify the challenges and their
solutions in software architecture for ML, (ii) semi-structured interviews with
practitioners to qualitatively complement the initial findings, and (iii) a survey to
quantitatively validate the challenges and their solutions. In total, we compiled
and validated twenty challenges and solutions for (re-)architecting systems with
ML components. Our results indicate, for example, that traditional software
architecture challenges (e.g., component coupling) also play an important role
when using ML components; along new ML specific challenges (e.g., the need for
continuous retraining). Moreover, the results indicate that ML heightened decision
drivers, such as privacy, play a marginal role compared to traditional decision
drivers, such as scalability or interoperability. Using the survey, we were able to
establish a link between architectural solutions and software quality attributes;
which enabled us to provide twenty architectural tactics used for satisfying
individual quality requirements of systems with ML components. Altogether, the
results can be interpreted as an empirical framework that supports the process of
(re-)architecting software systems with ML components.

This chapter has been published as (2] A. Serban, 7. Visser, Adapting Software Architectures to Machine Learning
Challenges, IEEE International Conference on Software Analysis, Evolution and Reengineering, 2022 [239].

16 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

2.1 INTRODUCTION

Software architecture (SA) plays an important role in data intensive systems, such as
big data and analytics platforms. However, until recently, the focus has been on the
architectural decisions related to handling and storing large amounts of data, and on
decisions that mitigate performance demands of analytics platforms [26, 237].

The interest to develop software with machine learning (ML) components shifts the
focus to decisions regarding the operational requirements of serving, monitoring, retraining
and redeploying models [236]. These decisions align with proposals to emphasise the
operational aspect of SA [299]. Moreover, the inherent uncertainty of ML components
demands a stronger emphasis on the uncertainty aspect of SA; where the focus is on
assessing the impact of uncertainty, and on the decisions made for its mitigation [70, 244].

Although a significant body of literature studied the relevance of SA for big data and
analytics platforms [16, 237], there is little empirical research on the role of SA in systems
with ML components [160, 282]. In this chapter, we aim to determine how software systems
can be (re-)architected to enable robust integration of ML components.

Towards this goal, we conducted a mixed-methods empirical study consisting of three
stages. First, we performed a systematic literature review (SLR) to identify the challenges
faced in (re-)architecting systems with ML components, and the solutions proposed to
meet them. We analysed 42 relevant articles, from which we compiled an initial set of
18 challenges and solutions. Second, we performed 10 semi-structured interviews with
practitioners from 10 organisations — ranging from start-ups to large companies. The
interviews were used to complement the initial set of challenges (and solutions), and to
assess the impact of each challenge on SA. In total, 2 new challenges were discovered
in the interviews, as well as 46 new solutions. Third, we ran a survey with 47 software
architects in order to quantitatively validate and complement the challenges and solutions.
The survey also established a link between challenges, solutions, and software quality
attributes, allowing the solutions to be restated as architectural tactics.

Overall, our main contributions are as follows. First, we summarised academic and grey
literature on the topic of SA for ML in a catalogue of SA challenges and related solutions.
This information can guide practitioners to (re-)architect software with ML components,
or as a gateway to relevant literature. Second, we validated and complemented the initial
findings by engaging with practitioners. We found out that, although the initial challenges
had solutions in the literature, the solution were considered incomplete by practitioners.
Third, we linked the architectural solutions to software quality attributes from the ISO/IEC
25010 standard [118], which allowed to restate them as architectural tactics. Last, we
assessed the impact of each challenge on SA, which allowed us to contrast traditional SA
concerns with emergent ML related concerns.

This chapter is organised as follows. First, we introduce background information and
related work (Section 2.2). Next, we discuss the study design (Section 2.3), and the results
(Section 2.4). We end with a discussion (Section 2.5) and conclusions (Section 2.6).

2.2 BACKGROUND AND RELATED WORK

Software engineering (SE) for ML is receiving increasing attention [185]. The related

2.2 BACKGROUND AND RELATED WORK 17

literature covers a broad range of topics; from SE challenges raised by the adoption of ML
components [160], to practices [245], guidelines [312], or design patterns [287]. Moreover,
we consider the related field of SA for big data and analytics platforms [237]. Therefore,
we structure the presentation in three steps: first we introduce SE challenges for ML (with
a focus on SA), followed by solutions that meet the challenges, and by a discussion on SA
for big data and analytics, in the context of ML.

Arpteg et al. [14] introduced twelve SE challenges for ML, classified in three cate-
gories: development, deployment and organisational. From these, the challenges related
to monitoring and logging ML components, and to effort estimation for development and
maintenance, were also identified in our SLR. Since Arpteg et al. [14] do not introduce
solutions, the second and third stages of our study can be used to complement theirs.

Similarly, Ishikawa and Yoshioka [117], as well as Wan et al. [282], studied how ML
impacts the traditional software development life-cycle. Both studies are based on surveys,
and have the bulk of responses from Asia. Notwithstanding this regional bias, they con-
cluded that testing and evaluating the quality of ML components is particularly difficult.
Distinct conclusions are drawn with respect to SA. While Wan et al. [282] acknowledged
SA for ML as difficult, Ishikawa and Yoshioka [117] concluded that existing SA methods
apply equally to software with ML components, although the tool support is immature. We
analysed the SA challenges raised by ML with finer granularity, and found out that while
some challenges apply equally to software with or without ML components, ML specific
challenges (and solutions) also arise.

To classify the SE challenges for ML, Lwakatare et al. [160] introduced a taxonomy,
from which the challenges related to scalability, and to serving requirements, were also
identified in our study.

An early publication that outlined SA challenges and solutions for ML was the work
of Sculley et al. [236]. The authors used the framework of technical debt to explore risk
factors for ML components. Particularly, they argued that ML components are subject to
all maintenance issues specific to software components, as well as to new issues specific
only to ML. Moreover, they introduced a set of anti-patterns and practices used to avoid
technical debt. Compared to Sculley et al. [236], the challenges (and solutions) introduced
in this paper are broader, and consider more quality attributes. Nonetheless, there is an
overlap between the studies.

Breck et al. [36] and Zhang et al. [311] studied the topic of testing for ML components,
and introduced testing and monitoring practices for different stages of the ML develop-
ment life-cycle. While these practices are relevant to SE for ML, we are interested in the
architectural decisions for testing ML components. Therefore, we focus on higher-level
decisions, such as using automated tests.

Amershi et al. [8] conducted an internal study at Microsoft, aimed at collecting SE
challenges and practices for ML. They reported on a broad range of challenges and practices
used at different stages of the ML development life cycle. In particular, modularity and
component reuse in software with ML components are challenges closely related to SA,
also tackled in this study.

Serban et al. [245] and Zhang et al. [312] introduced two sets of SE practices for ML and
deep learning, respectively. While some practices are considered in SA - e.g., the adoption
of continuous integration — the broad selection of practices does not allow a focus on SA

18 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

(as in our study). Therefore, the challenges (and solutions) introduced here can be used to
complement theirs.

Nascimento et al. [185] introduced a SLR on the topic of SE for ML that analysed all
articles up to 2019. The authors observed that SA is not yet a popular topic. However,
their taxonomy classifies software quality and infrastructure concerns separately from
architecture. We argue that such concerns are discussed extensively during SA, and should
be considered together when evaluating the popularity.

Washizaki et al. [286] studied SA patterns and anti-patterns for ML, extracted from
white and grey literature. Their proposal was followed by a larger study, where the initial
set of patterns and anti-patterns was extended [287]. Their work is close to the first stage
of our study (SLR), where we identified a set of challenges and solutions in SA for ML.
We build upon it by enlarging the number of challenges and solutions, and by extensively
validating our findings in the second and third stages of the study. Moreover, although the
challenges presented by Washizaki et al. [286] are recurrent, we found out the solutions
are not. Therefore, we are cautious in using the taxonomy of design patterns. Instead, we
focus on smaller building blocks called tactics; which bridge architecture decisions with
quality attributes, and form the basis of design patterns [22, 99].

The challenges raised by big data systems regarding continuous expansion of data
volumes and the adoption of new technologies have been well studied, and several reference
architectures have been proposed - e.g., [16, 237, 238]. However, the proposals emphasise
the data aspect of SA, i.e., how to collect and manage various sources of data and satisfy
performance demands of analytics platforms. Therefore, although data visualisation and
ML components are present in the reference architectures, these do not record decisions
taken for development, integration, serving and maintenance of ML components. In this
chapter, we focus on the latter, where the data aspect plays an important role, but it is not
the main decision driver.

2.3 STUDY DESIGN

Our study was organised in 3 stages, and consisted of a mixed-methods approach with a se-
quential exploratory strategy [68]. In the first stage, we ran a SLR to identify the challenges
faced when (re-) architecting systems with ML components, and the solutions proposed to
meet them. The second stage of the study consisted of semi-structured interviews, meant
to complement and partially validate the data extracted in the first stage. In the third stage,
we ran a survey to gather quantitative data, augment and generalise the findings from
the first two stages. Data triangulation from multiple sources is known to increase the
reliability of the results [68].

Systematic Literature Review. SLRs are widely used in empirical SE research, and
provide a structured process to identify, evaluate, and interpret the information available
regarding a research topic [68, 133, 134]. SLRs consist of three parts, namely defining a
research protocol, conducting a review and reporting the results. We followed the guidelines
from Kitchenham and Charters [133], and defined a research protocol as follows.
Research questions. We aimed to gather evidence about the challenges faced when (re-)
architecting software systems with ML components. Moreover, we looked for solutions
that meet the challenges and synthesise practices, tactics or patterns. Towards this goal, we

2.3 STUDY DESIGN

19

Table 2.1: Research questions for the SLR.

ID ‘ Research Question ‘ Motivation

RQ1 | Which are the challenges reported | Understand the technical and or-
in (re-)architecting software sys- | ganisational challenges, but also
tems with ML components? the requirements posed by adop-

tion of ML components.

RQ2 | What solutions, tactics or patterns | Understand and identify solutions,
have been reported to successfully | tactics, or patterns for SA with ML
meet these challenges? components.

formulated a set of research questions, summarised with their motivation in Table 2.1. The
questions facilitated the identification of challenges in the area of SA with ML components,
and enabled the creation of an initial body of knowledge with solutions.

Search strategy. To get a broad set of studies, we used multiple information sources. First,
we used automatic queries to retrieve studies from several digital libraries, namely IEEE
Xplore, ACM Digital Library (ACM DL), Scopus, and ScienceDirect. Shahin et al. [255]
observed that SpringerLink uses a different query mechanism than the others, and that
Scopus indexes most articles from SpringerLink. Therefore, in order to avoid inconsisten-
cies in data retrieval, we relied on Scopus. Second, motivated by the findings of Serban
et al. [245] — which noticed that most literature on the topic of SE for ML consists of so
called grey literature — we performed manual search in Google and Google Scholar, where
the first 5 pages of results were inspected. Last, we complemented the data set through a
snowball strategy [40], following references of relevant articles.

To define the search query, we followed the guidelines from [133], and composed a
string with synonyms of the words “software architecture”, “machine learning", “challenges",
and “solutions". After piloting several queries to validate the inclusion of previously known
articles, we decided to use two distinct queries. The first query retrieved challenges in
SA for ML, and the second query retrieved solutions. The search string for the first query
was: “((“software architecture" OR “software engineering" OR “systems engineering")
AND (“machine learning" OR “deep learning" OR “artificial intelligence" OR “Al") AND
(“challenge” OR “problem” OR “issue"))", where the emphasised string was replaced in the
second query with: AND (“solution” OR “practice” OR “guideline” OR “tactic" OR “pattern” OR
“architecture pattern” OR “design pattern"). Using the word “software" next to architecture
or engineering helped to avoid articles from the general field of engineering (e.g., electrical
engineering) or architecture. Moreover, we observed empirically that including both
“pattern” and “design pattern” makes the query more effective.

Exclusion and inclusion criteria. Since the initial queries returned over 10 000 results,
we limited the answers to the first 500 articles, for each data source and query. This reduced
the number of articles to 1000 per source, which corresponds to recommendations and
previous studies [165, 255]. Washizaki et al. [286] and Nascimento et al. [185] showed that
the majority of articles on the topic of SE for ML were published after 2016. Therefore, we
also restricted our search to articles published after 2016. Next, we automatically filtered
for duplicates and for records that contained the words “proceedings” or “workshop" in the

20 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

Table 2.2: Document selection for each information source.

Automatic Manual

Source Retrieved Filtering Inspection Used
ACM DL 1000 647 21 7
IEEE Xplore 1000 521 22 9
ScienceDirect 1000 513 2 0
Scopus 1000 732 2 0
Google Scholar 100 100 7 3
Google 100 100 12 10
Snowball - - 16 13
Total 4200 2613 82 42

title. Moreover, we excluded all opinionated articles; coming from companies or authors
which could be traced back to companies that provide tools or services for SA/SE for ML.
Thus, some bias regarding solutions driven by tools was avoided. Since ML for SE receives
increasing interest, we carefully curated and removed all articles on this topic. Moreover,
we removed tool demonstration articles, and those not written in English. In the final
selection, we included all studies or grey literature articles that presented challenges or
solutions based either on empirical studies or on experience (e.g., studies with empirical
validation or organisation blogs describing their processes).

Study selection. After retrieving the initial set of 4 200 documents, we applied the selection
criteria as follows. In the first phase we applied the automatic filters, which reduced the set
to 2613 articles. For these articles, we manually inspected the titles and the keywords, and
selected 66 articles to be completely assessed. These were read completely and critically
analysed, which reduced their number to 29 relevant articles. From their references, 16 new
articles were read, from which 13 were used in the final selection. The distribution
of articles and their sources for each stage of the review is presented in Table 2.2. We
delegate the complete list of articles, their sources, and a demographic characterisation
to the supplementary materials. We observe that although ACM DL and IEEE Xplore
retrieved the bulk of articles for complete assessment, the grey literature search and
snowballing strategies were more effective for the final selection. Moreover, we observe
that the distribution of articles per date, (supplementary materials) resembles the one
from [185, 286] - i.e., the number of articles is increasing year by year. By analysing the
distribution of articles based on the venue type (supplementary materials), we observe that
the majority of academic articles were published in conferences, and not in journals. We
conjecture that: (i) SA for ML is a emerging field, and the publications did not reached the
maturity needed for journal publication, and (ii) journals have longer review cycles, and
publications may be in review.

Data extraction and synthesis. From all articles, we extracted the information based
on various data items (see supplementary materials). We classified the information in: (i)
demographics and context, (ii) SA for ML challenges (RQ1), (iii) SA for ML solutions and
tactics (RQ2), (iv) data types used. To analyse the demographics data we used descriptive

2.3 STUDY DESIGN 21

Table 2.3: Interview participants profiles.

ID Position Experience Research
P1 Solutions Architect 3-5years No
P2 System Architect 3-5years Yes
P3 Software Architect 6-9 years Yes
P4 Tech. Lead 3-5years Yes
P5 Software Architect 6-9 years Yes
P6 Software Architect 3-5years No

P7 Director of Engineering 6-9 years No
P8 Senior Solutions Architect 3-5years No
P9 Head of Engineering 3-5years No
P10 CTO 0-2 years Yes

Table 2.4: Interview organisation profiles, where the acronym “Trans.” stands for Transportation.

ID Org. Profile Org. Size Org. ML Ex- Team Deployment
perience Size Interval

P1 Tech. (Internet) 10 000+ 6-9 years 6-9 0-1 week
P2 Non Tech. (Trans.) 10 000+ 3-5 years 6-9 1-2 weeks
P3 Tech. (Automation) 10 000+ 3-5 years 10-15 3-4 weeks
P4 Tech. (AI/ML) 0-50 0-2 years 10-15 0-1 week
P5 Non Tech. (Medical) 10 000+ 3-5 years 6-9 3-4 weeks
P6 Tech. (Automation) 1000-5000 3-5 years 10-15 1-2 weeks
P7 Tech. (AI/ML) 51-200 3-5 years 10-15 1-2 weeks
P8 Tech. (A/ML) 51-200 3-5 years 6-9 3-4 weeks
P9 Tech. (Space) 51-200 0-2 years 10-15 1-2 weeks
P10 Tech. (Robotics) 0-50 1-2 years 16-20 3-4 weeks

statistics. To extract the data for (ii) and (iii), we used qualitative analysis methods. In
particular, we used thematic analysis [35], which defines a process based on the following
5 steps: (1) familiarity with data - the articles were examined to form initial ideas, (2)
initial code generation - the initial list of challenges and solutions was extracted, (3) theme
search — common elements between the challenges and the solutions, respectively, were
identified, (4) theme review — challenges and solutions were compared, and common items
were merged or dropped, (5) definition and naming — each challenge and solution was
defined and named. The results from the demographics analysis were presented above, and
the ones from the thematic analysis are introduced in Section 2.4.1.

Interviews. To complement the results from the SLR, we conducted 10 interviews with
participants from 10 organisations.

Protocol. The interview protocol was designed following the guidelines from Hove and

Anda [110], and consisted of 31 questions designed to support a natural conversation
between the participants. All interviews were conducted online, through video calls

22 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

(8 interviews) or e-mail (2 interviews). To enable participants to become familiar with
the interview objectives [110], we shared a short version of the interview three days in
advance.

The interviews were structured in 5 sections. First, we described the research goals and
background. Second, we asked participants to share information about their background
and demographics. Third, we asked participants to select a project where they played the
role mentioned in the second section, and describe the constraints and challenges faced in
SA for ML. This part enabled a discussion about the challenges faced (and the solutions
adopted), and was meant to complement the data obtained previously. Next, we asked
participants to comment on each of the challenges from the SLR, evaluate their impact on
SA, and propose solutions. Last, we asked participants to provide open-ended comments.
We continued to refine the questions, and after the first three interviews the questions
remained stable. Two questions were merged due to redundancy, and one was modified in
order to be more descriptive.

Participants. The interview participants were recruited using purposeful sampling [192].
We contacted participants with experience in (re-) architecting systems with ML compo-
nents, or involved in architectural decisions (e.g., had the role of architect, or a leading
position in engineering), and who are working (or worked) for companies using ML. To
identify the participants, we used our personal network of contacts. Moreover, we compiled
a list of organisations that use ML from outlets such as Forbes or MIT Technology Review.
Later, we traced back candidates from the organisations (holding positions linked to SA)
through LinkedIn, and contacted them. The list of participants and the data regarding
their background is presented in Table 2.3, while the data regarding their organisations are
presented in Table 2.4. We observe that the participants’ background is diverse, ranging
from software and system architects to engineering leaders and CTOs. Moreover, the
participants’ and organisations’ experience is diverse — ranging from start-ups to large
organisations with vast experience in ML. Since the organisations had different profiles,
we classified them into (i) Technology (Tech.) — focus on developing technology products,
and (ii) Non-Tech. — do not focus on technology products, but use ML for their processes.
We also note that many participants had experience in research, being directly involved
or in close collaborations with research groups. We hypothesise that the research driven
process for ML contributes to this result.

Data analysis. The interviews were processed using thematic analysis, a technique which
consists of the five steps recommended by Cruzes and Dyba [60]: (i) data extraction — the
interviews were transcribed, read, and key points were extracted, (ii) data coding — the
initial SA challenges and tactics, as well as the impact of each challenge on SA (e.g., low or
high impact) were defined, (iii) code to themes translation — for each transcript the initial
codes were combined into potential themes (e.g., automated testing), (iv) high-order theme
modelling - the themes were compared and merged, or dropped if the evidence was not
sufficient (e.g., automated testing was merged in CI), (v) synthesis assessment — arguments
for the extracted data were established, for example in terms of credibility (if the core
themes were supported by the evidence) or confirmability (if there was consensus among
the authors on the coded data).

Survey. To generalise the findings with a large sample size and augment the solutions,
we ran an online survey. The survey was developed using the guidelines from Kitchenham

2.4 RESULTS 23

and Pfleeger [135] and Ciolkowski et al. [55]. We designed a cross-sectional observational
study asking participants at the moment of taking the survey which solutions they adopt,
for each challenge. Moreover, we asked participants about their background in order to
assign them to groups; making the study a concurrent control study in which participants
are not randomly assigned to groups.

Questionnaire. The questionnaire consisted of five sections. In (i) the preliminaries we
asked participants about their background (5 questions), to select a recent project where
they played a role in SA for ML, and to provide information regarding the challenges
faced, the project constraints, and the data types used (3 questions). Next, we asked
participants to (ii) select or propose new solutions for the challenges identified previously
(20 questions). Since multiple solutions involved instrumentation, monitoring or alerts,
we added a question regarding the architectural decisions for designing these modules
(1 question). Afterwards, we asked participants to (iii) select the architectural style (if
any) adopted in their project (1 question), and to (iv) link the solutions to software quality
attributes (1 question). The questionnaire ended with a section where (v) participants could
provide open ended feedback (1 question).

The answers allowed multiple choices, with the solutions extracted from the SLR
and from the interviews. Besides, we provided an open answer called ’Others’, where
participants could propose new solutions. The quality attributes used in the fourth section
were extracted from the ISO/IEC 25010 standard [118], which is widely regarded as mature.
However, we found the “Installability" and “Replaceabiliy" attributes out-dated, and replaced
them with “Deployability"; which better reflects deployment and roll-back.

Survey Pilot. Before distributing the survey, we invited four candidates to assess the
survey in our presence, and suggest improvements. The participants did not consider any
question redundant. Using their feedback, we added three new answers to the questions,
rephrased four other answers, and two questions.

Distribution. To distribute the survey, we used a snowballing strategy. At first, we reached
out to our network of contacts, asked them to fill in the survey and forward it to potential
candidates. Second, we expanded the list of contacts from interview recruitment. In total,
we sent 286 e-mails or private messages to potential participants. Third, we advertised the
survey through open channels used by practitioners, i.e., Reddit and LinkedIn.

Data Analysis. We processed the standard answers using descriptive statistics, and the
open-ended answers using thematic analysis. Moreover, we analysed the association
between the adoption of solutions using the Phi coefficient.

2.4 RESULTS

We present the results from the three stages of the study as follows: (i) the results from
the SLR are presented in Section 2.4.1, (ii) the results from the interviews are presented in
Section 2.4.2, and (iii) the results from the survey are presented in Section 2.4.3.

2.4.1 REsuLTS FROM THE SLR

From the SLR, we identified an initial set of 18 challenges, introduced in Table 2.6. We note
that the SLR data have numerical references. To classify the practices, we used a custom

24 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

taxonomy because the taxonomy for ML is different than that for traditional software
development [8]. Moreover, ML taxonomies are divergent [245]. For example, Amershi
et al. [8] present a nine-stage taxonomy for the ML process, while Sato et al. [230] use only
six stages. These taxonomies have roots in the CRISP-DM model [294]. However, recent
studies show these models are not fit for all contexts [97]. Since existing taxonomies are
divergent, we constructed a taxonomy compatible with previous work, but with a SA focus.

The taxonomy was used to classify the challenges (and solutions) in: (i) Requirements
(Regs.) — requirements elicitation for ML components, mapped to model requirements and
business understanding [8, 294], (ii) Data — data collection, preparation and validation,
mapped to data taxonomies [8, 245, 294], (iii) Design — the system’s structure, SA decisions
and trade-offs, mapped to training and coding taxonomies (8, 245], (iv) Testing - testing and
validation of software with ML components, mapped on the evaluation taxonomies [8, 294],
and (v) Operational (Ops.) — deployment, monitoring and evolution, mapped to deployment
taxonomies [8, 248, 294].

RQ1. Answering RQ1 from Table 2.1, we identified 18 challenges through the SLR,
classified in five categories. The Regs. challenges focus on the inability to understand a
project and estimate the effort upfront. Moreover, the opaque nature of ML components, for
which functional requirements are difficult to define, and which have regulatory restrictions,
emerged as challenging.

The Data challenges relate to data preparation and data quality assessment. This
result contrasts previous concerns from big data and analytics platforms [237], where the
focus was on data storage and accessibility. Nonetheless, this result corresponds with the
expectation that ML components are evolved from big data platforms, extend and overcome
the challenges met there.

The largest category of challenges, Design, includes both traditional SA challenges,
such as managing component coupling, and new ML specific challenges, such as manag-
ing inherent uncertainty, or designing for development automation (AutoML). We also
notice a challenge regarding the integration of ML components with traditional software
components (7), which finds it difficult to distinguish failures between the two.

In contrast to Design, the Testing challenges are ML specific. Here, the focus is on model
testing — which goes beyond programming bugs — and on validation for production — which
does not rely on new features or bug fixes, but on measurements that must meet multiple
criteria, e.g., accuracy or robustness.

In the Ops. category, the challenges relate to deployment, maintenance, and resource
usage between training and testing. We note that maintenance of ML components is based
on retraining and deploying models trained with new data, which erodes the boundaries
between maintenance and evolution.

RQ2. Answering RQ2 from Table 2.1, through the SLR we found distinct solutions
to each challenge in Table 2.6. The complete list of solutions extracted from the SLR is
delegated to the supplementary materials, while Table 2.7 presents the solutions from all
stages of the study. We note that, in total, 54% of solutions came from the SLR, while the
rest came from later stages of the study. Although the SLR accounts for the majority of
solutions, the percentage is just over 50%, and suggests that many solutions were considered
incomplete by interview paticipants.

2.4 RESULTS 25

2.4.2 RESULTS FROM THE INTERVIEWS

The interviews were meant to qualitatively assess and complement the SLR data. As
mentioned in Section 2.3, the interviews had specific questions to discover new challenges,
to evaluate the impact of each challenges on SA, and to propose new solutions.

Two new challenges were added after the interviews, and several others were reinforced.
The first new challenge, (19), relates to tracing back serving decisions to ML models and
data, and to the ability to accurately reproduce past experiments. This challenge brings
together two concepts — traceability and reproducibility — both known to raise issues in
ML [206]. Only one interview participant mentioned this challenge can have a significant
impact on SA. Nonetheless, we included it, in spite of the fact that we did not have
convincing evidence, and sought validation with the survey.

The second challenge, (20), relates to managing multi disciplinary teams, which use
heterogeneous technology stacks (e.g., ML frameworks, infrastructure scripts). Since this
challenge does not fit any previous class, we defined a new class — Organisation (Org.) -
which gathers organisation wide concerns that fall in the attributes of software architects.
This class aligns with the view that software architects shall consult and bridge multiple
teams, which solve problems beyond SA [141]. The challenge was mentioned by one
participant, part of a large organisation with well established teams, who work at different
levels of the technology stack. Therefore, the solution was to form multi-disciplinary teams
which can work close together, and adopt standard ways of working. No participant from
small organisations raised this challenge, which begs the question if small organisations
are more agile, and can overcome it. The answer was sought with the survey.

We also asked participants about the most important architectural decision drivers,
and about the data types used. The results are illustrated in the supplementary materials.
We note that “Scalability”, “Hardware" constraints, and “Data" concerns were mentioned as
main decision drivers, followed by “Interpretability”. Together with the data type used, we
could also identify the main decision drivers for specific data types. Here, we note that
participants using Images & Videos or Time Series found “Scalability” and “Hardware"
constraints as the main decision driver. Moreover, participants using Simulations were
also driven by “Hardware" constraints. We also observed a new decision driver — called
“Generalisation” — which describes the ability of a ML component to maintain training
performance in production. This driver is related to challenge (10) (Table 2.6), and the
solution suggested by participants was to use n-versioning; i.e., multiple versions of ML
components (some of which may be more trustworthy).

While evaluating the challenges extracted from the SLR, we asked participants to assess
their impact on SA. The results are illustrated in Figure 2.1, and use an ordinal scale with
three possible options: low, medium, or high impact. Challenge (3) could not be evaluated
because the participants did not report regulatory restrictions. We believe this result is
due to the fact that ML regulations are still in draft phase, and not yet enforceable [123].
Within the challenges with the highest impact, we observe one traditional challenges that
is strengthened by ML (component coupling (8)), and multiple ML specific challenges. For
example, opaqueness of ML components (11), or training-serving resource management (18).
The highest impact on SA comes from the need to continuously retrain ML components
(16), while the lowest impact comes from automation of ML tasks (13). Here, participants

26 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

100 B High
Medium
B Low
JL I II
1

2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N o) ® o
o o o

Percentage of answers

N
o

Challenge

Figure 2.1: The impact of the challenges from Table 4.8 on SA, as assessed by interview participants.

reported that the information needed for this task is available from other sources.

Besides the challenges, the interviews allowed us to complement the initial set of solu-
tions. We delegate the complete thematic analysis of the interviews to the supplementary
materials, and mention that 46 % new solutions came from the interviews. Participants
provided new solutions for all challenges besides challenges (2) and (3). While the solutions
for (2) were regarded as complete, (3) was disregarded because participants did not reported
regulatory constraints.

During the thematic analysis, we combined several solutions by bridging ML and SE
terminology, while striving for conciseness. Here, we describe resulting themes which may
be ambiguous due to name compression. Using the same type of interfaces for business
logic and ML components, for all ML components, or within all projects in an organisation,
was modelled as the use of “standard interfaces". Participants reported multiple techniques
to standardise the interfaces, e.g., REST APIs, gRPC, or more general contracts for service
oriented architectures. While the techniques are project specific, the architectural decision
to unify the interfaces is singular.

Moreover, using multiple versions of a ML model - also called ensembles of models in
ML - is similar to n-version programming. Therefore, we grouped these solutions in the
“n-versioning" theme.

The separation of concerns and encapsulation of code was modelled as one theme:
“design separate modules/services". Here, participants reported that the code was either
developed as separate modules, or as independent services. The development implied
encapsulation for reuse.

Furthermore, we defined the use of one middleware for all components in training and
serving as “use one middleware", and the development of dashboards in “visualisations". A
detailed description of the themes is provided in the supplementary materials.

2.4.3 RESULTS FROM THE SURVEY

In total, we received 52 answers, from which we filtered out (using the preliminary ques-
tions) respondents who did not play a role in SA for ML. Moreover, we filtered out

2.4 RESULTS 27

Organisation Team Data Deployment
type size type interval

. 0-2 members Once per week [l

I 3-5.members
N

1-2 weeks
\ a o
Time series
6-9 members \
=
(=]

Tabular data

Tech.

Imagesor Videos

3-4 weeks

\
D [N
Non Tech.

DGovenmental 10-15 members

l Research

Figure 2.2: Distribution of survey respondents by demographics

respondents who spent less than two minutes fulfilling the survey, and respondents who
answered less than 50 % of the preliminaries, or less than 50% of the technical questions.
This process ensured only thoughtful answers were used in the analysis, and entailed
47 complete answers.

Demographics. First, we grouped respondents by demographics. The complete analy-
sis is delegated to the supplementary materials. We note that the majority of respondents
(57%) work for Tech. organisations, and have between 3-5 (40%) or 1-2 (28%) years of experi-
ence. These results align with related work [117, 245], and are in line with expectations that
Tech. companies are early adopters of ML technologies. Other groups are also represented,
i.e., Non Tech. (28%), Governmental Org. (9%) and Research labs (6%). Similarly, beginners
which just started (13%) and very experienced respondents, with 6-9 years of experience
(19 %), are represented.

We also grouped respondents by regions into Europe (53%), North America (34%)
and Asia (13%). Here, we observe a slight over-representation of Europe, and under-
representation of Asia. The possible bias stemming from the grouping by regions will be
discussed in Section 2.5.

As in the interviews, we asked respondents about their team size, data types used, and
deployment intervals. This data is illustrated in Figure 2.2, where the height of the bars
represents the percentage of respondents, and the height of the connections represents
the percentage of respondent who fall in the target class. We observe that the majority of
respondents belong to teams between 6-9 (43%) or 10-15 (34%) members. In particular, the
majority of Tech. and Non Tech. teams have between 6-9 members, while the majority of
Research teams are larger, between 10-15 members.

Regarding data types, we observe that, with the exception of Audio and Graphs, the data
types have similar distributions. Moreover, the majority of respondents using Tabular data
deploy new versions between 1-2 weeks, while respondents using Images, Videos, Audio
or Text between 3-4 weeks. We conjecture that this result relates to the ML techniques
suitable to each data type, i.e., Images, Videos, Audio or Text models are based on deep
learning, require longer training times and the collection of larger data sets. In contrast,

28 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

14

12

&

g E
2 10 g
2 C
s (1]
©
u 8 5
° Q
I o
g 8
8 6 =
g g
; 8
jol
9 a4

2

0

Py Sas, g, Moy, ne Rog Gy Loy, Sey, My, P, St
Sr/b/_ Cs/%hf?fg,e’”f@ - 0, US[@ sro,,/ %c,g ’C/}G’ ’7@7”% @Q/%
Pon ety Lerstres agla 00 ot
Z 7 e 5
® Tt SSDU/"Z/O' (< g, o, e,
Ss

(a) SA decision drivers. (b) Architectural styles.

Figure 2.3: Characterisation of survey results using (a) SA decision drivers, and (b) architectural styles.

Tabular data can be processed with more traditional ML techniques (e.g., Random forest).
These techniques require smaller data sets and training time.

Overall, the demographics indicate that our survey data is diverse, and resembles data
from interviews and related work [117, 245].

Decision drivers. Second, we asked respondents about the most important decision
drivers in their projects. This data is illustrated in Figure 2.3a. We observe that “Scalability”
and “Hardware" are consistent with the interviews, and occupy leading positions. To better
understand the data challenges, we divided them into "Low data quality" and "Scarcity of
data". Taken together, data related concerns are consistent with the interviews. Separately,
they were considered equally important, but none of them ranks high.

We also note that “Performance”, “Interpretability”, and “Interoperability” rank higher
for survey respondents, while “Privacy" and “Security" rank very low. This result is cause of
concern, since documents from policy makers and advisory bodies suggest these topics are
paramount for trustworthy development of ML [106]. We conjecture that, although a large
body of academic literature on security of ML exists, it is still limited in its applicability. For
example, all defences against adversarial examples — a known threat for ML components -
have been breached [45]. The data also indicates that respondents prioritise operational
attributes, such as scalability or performance, and tend to neglect security and privacy.

Solutions to challenges in Table 2.6. Third, using the survey results we filtered out
and ranked the solutions from previous stages of the study. In particular, we considered
the solutions that were selected less than 5% of the time as not relevant, and filtered them
out. Moreover, we used the number of times the solutions were selected by respondents to
rank them. The ranking is reflected in Table 2.7 by the order in which the solutions are
presented. A more comprehensive analysis of the answers and an elaborate description of
the solutions is provided in the supplementary materials.

For all challenges, respondents could also suggest new solutions, or provide comments
using the "Other" field. In total, we received 3 suggestions and open comments. We analysed

2.4 RESULTS 29

the results using thematic analysis, and found out that all suggestions were variations of
the solutions provided, or comments suggesting some solutions do not apply. For example,
one respondent mentioned that, due to tight performance constraints, it was not possible
to apply n-versioning. The comment suggests that, given exceptional constraints, some
solutions do not apply. This result is expected, since the first two stages of the study strove
for generalisation; and outliers may exist. Nonetheless, the lack of novel suggestions for
solutions brings evidence that the first two stages of the study entailed comprehensive
solutions to all challenges.

We also note that some solutions are recurrent, and can be applied to multiple challenges.
For example, the use of standard interfaces for ML components and business logic, or the
use of interpretable models. These results are unsurprising, since architectural decisions
may impact multiple elements of a system.

As mentioned previously, an extra question was added for decisions regarding in-
strumentation, monitoring and alerts. The solutions were inspired by interviews; where
participants reported the development of independent logging, alert or visualisation mod-
ules. We delegate the survey answers to the supplementary materials, and note that the
majority of respondents reported the development of independent modules/services for
instrumentation and monitoring. Moreover, respondents reported on separating logging
concerns between training and serving, and on the development of independent modules
to aggregate and visualise logs. Only a small percentage of participants reported the use of
external tools for instrumentation.

Associations between solutions. Fourth, we analysed the associations between the
adopted solutions. For this analysis, we modeled the adoption of solutions as dichotomous
variables, and analysed the Phi coefficient. For two binary variables, the Phi coefficient can
be estimated using the Pearson correlation coefficient [95]. To determine the statistical
significance of the observed associations, we performed Chi-Square tests with a significance
level of 0.05. We found multiple significant medium to strong associations (¢ > 0.4), of
which we report an illustrative selection. More results are provided in the supplementary
materials, together with an analysis of the Jaccard similarity entailing analogous results.

For example, designing separate modules/services for data quality assessment (5) is
associated with the the design of independent modules/services in component coupling
(7) (¢ = 0.43). Moreover, the use of one communication middleware to reduce coupling
(7) is associated with standardisation and reuse of model interfaces between training and
serving (6) (¢ = 0.51). Design of independent modules/services in component coupling
(7) is also associated with CI/CD in maintenance of ML component (16) (¢ = 0.54). These
results indicate the solutions may be complementary, and suggest their joint adoption can
be interdependent and incremental.

Similarly, model tests (15) are associated with data tests (15) (¢ = 0.63), and integration
tests (15) are associated with test automation (15) (¢ = 0.88). However, ML tests (e.g., data
tests) are not associated with traditional software tests (e.g., unit tests), or with test automa-
tion. These results indicate a separation between ML and SE concerns exists. Moreover,
they indicate that mature teams jointly adopt test practices, as also noticed in [36].

Architectural styles for ML. Next, respondents were asked to select the architectural
styles employed in their projects. The results are illustrated in Figure 2.3b, and indicate
that the majority of respondents used the event-driven style. Nonetheless, the difference

30 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

Table 2.5: Solutions mapping to ISO/IEC 25010 model.

Characteristics ~ Sub-characteristics Solutions
Func. Suitability Func. Cpmpleteness 1,2,3
Compliance 3
Performance ef- Capacity 2,11
ficiency
e Co-existence 7,8
Compatibility Interoperability 6,12
Usability User Error Protection 19, 20
R Availability 10, 16, 18
Reliability Fault Tolerance 9,10
Security Accountability 19
Modularity 4,5,7,8, 12
Reusability 4,5,6,8
Maintainability ~ Analysability 11,17
Modifiability 4,5
Testability 5,7,9,10, 11, 14, 15
Adaptability (including Scalability) 13, 16, 18
Portability Deployability (including Installability 12, 16, 17, 18
and Replaceability)

between event-driven, lambda, and micro-service/SOA architecture styles is not large.
Although we did not find significant associations between the architectural styles, the
lambda architecture can be used concomitantly with other architectural styles. We also
searched in literature for evidence to support the architectural styles, but did not find any
study on this topic. Therefore, we abstain from drawing a firm conclusion regarding the
most suited architectural style for software with ML components (if any), and propose to
gather more data on this topic in future research.

Quality attributes. Last, respondents were asked to link the solutions to software
quality attributes (characteristics) from ISO/IEC 25010 [118], which enabled to restate
them as architecture tactics [22]. Tactics are architectural building blocks from which
design patterns can be created, and represent architectural decisions that improve indi-
vidual quality attributes [22, 99]. Therefore, the results of this analysis provide direct
guidance for practitioners who aim to improve specific quality attributes of systems with
ML components.

Since the solutions do not presume a ranked order, we considered all solutions equally
important. The final results are presented in Table 2.5. We note that “Scalability" and
“Interoperability” — considered important decision drivers (Figure 2.3a) — are addressed by
multiple solutions. Similarly, “Maintainability”, considered to have the biggest impact on SA
by interview participants (Figure 2.1), is addressed by the largest number of solutions. We
also observe that some quality attributes from the standard (e.g., Operability or Maturity)
are not addressed by any solution, and note this result does not imply that missing quality
attributes are not challenging. Instead, some quality attributes may not be applicable, or

2.5 DiscussioN 31

require adaptation to accommodate ML components, as previously suggested by Kuwajima
et al. [143]. We plan to investigate this conjecture in future research.

We also mention that “Compliance" sub-characteristics are not present in the quality
standard because compliance is considered part of the overall system requirements. There-
fore, “Compliance" spans all characteristics in Table 2.5. To avoid confusion, we represent
“Compliance" as a sub-characteristic of “Functional Suitability".

2.5 DI1SCUSSION

We comment on multiple aspects left open in the paper. First, regarding the challenges
discovered from interviews, we analysed the percentage of survey respondents who did
not have a strategy to tackle them. We found out that 23% of respondents had no strategy
for challenge (19), and 22% of respondents had no strategy for challenge (20). These results
show that more than 75% of respondents tackled these challenges, and bring evidence
that both challenges are relevant, in spite of the fact that they were mentioned in one
interview each. Moreover, the answers for challenge (20) have similar distributions for
teams consisting of 6-9 and 10-15 members, suggesting the challenge is not motivated by
team size. Similar analyses for smaller team sizes are planned for future research, as the
data collected until now can not entail robust conclusions.

Second, both in the interviews and in the survey, the architectural decision drivers
for trustworthy ML [106] - i.e., “Robustness", “Security", “Privacy" — were not considered
important by respondents. McGraw et al. [169] argue that, from a security engineering
perspective, the SA of systems with ML components is an important first step. However, our
survey results show a different perspective. Besides the concerns stemming from neglecting
these decision drivers, the result may indicate that decisions regarding trustworthy ML can
be made after the SA of a system is defined. We plan to investigate this in future research.

Third, the solutions presented in Table 2.7 do not take into account functional dependen-
cies, or presume a functional ranking. Nonetheless, the results from the association analysis
(Section 2.4.3) indicate the solutions may be complementary, and their joint adoption inter-
dependent or incremental. Similarly, by analysing the associations between solutions and
architectural decision drivers, we found out that multiple solutions are associated with
decision drivers. We expect that results from this type of analyses will provide step-wise
guidance to practitioners searching for tactics to address individual drivers, and plan to
develop such analyses in future research, once more data is collected.

We also noticed that some solutions have low adoption. For example, self-adaptation
for managing inherent uncertainty (9) was used by less than 5% of respondents. While
this result may seem surprising, according to Mahdavi-Hezavehi et al. [163] the number
of self-adaptation techniques for “automated learning”, i.e., ML components, is small. We
conjecture that a small number of solutions are not applied because they are not fit, or still
prototypes in academia, and plan to investigate them in future research.

Last, when mapping the solution to software quality attributes, we used the mature and
authoritative ISO/IEC 25010 standard [118]. At the moment, no similar model exists for ML
components, although policy makers indicate such models are under development [123].
The results from our study indicate that, with the exception of “Interpretability”, ML specific
quality attributes are not considered important SA decision drivers. We expect this to

32 2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

change once mature quality models for ML are available, and propose to extend our analysis
to cover them in future research.

Threats to validity. We identified three potential threats to validity, corresponding
to the three stages of the study. First, the SLR can be affected by missing or exclusion of
relevant papers. To mitigate this threat, we used multiple digital libraries for information
retrieval. Additionally, we complemented the results with grey literature (manual search),
and through snowballing. The researchers’ bias in the data extraction was prevented using
a data extraction form, which allowed consistency in data analysis, and through discussions
between authors with different backgrounds.

Second, the data from interviews may be subject to bias. To limit this bias, we analysed
the participants’ profiles and ensured they have relevant experience for the study. We
recruited participants with diverse backgrounds and experience, working for organisa-
tions with distinct sizes and experience in ML. We also used two strategies to alleviate
memory bias, i.e., we shared a short version of the interviews before the meeting, and
asked participants to share their experience from a recent project in the preliminaries.
Moreover, we assured participants of data confidentiality and anonymisation, in order to
limit participants from answering the questions in a manner that would better position
them, or the organisation they are part of.

Third, to limit the survey bias we included additional fields besides the answers from
SLR or interviews (e.g., Other fields for all challenges). We also advertised the survey to
diverse groups, in order to limit selection bias. Nonetheless, as shown in Section 2.4.3,
some groups of respondents are under-represented, and may introduce selection bias. This
bias can be removed by gathering more data, as we plan to do in the future. Last, to avoid
researchers’ bias, we used data triangulation from multiple sources.

2.6 CONCLUSIONS AND FUTURE RESEARCH

We studied how systems can be (re-)architected to enable robust adoption of ML compo-
nents. We ran a mixed-methods empirical study consisting of: (i) a SLR which revealed
42 relevant articles, from which we complied 18 SA challenges (and solutions) for ML, (ii)
10 semi-structured interviews which revealed 2 new challenges and 46 new solutions, and
(iii) a survey with 47 architects to quantitatively validate the solutions.

We reported on the impact of each challenge on SA, and the main SA decision drivers
for ML. We found out, for example, that ML heighten decision drivers, such as privacy, are
considered marginally important when compared to traditional decision drivers, such as
scalability or interoperability. Moreover, we established a link between solutions and quality
attributes from the ISO/IEC 25010 standard, which allowed us to provide practitioners with
twenty architectural tactics for systems with ML components.

For future research, we plan to further increase the number of respondents of the
survey, in order to perform more robust analyses. For example, we plan to create a stronger
link between tactics and decision drivers using association analysis. Moreover, we plan to
perform in depth analyses of the architectural styles suitable for ML. We also plan to add
depth to the interpretation of our findings through validation interviews, and expand the
quality attributes from ISO/IEC 25010 with ML specific quality attributes.

2.6 CONCLUSIONS AND FUTURE RESEARCH 33
Table 2.6: List of SA challenges for ML.

Nr. Category Challenges References

1 Regs. At design time the information available is insufficient [28, 51, 117, 154,
to understand the customers or the projects. 160, 282]

2 Regs. ML components lack functional requirements. [28, 51, 63, 117,

160, 282]

3 Regs. ML projects have regulatory restrictions and may be [79, 127, 186, 245]
subject to audits.

4 Data Data preparation may result in a jungle of scrapes, joins, [63, 151, 236]
and sampling steps, often with intermediate outputs.

5 Data Data quality is hard to test, and may have unexpected [63, 151, 168, 208,
consequences. 312]

6 Design Separate concerns between training, testing, and serv- (8, 301, 314]
ing, but reuse code between them.

7 Design Distinguish failures between ML components and other [213, 304]
business logic.

8 Design ML components are highly coupled, and errors can have [109, 191, 282]
cascading effects.

9 Design ML components bring inherent uncertainty to a system. [12, 109, 191, 244,

248]

10 Design ML components can fail silently. These failures can be [33, 248, 300]
hard to detect, isolate and solve.

11 Design ML components are intrinsically opaque, and deduc- [109, 191, 232,
tive reasoning from the architecture artifacts, code or 314]
metadata is not effective.

12 Design Avoid unstructured components which link frame- [236]
works or APIs (e.g., glue code).

13 Design Automation and understanding of ML tasks is difficult [151, 218, 245,
(AutoML). 282, 301]

14 Testing ML testing goes beyond programming bugs to issues [8, 14, 189, 216,
that arise from model, data errors, or uncertainty. 312]

15 Testing Validation of ML components for production is difficult. ~ [230]

16 Ops. ML components require continuous maintenance, re- [25, 154, 191, 230,
training and evolution. 282, 286, 312]

17 Ops. Manage the dependencies and consumers of ML appli- [23, 73, 109, 236,
cations. 304]

18 Ops. Balance latency, throughput, and fault-tolerance, [47, 151, 173, 287,
needed for training and serving. 301]

19 Ops. Trace back decisions to models, data and reproduce P10
past results.

20 Org. ML applications use heterogeneous technology stacks P1

which require diverse backgrounds and skills.

34

2 SOFTWARE ARCHITECTURE FOR MACHINE LEARNING

Table 2.7: List of solutions.

Nr. Solutions

1 Run simulations to gather data. Use past experience. Measure and document
uncertainty sources.

2 Use metrics as functional requirements. Include understandability and explain-
ability of the outputs.

3 Analyse regulatory constraints up-front. Adopt an Al code of conduct. Design
audit trails.

4 Design separate modules/services for data collection and data preparation. Inte-
grate external tools.

5 Design separate modules/services for data quality assessment. Integrate external
tools.

6 Standardise model interfaces. Use one middleware. Reuse virtualisation, infras-
tructure and test scripts.

7 Separate business logic from ML components. Standardise interfaces and use
one middleware between them.

8 Design independent modules/services for ML and data. Standardise interfaces
and use one middleware. Relax coupling heuristics between ML and data.

9 Usen-versioning. Design and monitor uncertainty metrics. Employ interpretable
models/human intervention.

10 Use metric monitoring and alerts to detect failures. Use n-versioning. Employ
interpretable models.

11 Instrument the system to the fullest extent. Use n-versioning. Employ inter-
pretable models. Design log modules to aggregate/visualise metrics.

12 Wrap components in APIs/modules/services. Use standard interfaces and one
middleware. Use virtualisation.

13 Version configuration files. Design the log and versioning systems to support
AutoML data retrieval.

14 Design model and data tests. Use CI/CD. Use integration and unit tests. Use data
ownership for test modules.

15 Use metrics and CI/CD for validation. Use alerts, visualisations, human inter-
vention. Design release processes.

16 Design for automatic continuous retraining. Use CI/CD. Use automatic rollback.
Use infrastructure-as-code. Adopt standard release processes.

17 Encapsulate ML components in identifiable modules/services. Use authentication
and access control. Log consumers of ML components.

18 Design for batch processing (training) and stream processing (serving),
i.e., lambda architecture. Physically isolate the workloads. Use virtualisation.

19 Design for traceability and reproducibility; log pointers to versioned artifacts,
version configurations, models and data.

20 Form multi-disciplinary teams. Adopt an Al code of conduct. Define processes

for decision-making. Raise awareness about ML risks within the team.

35

3 a

TowARDS USING
ProBABILISTIC MODELS TO
DESIGN SOFTWARE SYSTEMS
WITH INHERENT UNCERTAINTY

The adoption of ML components in software systems raises new engineering
challenges. In particular, the inherent uncertainty regarding functional suitabil-
ity and the operation environment makes architecture evaluation and trade-off
analysis difficult. In this chapter, we propose a software architecture evaluation
method called Modeling Uncertainty During Design (MUDD) that explicitly mod-
els the uncertainty associated to ML components and evaluates how it propagates
through a system. The method is based on Bayesian networks, which enable both
qualitative and quantitative assessments of software architectures. In particu-
lar, the method supports reasoning over how architectural patterns can mitigate
uncertainty and enables comparison of different architectures focused on the
interplay between ML and classical software components. While domain-agnostic
and suitable for any system where uncertainty plays a central role, we validate
our approach using as example a perception system for autonomous driving. For
this system, we empirically demonstrate that a component-based design is over
10% more resilient to uncertainty than an end-to-end design. Moreover, we bring
empirical evidence that architecture design patterns can help to significantly
decrease the uncertainty associated to ML components.

This chapter has been published as [3 A. Serban, E. Poll, J. Visser, Towards Using Probabilistic Models to Design
Software with Inherent Uncertainty, European Conference on Software Architecture, 2020 [244].

36 3 PROBABILISTIC MODELS FOR SOFTWARE ARCHITECTURE

3.1 INTRODUCTION

With the emergent adoption of ML components in software systems, there is an increased
need to tackle and reduce their inherent uncertainty. Particularly when developing safety-
critical systems — e.g., autonomous vehicles — where new developments in ML and especially
deep learning (DL) are used to a great extent.

For a long time, researchers in software architecture have developed methods to tackle
uncertainty at design [71, 170] or at run-time [70]. Previous work focused primarily on
tackling uncertainty related to the parameters used to model a software system, its context
or to the instrumentation [70, 71, 170]. ML (and particularly DL) components add a new
type of uncertainty that was only briefly explored previously. This uncertainty comes from
the incapacity to verify that these components satisfy their intended functionality, and that
they are able to cope with stochastic events coming from the operational environment.

In this chapter, we introduce a method to evaluate architecture design alternatives
for software using both traditional and ML components. The proposal, called Modeling
Uncertainty During Design (MUDD), is based on two guiding principles. First, the threats
due to inherent uncertainty of ML components are evaluated both locally (for the specific
components) and tracked as they propagate and influence other components in the system.
Second, the prior information about uncertainty of ML components that is used at design
time is considered incomplete and subject to continuous change.

For modeling a software system using ML components we use probabilistic graphical
models — in particular Bayesian networks (BNs) — which allow to express beliefs about
variables (satisfying the second principle) and evaluate their influence on other connected
variables (satisfying the first principle). The method only requires to annotate existing
software architectures with design elements that express the inherent uncertainty of ML
components. The formalism of BNs can then be used to obtain quantitative results for
comparing architecture alternatives. We demonstrate our method using a visual perception
system for autonomous driving, illustrated in Figure 3.1. The system is based on three
components which can only be implemented using DL algorithms.

This chapter is organized as follows. In Section 3.2 we discuss background information
and related work. Section 3.3 presents sources of uncertainty and BNs. Section 3.4 intro-
duces MUDD and the running example. In Section 3.5 we develop a qualitative assessment
of software architectures, followed by a quantitative assessment in Section 3.6, exhibiting
MUDD. Section 3.7 uses the same method to assess the impact of using architectural design
patterns to reduce uncertainty. A discussion and concluding remarks follow in Section 3.8.

3.2 BACKGROUND AND RELATED WORK

We discuss three related research directions: (1) the use of uncertainty at design time
for comparing architectural design alternatives, (2) the use of uncertainty at run-time for
self-adaptation, and (3) the use of BNs in software architecture and reliability engineering.

At design time, the uncertainty in the parameters used to model a software system has
been taken into account for evaluating the reliability of software architectures using robust
optimisation [170], for comparing software architectures when the impact of architectural

3.2 BACKGROUND AND RELATED WORK 37

(a) Object Detection (OD) (b) Depth Estimation (DE) (c) Semantic Segmentation (SS)

Figure 3.1: Visual perception system for autonomous driving.

decisions can not be quantified, using fuzzy methods [71] and for evaluating trade-offs
specific to desired quality attributes such as performance, using sensitivity analysis [72].

The first two methods aim to achieve similar goals with ours, although they seem
unsuitable for software using ML components. In the first case [170], the failure rate of
ML components can not be evaluated as for traditional software components because
in many scenarios these components will appear to behave as intended, although their
outcomes will be erroneous or very uncertain [248]. Moreover, we are not concerned
with deployment, as in [170], but with architectural design styles or patterns that can
reduce the uncertainty stemming from defining software components and their interaction.
Regarding [71], in this paper we take a bottom-up approach, assessing the uncertainty of
each components and their impact on the architecture, instead of a top-down approach
where the impact of architecture decisions is quantified at architecture level. We found it
difficult to assess the impact of uncertainty on software architectures without first assessing
the uncertainty of the components. Moreover, the uncertainty of ML components can not
be precisely measured and it is subject to change (principle 2 from Section 3.1). Therefore,
evaluating how the uncertainty of each component propagates in a system enables fine-
grained reasoning about the sources of uncertainty that have a significant impact on the
architecture, ways to remove them and the suitability of architectural patterns in doing so.

The evaluation of other quality attributes under uncertainty, such as performance [72]
is complementary to the method introduced here and it is an interesting path to explore
for future work.

Various sources of uncertainty [70] can be mitigated at run-time, of at design time,
through self-adaptation. Self-adaptive systems collect data during operations and reconfig-
ure or adjust their behavior in order to mitigate uncertainty [289]. Software architecture
plays an important role in self-adaptation because an architectural model can be used
at run-time to reason about self-adaptation. Although multiple uncertainty sources are
used in self-adaptation, particularly relevant to us is the uncertainty related to “automated
learning” [81, 290]. However, not many publications address this problem [163]. In this
paper we tackle the problem at design time, and not at run-time, although some methods
intended to work at run-time can be paired with the method introduced in this paper. We
consider this an interesting direction to pursue in the future.

BNs have been previously used in software architecture as a support tool for design
decisions - to quantify the impact of decisions on systems quality [308] or to measure
the impact of changes [269]. Moreover, BNs have been extensively used in reliability
engineering, to predict software reliability from architecture artifacts [222] or for fault
detection [57]. In all cases, the model is based on the system’s possible execution path, the

38 3 PROBABILISTIC MODELS FOR SOFTWARE ARCHITECTURE

control flow graph or on the architectural structure of the system. While the execution paths
are not available for ML components due to their opaque nature and lack of internal states,
focusing on design level artifacts is related to the method introduced in this paper [222].

3.3 UNCERTAINTY SOURCES AND BAYESIAN NETWORKS

Perez-Palacin and Mirandola [204] and Esfahani and Malek [70] discuss multiple sources of
uncertainty to be considered in the context of self-adaptation. Although many uncertainty
sources are valid at design time, we are particularly interested in the uncertainty related to
“automated learning” [81, 163, 290], i.e., the inherent uncertainty related to ML components.

In particular, we are interested in the uncertainty related to properties of ML compo-
nents that are impossible to fully verify before deployment, i.e., (1) the ability of a ML
component to always satisfy its intended functionality and (2) to cope with stochastic
events in the operational environment. According to [204] these sources of uncertainty
can be classified by nature in:

« epistemic uncertainty (EU) - captures our ignorance of the correct model that generates
the data. If the training data for a ML component does not accurately represent
the data generation distribution, the model will have high epistemic uncertainty.
This uncertainty can be removed given enough training data. However, the bounds
for the data set size needed to learn complex tasks, e.g., object recognition, are not
achievable in practice.

« stochastic uncertainty (SU) - captures the response of a ML component to stochastic
noise in the operational environment (e.g., noise in the observations). This uncer-
tainty can not be removed with more training data.

We propose to use these two sources of uncertainty as architectural design elements,
in order to evaluate design alternatives for systems using ML components. For modeling a
software system we use the structure and formalism of BNs because they allow to express
beliefs (or incomplete prior information) about a variable and evaluate its influence on
other connected variables. Briefly, BNs are directed, acyclic graphs, that model a set of
variables and their conditional dependencies. This model offers both a quantitative and a
qualitative method to reason about a set of variables. The former, qualitative, analysis uses
the topological structure of the BN where variables are represented as nodes of a graph
and the dependencies between them as directed edges.

The latter, quantitative, analysis consists of specifying the conditional probability
distributions (or tables in the discrete case) between dependent variables in the graph.
Since a BN contains all assumptions about a model (the graphical structure, the conditional
probabilities and other parameters), it has no hidden assumptions about inference rules. The
network’s structure defines a joint probability model where the rules of probability calculus
enable conclusions based on observations. Probabilistic inference computes posterior
probabilities for unobserved variables given observations of other variables in the model.
For a formal introduction to BNs, we refer the reader to Pearl[203].

3.4 MODELING UNCERTAINTY DURING DESIGN 39

3.4 MODELING UNCERTAINTY DURING DESIGN

MUDD is a method to assess architecture design alternatives for software systems using
both ML and classical components. In particular, the method focuses on reasoning about
architectural design styles and patterns that can reduce the uncertainty stemming from
defining software components and their interaction. MUDD evaluates the impact of un-
certainty in a bottom-up manner, starting locally, as it impacts specific ML components,
and tracked globally, as it influences other components in the system. This method al-
lows fine-grained reasoning about design alternatives, where the changes between design
alternatives can be evaluated at multiple levels.

Notably, MUDD supports reasoning over which design alternatives are less sensitive to
uncertainty, and how design patterns can help mitigate it. Moreover, the method allows to
evaluate hypothetical scenarios, in which the data about uncertainty used at design time is
considered incomplete.

From a methodological perspective, MUDD only requires to annotate existing software
architectures with the sources of uncertainty specific to ML components. Afterwards, the
topology of the BN is used as a model for quantitative assessments and the formalism of
BNs is used for quantitative assessments.

We emphasize that MUDD uses the two sources of uncertainty introduced in Section 3.3
because they are application and context independent, i.e., they are valid and can be extracted
from any ML model. The methods used to measure them can be different, depending on
the ML algorithm employed. Therefore, they are parameters rather than fixed elements of
MUDD. Nonetheless, MUDD is not limited to these two types of uncertainty. In fact, any
type of uncertainty, application or context specific can be used without any modification.

Throughout the paper we use an example from autonomous driving, inspired by [27,
34, 251] - the design of a perception system for scene understanding. The system performs
the following three tasks:

« Object detection (also called object localization) aims to identify the location of all
objects in an input image, and classify them according to predefined classes. The
output of object detection is an image with several boxes surrounding the objects,
their labels and confidence scores for the classification.

« Semantic segmentation classifies each pixel of an input image to predefined classes,
such as pedestrians or vehicles.

« Depth estimation (or understanding the geometry of the scene) is relevant to deter-
mine the position of other obstacles or the road surface.

All functions are illustrated in Figure 3.1. The outcome of the perception system is used
in planning the next driving maneuvers of a vehicle. The functionality for all components
is implemented using deep neural networks because no specification can be written for it,
and other ML algorithms do not perform as good. We are interested to evaluate software
architecture design alternatives and select the one which is the least sensitive to uncertainty.

In Figure 3.2a and Figure 3.2b we present two architecture candidates inspired from [251]
and [27]. The relevant functional components are illustrated using circles, while the input

40 3 PROBABILISTIC MODELS FOR SOFTWARE ARCHITECTURE

Object
Detection

i Camera

Semantic
Segmen-
tation

Object
Detection

Segmen-
tation

(a) End-to-end architecture. (b) Component-based architecture.

Figure 3.2: Functional architectures for a scene understanding system in autonomous vehicles.

Camera

' Depth 'Semanuc

O T ——

Estimation, Segmen-
tation

‘Semantic
»{ Segmen-
tation

(a) End-to-end annotated architecture, (b) Component-based annotated archi-
as required by MUDD. tecture, as required by MUDD.

Figure 3.3: Uncertainty representation for the two architectures in Figure 3.2, where EU stands for epistemic
uncertainty and SU for stochastic uncertainty.

coming from the camera is depicted with a rectangle. The latter will not be considered a
node in the BN (therefore its shape).

The first figure illustrates the end-to-end paradigm, where all components of the system
are jointly trained to form a representation relevant to planning. This corresponds to a pipe-
and-filters implementation, recommended in [251] and adopted in [34]. The components
are separated because they are trained using different objective functions and are subject
to distinct drawbacks (also called multi-task learning in the ML literature). However, they
all share a base network for feature extraction and have independent layers to decode the
features for each task. An alternative architecture is presented in the Figure 3.2b, where
the system is organized into distinct ML components and integrated during planning,
corresponding to a component-based architecture from [27].

We have chosen these architectural styles as the only alternatives we could find in
literature. However, MUDD is not limited to any architectural style.

For reasoning about uncertainties, we propose to annotate the the two architectures with
the sources of uncertainty specific to each component. Since the architectures represent
a directed graph, we only need to add and connect explicit nodes from the uncertainty
sources to the components they influence.

3.5 QUALITATIVE ARCHITECTURE EVALUATION 41

Figure 3.3 departs from the functional view presented in Figure 3.2 by illustrating
the uncertainty sources discussed in Section 3.3, for each component. In the first case,
Figure 3.3a, one base encoder is used for all tasks. Therefore, only one node representing
epistemic uncertainty (EU) influences all components.

Arguably, the internal representation of the encoder might hold different representa-
tions for each task, and be subject to distinct epistemic uncertainties. However, the internal
representation is entangled and specific attributes corresponding to each task can not be
easily extracted.

Different sources of stochastic uncertainty (SU) can impact the three tasks because
one random event in the operational environment can influence segmentation, but not
detection or depth estimation (and vice versa). Therefore, for each component there is a
different variable for stochastic uncertainty. In the second scenario from Figure 3.3b, since
the components process raw data from camera independently. Therefore, they are subject
to distinct epistemic and stochastic uncertainties. We note that these decisions are not
application and context specific. All ML components have these types of uncertainty.

The annotated architectures from Figure 3.3 represent the topology of a BN and can be
used for qualitative analysis. For quantitative results, the topology needs to be enriched
with probability data.

3.5 QUALITATIVE ARCHITECTURE EVALUATION

Qualitatively, the annotated functional architectures from Figure 3.3 allow high level
reasoning about threats to the intended functionality coming from inherent uncertainty.
Nonetheless, the analysis is not limited to possible faults from uncertainty. Other quality
properties, e.g., availability, can be assessed similarly.

In order to evaluate design alternatives qualitatively, architects can apply well known
evaluation methods such as questioning techniques, scenarios or check-lists [66]. We
develop an example of scenario-based analysis; a technique systematized in [128]. Scenarios
analyze a use case or a change in a system. The change can describe how one or more
components perform an activity, the impact of adding another component to perform the
same (or another) activity, the impact of adding a connection between existing components
or any composition of these factors. Describing the changes that are needed for a scenario
is a qualitative method of architecture evaluation [66].

We analyze the scenario where high stochastic uncertainty in depth estimation leads
to unsafe planning. From Figure 3.3, we can see that in the end-to-end architecture depth
estimation is linked to semantic segmentation. Stochastic uncertainty can not be removed
using more training data, as indicated in Section 3.3. Therefore, the alternatives are to use
a different training objective or a different ML model altogether. However, since the scene
understanding system is trained end-to-end, the new objective (or new model) can impact
the internal representation of both segmentation and localization, which might increase
their epistemic uncertainty, and ultimately lead to unsafe planning.

In the component-based architecture, depth estimation is only linked to planning.
Therefore, high stochastic uncertainty in depth estimation can be treated in isolation, by
either deploying a new DL component or using heterogeneous implementations to increase
its confidence. If the model is replaced, it will have no impact on the other components in

42 3 PROBABILISTIC MODELS FOR SOFTWARE ARCHITECTURE

the system. In this case, the change requires less effort than in the end-to-end architecture
because changing the depth estimation component does not require to change or re-train
other components.

We also analyze the use of LIDAR - as suggested in [27, 251] - to increase confidence in
depth estimation and adopt the n-version programming pattern for safety critical systems
to integrate it. The change consists in adding a new LIDAR component and a voting mech-
anism between the DL depth estimation component and the new LIDAR component [13].
An illustration is provided in Figure 3.5 and a more thorough discussion follows in Sec-
tion 3.7. For both architectures, the output of the DL depth estimation components can be
interpreted independently. Therefore, deploying the new components specific to LIDAR
will have the same impact for both architectures. From the perspective of this change,
both design alternatives are equivalent. However, the component-based architecture has a
flexibility advantage when changing individual components.

During qualitative evaluation, it is important that different stakeholders and roles
responsible for parts of the system participate. Such stakeholders may be algorithm
developers, system and safety engineers or software architects. We can see that by explicitly
modeling of uncertainty at design time, a broader community of practitioners can participate
in design decisions, even though the domain knowledge needed to understand the inner
workings of ML algorithms is not wide-spread. In the following section, we show how the
same model enriched with quantitative measurements can be used to assess the impact of
uncertainty on both individual components and on the system.

3.6 QUANTITATIVE ARCHITECTURE EVALUATION

As shown in Section 3.4, the enhanced functional architecture of a system has the topological
structure of a BN. The probabilities needed to populate the network can be defined by
experts or inferred through simulations - e.g., to estimate the effect of epistemic uncertainty
on a ML model, we can use a test data set which was not used when training the model.
The random variables in the BN can take continuous or discrete values. In the former
case, the system designer chooses an a priori distribution for each variable, before seeing
any data, and updates its parameters once new observations are available. In the latter case,
the variables take discrete values and are described by their probability mass functions.

For simplicity, we choose to model all variables through probability mass functions
with two discrete values: low or high uncertainty. When the uncertainty is low, the system
is likely to satisfy its intended functionality, and vice versa. Deciding if the uncertainty
values are discrete or continuous is application and context specific. If the uncertainty in
the ML components used in a system can be modeled as a probability distribution, and
if the parameters of the distribution can be estimated well, a continuous approach may
be better suited. Nonetheless, interpreting the parameters of a distribution requires more
knowledge, and may complicate the architectural decision process.

Given the two proposed values for uncertainty, we are interested to evaluate the
influence of different nodes in the network on planning, and obtain quantitative results
for the qualitative evaluation. Both the probabilities and the thresholds can be decided by
domain experts, or by simulation.

3.6 QUANTITATIVE ARCHITECTURE EVALUATION 43

For the running example, we use a test data set (not used for training) to extract the
uncertainty estimates from DL components, by averaging over samples in this data set.
The thresholds between low and high represent the lowest uncertainty estimate from the
incorrectly classified examples in the testing data set. The probability that a component has
high (epistemic or stochastic) uncertainty will be the total number of test examples which
have uncertainty higher than the threshold over the total number of testing examples.
Note that the correctly classified examples with high uncertainty will contribute to the
probability that a component has high uncertainty. This choice is deliberate, because the
system we study is safety-critical, and uncertain decisions should be avoided.

The conditional probabilities - i.e., the influence of components to the connected
components — can be evaluated in a similar manner. They represent the probabilities that
a component has high uncertainty, given the uncertainty values of the parent variables.
For example, P(OD = H|EP = H, SU = H) is the probability that the object detector is highly
uncertain when the model has high epistemic and high stochastic uncertainty. We use the
same method and data set as before, but average the results when the parent variables have
the same value. The thresholds are also chosen as before.

All experiments are carried out using the CityScape data set [58]. For the end-to-
end architecture presented in Figure 3.2a, we train a variant of MultiNet [270] using an
encoder based on the DenseNet [112] architecture, pre-trained on the ImageNet data set
(as in [120]) with a dropout probability of p = 0.2. We use different loss functions in a multi-
task learning setting for object detection, depth estimation and semantic segmentation.
Epistemic uncertainty is approximated by casting a Bernoulli distribution over the model’s
weights and sample it at evaluation time using the dropout layers in the base encoder.
The mean of the dropout samples is used for prediction and the variance to output the
uncertainty for each class [4]. Stochastic uncertainty is extracted from the final layer of each
task, as described in [130]. The geometry of the scene is interpreted using depth estimations
from the base encoder, as in [69], while object detection and semantic segmentation have
the same loss functions as in [270]. For the component-based architecture presented
in Figure 3.2b, we use one independent encoder and decoder for each task. Training is
performed by minimising the task specific loss function used in the multi-task setting
described above. The implementation of DL components was done in Pytorch! and the
BN’ in Pomegranate?. The uncertainty estimates are presented in Table 3.1 for the system
in Figure 3.2a and Table 3.2 for the system in Figure 3.2b.

The heuristics applied to populate the tables represent the prior knowledge we embed
in the network. Depending on the context, software designers may choose to embed more
domain knowledge, or rely on expert opinion. For example, in the context of autonomous
driving we may choose to augment the testing set with common perturbations, specific to
different seasons, driving conditions, or even malicious perturbations [103].

Given the probability tables, we can use the inference rules of BNs to answer questions
about the proposed architectures. Coming back to the example presented in Section 3.5,
we wish to get quantitative evidence about the impact of high stochastic uncertainty in
depth estimation on planning. Setting depth estimation stochastic uncertainty to "High"
(SUpg = H), we can compute the final impact on planning as follows. Let x(x) represent

Ihttps://pytorch.org/
Zhttps://github.com/jmschrei/pomegranate

44 3 PROBABILISTIC MODELS FOR SOFTWARE ARCHITECTURE

Table 3.1: Independent and conditional probabilities for the end-to-end architecture in Figure 3.3a. The acronyms
used are OD - object detection, DE - depth estimation, SS - semantic segmentation, EU - epistemic uncertainty
and SU - stochastic uncertainty. The uncertainty values are L - low and H - high.

P() | EU | SUop | SUpg | SUss P(Planning | SS)
H \0.18\ 0.16 0.11 \ 0.19 0.1 L
0.9 H

P(OD | EU | SUpp)

00 | L L
064 | L H
061 | H L
1 H H
P(DE | EU | SUpg | OD) P(SS | EU | SUss | DE)
00 | L L L 00 | L L L
013 | L L H 028 | L L H
076 | L H L 064 | L | H L
085 | L H H 072 | L | H | H
043 | H L L 066 | H | L L
078 | H L H 058 | H | L H
09 | H| H L 061 | H | H L
1 H | H H 1 | H| H | H

the parent variables of node x (the nodes that have a directed edge to it). The probability
that planning will have high uncertainty is:

P(Planning = H) = P(SS| 7(SS))- P(DE| x(DE)) - P(OD| 7(OD)) -
P(SUss) - P(SUpg = H) - P(SUpp) - P(EU),

for the end-to-end architecture, and:

P(Planning = H) = P(SS| 7(SS)) - P(DE| n(DE))- P(OD| n(OD)) -
P(SUss) - P(SUpg = H)- P(SUpp) - P(EUss) - P(EUpg) - P(EUpp),

for the component-based architecture, where the acronyms are as in Table 3.1.

Running the computation, we observe that the probability of uncertain planning is
approximately 10% lower for the component-based architecture (Figure 3.2b) than for the
end-to-end architecture. Moreover, through the same model we can analyze how high
stochastic uncertainty in depth estimation impacts planning within the minimum and
maximum bounds. We plot the probability that planning is uncertain given that depth
estimation stochastic uncertainty is high, by varying P(DE = H|SU = H, -) in Tables 3.1
and 3.2 between [0, 1] with a step size of 0.01. The results are illustrated in Figure 3.4a.

The plot represents the influence of high stochastic uncertainty on depth estimation and
the way it propagates on planning. We observe that in the component-based architecture,
stochastic uncertainty in depth estimation has a lower impact on planning than in the

3.6 QUANTITATIVE ARCHITECTURE EVALUATION 45

Table 3.2: Independent and conditional probabilities for the component-based architecture in Figure 3.3b. The
acronyms are defined in Table’s 3.1 caption.

P() | EUpp | SUop | EUpg | SUpg | EUss | SUss

H | 014 | 016 | 031 044 | 017 | 0.19
P(OD | EUpp | SUop) P(DE | EUpg | SUpg)
0.0 L L 0.0 L L
0.57 L H 0.51 L H
0.41 H L 0.47 H L
1.0 H H 1 H H
P(SS | EUss | SUss) P(Planning | SS | DE | OD)
0.0 L L 0.0 L| L L
0.11 L H 0.34 L | L H
0.42 H L 0.34 L | H L
1.0 H H 0.66 L | H H
0.34 H| L L
0.66 H| L H
0.66 H| H L
1 H | H H

end-to-end architecture, for values up to ~ 0.7, after which the end-to-end architecture
is more resilient to uncertainty. Depending on the operational environment, a software
architect can choose the design that better fits the expected conditions. For example, if an
autonomous vehicle operates in limited domains — e.g., inside a warehouse — where the
probability of encountering stochastic events is low, the component-based architecture for
the scene understanding system is more appropriate.

Using the same model, we can evaluate the influence of multiple sources of uncer-
tainty on planning. We use the realistic assumption that the CityScape data set does not
approximate all driving scenarios and thus may introduce high epistemic uncertainties.
Therefore, we evaluate the influence of all epistemic uncertainty sources on planning
in the scenario described above, where we assume high stochastic uncertainty in depth
estimation. We use the same method as above to evaluate the probability that planning
will have high uncertainty while we vary all epistemic uncertainty nodes simultaneously
with the stochastic uncertainty in depth estimation. The uncertainties vary between [0, 1],
with a step size of 0.01. The results are plotted in Figure 3.4b.

As in the previous case, the end-to-end architecture is more resilient to high uncer-
tainties, for all the components mentioned above. Moreover, the threshold where the
end-to-end architecture becomes more resilient than the component-based architecture is
lower. Nonetheless, the impact on planning remains high for values near the threshold,
where both architectures behave similarly. With a 50% chance to plan actions that may lead
to unintended outcomes, the system may not be usable. However, epistemic uncertainty

H

46 3 PROBABILISTIC MODELS FOR SOFTWARE ARCHITECTURE

0.7
—— End-to-end architecture —— End-to-end architecture
0.4] Component-based architecture / 0.6| Component-based arch\tecty
T 0.35 T 05
[} [} 0.4
o o
£ 03 £
£ g 03
© 5
& 0.25 S 0.2
o a
0.1
0.2
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
P(SUpe = H) P(SUpe = H, EU = H), P(SUpg = H, EUpg = H, EUss = H)
(a) Influence of high stochastic uncertainty in depth (b) Influence of high stochastic uncertainty for
estimation on planning. depth estimation and all epistemic uncertainties

on planning.

Figure 3.4: Quantitative evaluation of uncertainty in software architecture.

can be removed using more training data, so the scenario in which epistemic uncertainty
is low is more realistic. In this case, the component-based architecture is more resilient to
uncertainty than the end-to-end architecture. This result implies that the component-based
architecture is less likely to lead to unintended outcomes.

In the following section, we use the same method to assess the impact of using archi-
tectural patterns to remove uncertainty.

3.7 USING ARCHITECTURAL PATTERNS TO MITIGATE UN-
CERTAINTY

Following the results from Section 3.6 and the changes suggested in Section 3.5, we evaluate
the impact of using architectural design patterns that can decrease stochastic uncertainty in
depth estimation. In particular, we explore the use of LIDAR - as suggested in [27, 251] - to
complement computer vision for depth estimation. LIDAR is known to be more reliable
than camera sensors and is explored by many autonomous vehicle manufacturers.

As discussed in Section 3.5, the output of depth estimation is independent for both
architectures. Therefore, the impact of adding a new component is the same for both
designs. Moreover, since the system we study is safety critical, the integration of LIDAR
can be done using architectural patterns for safety critical systems [13]. In particular, we
evaluate the use of the n-versioning programming pattern because it does not require any
acceptance test. The development of acceptance tests for DL components is out of the
scope of this thesis.

The proposed changes are illustrated in Figure 3.5. The Voter component in Figure 3.5a
is added next to depth estimation, although all inference tasks for the DL components are
performed at the same time. Before the depth estimation outcome is sent to planning, the
outcome from the DL component is checked against the outcome from LIDAR. Similarly,

3.7 USING ARCHITECTURAL PATTERNS TO MITIGATE UNCERTAINTY 47

Object
Detection

Semantic
Segmen-

Depth

tation Estimation,

(a) End to end architecture. (b) Component based architecture.

Figure 3.5: Functional architectures when using the n-version programming pattern to reduce stochastic uncer-
tainty for depth estimation.

in the architecture from Figure 3.5b, the Voter component is added after depth estimation
because all DL components are independent.

The probability tables have to be adjusted as follows. Because LIDAR has high accuracy,
its uncertainty only depends on the distance we want to perform analysis for [283]. Since
we do not have access to a LIDAR component, we use a proxy from literature [310] for its
uncertainty values. The probability that the voter will be uncertain is a weighted average
between the LIDAR and the number of times depth estimation has low error rate and low
uncertainty (according to the thresholds introduced in the previous section), where the
LIDAR component’s contribution is of 90%. The final values are 0.09 in the first case, and
0.1 in the second case. The formalism of BNs allows prior information to be incomplete.
Therefore this approximation is sufficient to perform the same computations as in the
previous section and evaluate the design alternatives.

The results are presented in Figure 3.6a for the end to end architecture, and Figure 3.6b
for the component based architecture. We can see that, in both cases, the component based
architecture is significantly more resilient to uncertainty, even for high values of epistemic
uncertainty (Figure 3.6b). A striking difference between the two designs is that the end
to end architecture has a slight exponential curve for high levels of uncertainty, while
the component based architecture has a linear and slightly logarithmic curve for high
uncertainty, which shows the former increases faster.

When comparing the results before and after applying the n-version programming
pattern (Figure 3.6 vs Figure 3.4), we observe that applying the pattern is successful in
decreasing the uncertainty influence on planning. In particular for the component based
architecture, where the decrease is more significant than for the end to end architecture.

48 3 PROBABILISTIC MODELS FOR SOFTWARE ARCHITECTURE

0.35 — End-to-end architecture 0.6| — End-to-end architecture
Component-based architecture Component-based architecture
~ 03 ~ 0.5
T T
Il 0.25 i 04
o o
2 2
c c 0.3
c 0.2 c
5 5
a 2 0.2
% 0.15 &
0.1
0.4
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
P(SUpe = H) P(SUpe = H, EU = H), P(SUpe = H, EUpe = H, EUss = H)
(a) Influence of stochastic uncertainty for depth (b) Influence of stochastic uncertainty for depth
estimation on planning. estimation and all epistemic uncertainties on plan-
ning.

Figure 3.6: Quantitative evaluation of uncertainty in software architecture design using the n-version programming
pattern.

3.8 CONCLUSIONS AND FUTURE RESEARCH

We introduce Modeling Uncertainty During Design (MUDD), a method to evaluate and
compare architecture design alternatives for software systems that use ML components.
In particular, we propose to explicitly model the inherent uncertainty specific to ML
components at design time and evaluate how it propagates and influences other components
in a system. The proposed information needed to quantify the uncertainty for each ML
component is well studied both in the software architecture and in the ML literature. For
modeling systems with both traditional and ML components, we use Bayesian networks
(BNs), which allow to evaluate software architectures both qualitatively and quantitatively.

We validate MUDD using as example a perception system for autonomous vehicles.
The system consists of 3 components which can only be implemented with deep learning
algorithms. We bring empirical evidence that a component-based architecture is signifi-
cantly more resilient to uncertainty than an end-to-end design. Moreover, we show that
software architecture design patterns can be successfully used to decrease the uncertainty
of a system using ML components. Nonetheless, the system studied can not be used to
exhibit all strengths and possible scenarios in which MUDD can be used.

BNs are directed graphs and do not allow loops. Therefore, two components that
exchange data between themselves can not be modeled with this method. For future
research we propose to explore modeling alternatives that can overcome this limitation.
Hybrid models, such as Markov random fields or factor graphs use both directed and
un-directed edges and are promising alternatives.

The evaluation presented in Section 3.7 also suggests new research directions: it is
interesting to validate which architectural patterns are more suitable to reduce uncertainty
for ML components, and in which contexts. Following this research direction may lead
to new architectural models and patterns that better support the integration between

3.8 CONCLUSIONS AND FUTURE RESEARCH 49

traditional and ML software components.

Moreover, there are many common elements between tackling uncertainty at design
time and at run-time. Several links and an integration between the two is compelling
to explore in future research. For example, the models introduced in this paper can be
integrated with run-time models in order to evaluate the uncertainty of decision pipelines
using real-time data.

51

ADOPTION AND EFFECTS OF
ENGINEERING BEST PRACTICES
IN MACHINE LEARNING

In this chapter we aim to empirically determine the state of the art in how teams
develop, deploy and maintain software with ML components. Towards this goal,
we mined both academic and grey literature, and identified 29 engineering best
practices for ML applications. We conducted a survey among 313 practitioners to
determine the degree of adoption for these practices, and to validate their perceived
effects. Using the survey responses, we quantified practice adoption, differentiated
along demographic characteristics, such as geography or team size. We also tested
correlations and investigated linear and non-linear relationships between practices
and their perceived effects. Our findings indicate, for example, that larger teams
tend to adopt more practices, and that traditional software engineering practices
tend to have lower adoption than ML specific practices. The statistical models can
also predict perceived effects such as agility, software quality and traceability,
from the degree of adoption for specific sets of practices. Combining practice
adoption rates with practice importance, as revealed by statistical models, we
identify practices that are important but have low adoption, as well as practices
that are widely adopted but are less important for the effects we studied. Overall,
the survey and the response analysis provide a quantitative basis for assessment
and step-wise improvement of practice adoption by ML teams.

This chapter has been published as [2) A. Serban, K. van der Blom, H. Hoos, §. Visser, Adoption and Effects of Software
Engineering Best Practices in Machine Learning, Empirical Software Engineering and Measurement, 2020 [245].

52 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

4.1 INTRODUCTION

The adoption of ML components in production-ready applications demands strong engi-
neering methods to ensure robust development, deployment and maintenance. While a
wide body of academic literature acknowledges these challenges [14, 117, 131, 160, 282],
there is little academic literature to guide practitioners. In fact, a large part of the lit-
erature concerning engineering practices for ML applications can be classified as grey
literature [82] and consists of blog articles, presentation slides or white papers.

In this chapter, we aim to determine the state of the art in how teams develop, deploy
and maintain software solutions that involve ML components. Towards this goal, we have
first distilled a set of 29 engineering best practices from the academic and grey literature.
These practices can be classified as traditional practices, which apply to any software
application, modified practices, which were adapted from traditional practices to suit the
needs of ML applications, and completely new practices, designed for ML applications.

In order to validate the adoption and relevance of the practices we ran a survey among
ML practitioners, with a focus on teams developing software with ML components. The
survey was designed to measure the adoption of practices and also to assess the effects
of adopting specific sets of practices. We obtained 313 valid responses, and analysed 29
practices and their influence on 4 effects.

The main contributions of this chapter are as follows. Firstly, we summarise academic
and grey literature in a collection of best practices. This body of information can be
used by practitioners to improve their development process and serves as a gateway to
literature on this topic. Secondly, we determine the state of the art by measuring the
adoption of the practices. These results are used to rank the practices by adoption level
and can serve to assess the popularity of particular practices. Thirdly, we investigate
the relationship between groups of practices and their intended effects, through different
lenses — by training a linear regression model to check if the intended effect is dependent
on the practices and by training more sophisticated regression models, using a variety of
ML approaches to predict the effects from the practices. Lastly, we investigate the adoption
of practices based on the data type being processed and based on the practice categories
introduced above (traditional, modified, new).

Our results suggest that the practices apply universally to any ML application, and
are largely independent of the type of data considered. Moreover, we found a strong
dependency between groups of practices and their intended effect. Using the contribution
of each practice to the desired effect (extracted from our predictive models) and their
adoption rate, we outline a method for prioritising practice improvements tailored for
achieving specific effects, such as increased traceability or software quality. While our
study is restricted to ML, rather than the broader and less clearly delineated field of artificial
intelligence (AI), many of our findings may have wider applications, as we will briefly
discuss in Section 4.8.

This chapter is organised as follows. We first discuss background and related work
(Section 4.2). Next, we describe the process and results of mining practices from literature
(Section 4.3). A description of the design of our study (Section 4.4) is followed by a
presentation of the survey results regarding the adoption of practices (Section 4.5) and a
deeper analysis of the relationship between the practices and their effects (Section 4.6).

4.2 BACKGROUND AND RELATED WORK 53

Finally, we discuss interpretation and limitations of our findings (Section 4.7) and close
with general conclusions and remarks on future work (Section 4.8).

4.2 BACKGROUND AND RELATED WORK

Engineering challenges posed by ML. As ML components are developed and deployed,
several engineering challenges specific to the ML software development life-cycle emerge [14,
117, 131, 160, 282]. Arpteg et al. [14] identified a set of 12 challenges that target develop-
ment, deployment and organisational issues. In particular, managing and versioning data
during development, monitoring and logging data for deployed models and estimating the
effort needed to develop ML components present striking differences with the development
of traditional software components.

Similarly, Ishikawa and Yoshioka [117] as well as Wan et al. [282] have studied how
software engineers perceive the challenges related to ML and how ML changes the tra-
ditional software development life-cycle. Both studies ran user surveys with a majority
of respondents from Asia. We could not find a similar study without this regional bias.
Nonetheless, both publications concluded that testing and ensuring the quality of ML
components is particularly difficult, because a test oracle is missing, the components often
behave nondeterministically, and test coverage is hard to define. To classify the challenges
raised by ML components, Lwakatare et al. introduced a comprehensive taxonomy [160].

White and grey literature analysis. In search for ways to meet the challenges
presented earlier, we mined the literature and collected SE best practices for ML. We
observed that the majority of literature on this topic consists of so called grey literature [82] -
i.e, blog articles, presentation slides or white papers from commercial companies — while
there is relatively little academic literature. Garousi et al. [82] showed that, if used properly,
grey literature can benefit SE research, providing valuable additional information. However,
this literature must be used with care, because it does not contain strong empirical evidence
to support its claims [83]. We decided to included the grey literature in our literature search,
using the process described by Garousi et al. [82], because: (1) coverage of the subject by
academic literature is rather incomplete, (2) contextual information is important for the
subject of study - i.e., practitioners may have different opinions than scientists on what
qualifies as best practices — and (3) grey literature may corroborate scientific outcomes
with practical experience.

Related work. We focus on peer-reviewed related work that proposes, collects or
validates engineering best practices for ML. One of the initial publications on this topic is
the work of Sculley et al. [236], which used the framework of technical debt to explore risk
factors for ML components. In particular, they argued that ML components have a stronger
propensity to incur technical debt, because they have all maintenance problems specific to
traditional software as well as a set of additional issues specific to ML. They also presented
a set of anti-patterns and practices aimed at avoiding technical debt in systems using ML
components. Compared to [236], we introduce a broader set of practices, applicable to more
effects than technical debt. Nonetheless, some of their engineering specific suggestions are
included in our catalogue of practices.

Breck et al. [36] introduced 28 tests and monitoring practices that target different
stages of the development process for ML. They also proposed a list of benefits resulting

54 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

from implementing the tests and developed a model to score test practice adoption, aimed
at measuring technical debt. Again, the practices dedicated to SE from [36] have been
included in our catalogue. On the same topic, Zhang et al. introduced a survey on testing
techniques for ML components [311], which - in contrast to the broader approach taken
in [36] - only targets testing ML models.

To identify challenges faced by small companies in developing ML applications, de Souza Nasci-
mento et al. ran interviews with 7 developers [63]. Afterwards, they proposed and validated
a set of checklists to help developers overcome the challenges faced. Although the valida-
tion session is not thorough (it only included a focus group with 2 participants), some of
the items in the checklists qualify as best practice candidates. Some practices are included
in our catalogue and our survey further confirms their relevance and adoption.

Washizaki et al. [286] studied and classified software architecture design patterns and
anti-patterns for ML, extracted from white and grey literature. Many of these patterns are
application and context specific, i.e., they depend on the architectural style or on the type of
data used. The patterns are of a general character and the ones similar to recommendations
we found in literature were included in our catalogue of practices.

Amershi et al. conducted a study internally at Microsoft, aimed at collecting challenges
and best practices for SE used by various teams in the organisation [8]. They reported on a
broad range of challenges and practices used at different stages of the software development
life cycle. Using the experience of the respondents and the set of challenges, they built a
maturity model to assess each team. However, the set of challenges and reported practices
are broad and often not actionable. Moreover, they represent the opinions of team members
from Microsoft, where typically more resources are dedicated to ensuring adoption of best
practices than within smaller companies. In our work, we aim to bridge this gap by running
a survey with practitioners with various backgrounds and by presenting a set of actionable,
fine-grained best practices.

4.3 MINING PRACTICES FROM LITERATURE

Document Search. In addition to the publications discussed in Section 4.2, we searched
the academic and grey literature on the topic of SE best practices for ML applications. We
used both Google and Google Scholar, for which we compiled a common set of queries.
The keywords used for querying suggest different steps in the development cycle, e.g., de-
velopment, deployment, operations, etc. For each query, we also developed two variants,
by (1) replacing the term ‘machine learning’ with ‘deep learning’ whenever possible, and
(2) removing stop words and composing a Boolean AND query from the remaining key
words. As an example of the second variant, consider the query “software engineering”
AND “machine learning”, stemming from the query “software engineering for machine
learning”. All queries were submitted to Google and Google Scholar, and the first 5 result
pages were manually inspected.

A total of 64 queries, including variants, were used, and 43 of the resulting articles
were selected for initial inspection. In order to avoid search engine personalisation, all
queries were sent from a public network, with an extension that removes browser cookies.

Document classification. Based on criteria formulated in [82], such as authoritative-
ness of the outlet, as well as objectivity of the style and content, we excluded low-quality

4.3 MINING PRACTICES FROM LITERATURE 55

Table 4.1: Successful search queries. The table shows the base queries, for which any variant (described in text)
led to a valid source and at least one practice.

Query Documents
software engineering for machine learning [8]

data labeling best practices [6, 56, 210, 219]
machine learning engineering practices [37, 230, 313]
software development machine learning [124]

machine learning production [223, 253]
machine learning production practices [5, 24, 146, 171]
machine learning deployment [65]

machine learning deployment practices [229]

machine learning pipelines practices [114]

machine learning operations [268]

machine learning versioning [279]

machine learning versioning practices [104]

documents and classified the remaining documents as either academic literature or grey
literature. Moreover, we filtered for duplicates, because chunks of information were some-
times reused in grey literature.

After classifying and filtering the results, we identified 21 relevant documents, includ-
ing scientific articles, white papers, blogs and presentation slides, that — along with the
publications introduced in Section 4.2 — were used to mine SE best practices for ML. Other
relevant sources were selected through a snowball strategy, by following references and
pointers from the initial articles.

Table 4.1 lists the successful search terms (without variants), from which at least one
document passed the final selection. Whenever the queries had common results, we only
considered relevant the first query. The second column shows the documents selected from
the base queries and their variants.

Extracting a common taxonomy for the practices. Many of the selected documents
provide, or implicitly presume, a grouping of practices based on development activities
specific to ML. For example, Amershi et al. [8] present a nine-stage ML pipeline. Alterna-
tively, Sato et al. [230] partition similar activities into six pipeline stages. All processes
have roots in early models for data mining, such as CRISP-DM [294]. While no single
partitioning of ML activities emerged as most authoritative, we were able to reconstruct a
broad taxonomy that is compatible with all partitionings found in the literature. We will
use this categorisation to group ML development practices and to structure our survey and
subsequent discussion of our findings:

« Data - Practices that come before training, including collecting and preparing data
for training ML models.

« Training - Practices related to planning, developing and running training experi-
ments.

56 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

« Deployment - Practices related to preparing a model for deployment, deploying,
monitoring and maintaining an ML model in production.

« Coding - Practices for writing, testing, and deploying code.

« Team - Practices related to communication and alignment in a software development
team.

« Governance - Practices that relate to ensuring responsible use of ML, including
accountability regarding privacy, transparency, and usage of human, financial, or
energy resources.

Compiling a catalogue of practices. From the selected documents we compiled an
initial set of practices using the following methodology. First, we identified all practices,
tests or recommendations that had similar goals. In some articles, the recommendations
only suggest the final goal - e.g., ensure that trained ML models can be traced back to
the data and training scripts used — without providing details on the steps needed to
achieve it. In other publications, the recommendations provided detailed steps used to
achieve the goals - e.g., use versioning for data, models, configurations and training
scripts [171, 253, 279]. In this example, traceability is an outcome of correctly versioning
all artefacts used in training. Whenever we encountered similar scenarios, we selected or
abstracted actionable practices and added the high-level goals to a special group, which we
call “Effects” and describe in Table 4.6.

Next, we assessed the resulting practices and selected those specifically related to
engineering or to the organisation of engineering processes. This initial selection gave us
23 practices, which naturally fall into 4 out of the 6 classes introduced above. While this
set of practices reflected the ML development process, it lacked practices from traditional
SE. Given that practitioners with a strong background in ML might be unaware of the
developments in SE, in a third stage, we complemented the initial set of practices with 6
practices from traditional SE — three of a strictly technical nature, falling into the “Coding”
class, and three relating to social aspects, falling into the “Team” class. We selected these
practices because we consider them challenging, yet essential in software development.

The resulting 29 practices are listed in Table 4.8 and the effects in Table 4.6. The practices
are available to practitioners in a more elaborate format in an online catalogue®, consisting
of detailed descriptions and concise statements of intent, motivation, related practices,
references and an indication of difficulty. A curated reading list with these references,
further relevant literature as well as a selection of supporting tools is maintained online?.

4.4 STUDY DESIGN

We validated the set of practices with both researchers and practitioners through a survey.
For this, we designed a descriptive questionnaire asking respondents if the team they are
part of adopts, in their ML projects, the practices we identified earlier. Before distributing

https://se-ml.github.io/practices/
Zhttps://github.com/SE-ML/awesome-sem|

https://se-ml.github.io/practices/
https://github.com/SE-ML/awesome-seml

4.4 STUDY DESIGN 57

the survey, we interviewed five practitioners with diverse backgrounds, in order to check
if any information from the survey was redundant or whether any practices were missing.

Questionnaire. In designing the questionnaire used in our survey, we followed the
recommendations of Kitchenham et al. [136] and Ciolkowski et al. [55]. We designed a
cross-sectional observational study [136], i.e., participants were asked at the moment of
filling the questionnaire if they adopted the recommended practices. Several preliminary
questions were designed to specifically assign participants to groups. This renders the
study a concurrent control study, in which participants are not randomly grouped [136].

The target audience were teams of practitioners using ML components in a project.
Specific preliminary questions were added to allow filtering between teams that build and
deploy ML applications, use ML and do not build an application or do not use ML at all.
We consider that a significant amount of engineering is also needed in research (where
ML may be used without building deployed applications), especially in running large-scale
deep learning experiments, and would like to verify which practices are relevant in this
context. Team profile (e.g., tech company, governmental organisation), team size (e.g., 1
person, 6-9 persons), team experience (e.g.,, most of us have 1-2 years of experience), and
the types of data used (e.g., tabular data, images) were also included in the preliminaries.
In total, the preliminaries contained 5 questions that were later used to group participants
and filter out noise.

Then, 31 questions followed, with standard answers, mapped onto the practices from
Table 4.8. In two cases, multiple questions map onto the same practice; for example,
continuous integration is achieved by automating the build process and running it at each
commit. In the questionnaire, we asked two questions, one for each action, although the
answer was compiled to one practice.

We used standard answers, on a Likert scale with four possible answers, in order
to avoid the middle null-point strategy of answering [108]. The labels were chosen in
order to reflect the degree of adoption, rather than the level of agreement [220]. This
allowed the practices to be expressed impartially — e.g., “our software build process is
fully automated” — and the answers to express degrees of adoption - e.g., “not at all” or
“completely” — instead of degrees of agreement such as “agree” or “strongly agree”. This
strategy eliminated confusing questions and answers, which may lead to an extreme null-
point bias [108]. Whenever the answer scale did not match the full range of answers, we
added specific answers which helped to avoid noisy results; for example, in the questions
about data labelling, we added the answer “we do not use data labels”, which accounts for
unsupervised learning scenarios.

The questionnaire ended with a section on the perceived effects of adopting the practices.
This enabled us to test the hypothesis that adopting a group of practices helps to achieve
an effect. The four questions on perceived effects are shown in Table 4.6.

Although the questionnaire has 45 questions, we employ optimisation techniques, such
as automatically moving to the next question once an answer is selected, to reduce the
time required for completing our questionnaire to 7 minutes on average.

Pilot interviews. Before distributing the survey broadly, we invited five practitioners
with distinct backgrounds - ranging from tech startups to large tech companies — to an
interview. We asked them to answer a set of questions regarding the challenges they face
and the most important engineering practices they adopt. All interviewees were also asked

58 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

Table 4.2: Profiles of the pilot interview subjects.

Id Company Profile Team Size Experience
P1 Tech Startup 5-6 ppl. 1-2 years
P2 Tech company 10-15 ppl. >5 years
P3 Research lab 5-6 ppl. 2-5 years
P4 Tech Startup 10-15 ppl. 2-5 years

P5 Non-tech company 6-9 ppl. 1-2 years

to fill out and comment on the questionnaire. Since the survey is focused on teams, in
Table 4.2 we present the team and company profiles for each interviewee; all interviewees
use ML for a project. Moreover, P4 is part of a team that builds platforms to support the
ML process and uses distinct ML projects to test the platforms.

The biggest challenges faced by the interviewees were: ensuring data quality and data
documentation (P5), data versioning and freshness (P2), scalability (P1, P4) and communica-
tion with other departments inside the company (P5). For each challenge mentioned, there
is at least one practice addressing it in Table 4.8. The most important engineering practices
mentioned were: using version control for data and models (P1, P4), continuous deployment
(P2, P5) and model maintenance (P2). Several practices to address these challenges were
already listed in Table 4.8.

After completing the questionnaire, all interviewees agreed with the relevance of all
the practices we listed and did not consider any of them redundant. The interviewees
suggested that some questions needed additional allowable answers, to cover the range
of possible responses and to avoid bias. For example, for a question about the labelling
process, we added “we do not use labels” to avoid forcing users of unsupervised learning
to resort to “not at all”.

We used the feedback from the interviews to refine the questionnaire, adding answers
to four questions and rewording others.

Distribution. After the pilot interviews, our survey was distributed using a snowball
strategy. Initially, we reached out to our network of contacts and to the authors of the
publications used to extract the practices, asking them to distribute the survey through their
networks. Moreover, we openly advertised the survey through channels commonly used
by practitioners, such as Twitter, Medium, HackerNoon, Dev.to and the Meetup groups for
ML in several cities.

4.5 FINDINGS ON PRACTICE ADOPTION

In total, we obtained 350 valid responses to our survey, after filtering out incomplete
answers or respondents that spent too little time to have given serious answers (under 2
minutes). From this initial set, we discarded 12 answers from respondents who were not
part of a team using ML. Moreover, we applied fine-grained filtering, using the percentage
of questions that were answered in the prerequisites (at least 50 %) and in the practice
adoption questions (at least 50 %), resulting in 313 complete responses. Whenever not
mentioned otherwise, the analysis will be based on these responses.

4.5 FINDINGS ON PRACTICE ADOPTION 59

40

o 50 P

Q o

% 40 a 30

c c

© ©

s pis

o 30 o

g 9 20

© o

€ 20 =

9 Q

< 2 10

& 1w &

0
Yo, &, So s, O o, o, o
" 4 "6 “ 4 “ ey Co,,;:’ Co,,)z" oy, %, “en e, sesrc/y
ey s S, Wy, 9y, My

(a) Respondents grouped by (b) Respondents grouped by
regions. organisation type.

g $ 30

H E

2 2

< &2

o o

& & 15

8 £

g g 10

2 I~

& & s

7 2 kS 6., 20, 6 2 . 8 2 &z
g, 3 S5 9 ~; o st 2 N S #,%e
M6 e, e, D S Mgy Sty e, ey, Yo, e Cth,
A ”75@% /77,5%_ ’774,@% ’775&5 ’hé@rsore oy Mty S s }'E‘ersﬁ

(c) Respondents grouped by (d) Respondents grouped by
team size. team experience.

Figure 4.1: Demographic information describing the survey participants. All plots show the percentage of
respondents, grouped by demographic factors.

Demographics. Using the initial preliminary questions, we provide a demographic
characterisation of the respondents in Figure 4.1. First, we grouped the answers using the
location attributes and present the results in Figure 4.1a. We observe that Europe has an
overall higher contribution, although other regions are also well represented. This possible
bias will be discussed later in this section, when analysing the answers for each region.

Figure 4.1b illustrates the percentage of respondents grouped by the organisation
type. The higher percentages are for teams working in tech companies (e.g., social media
platforms, semiconductors) and research labs. These results are not surprising, since both
research and adoption of ML is driven by these two classes of practitioners. Nonetheless,
non-tech companies (e.g., banks) and governmental organisations are also well represented.

In the last two plots, we show the percentage of answers grouped by team size —
Figure 4.1c - and team experience - Figure 4.1d. We observe that most teams have between 4-
5 and 6-9 members, corresponding to normal software development teams (as recommended,
for example, in Agile development). Similarly, most teams have between 1-2 years and

60 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

100 100
o o
2 s 2 80
3 2
< =
5 5
S 60 ‘6 60
[[
= =
£ 40 £ 40
c c
Q o
g g
o 20 (7
& &
R
O/f l//-o OUZ‘
% 4078 L % ey
Ty ey o,
(a) Adoption of practices (b) Adoption of practices
grouped by regions. grouped by org. type.
100 W Completely
»] B Mostly
2 80 2 Partially
2 2 M Not at all
© ©
5 6 5
) &
g 40 ‘2 40
Q 15
g 4
K4 20 2 20
0 7y . 2. 2. M,
z EY 7. 6, 2 2 2 3 8 3 o,
g, 3 s N %y o, s, 2 <y S e, B0
b 7, KD KOINIRCNE %o, o, S, Capbe |, th,
SN %% %% %% /hb% %%% Moy LN S s ys%n
(c) Adoption of practices (d) Adoption of practices
grouped by team size. grouped by team experience.

Figure 4.2: Adoption of practices grouped by various demographic factors. All plots show the percentage of
answers, grouped by the answer types illustrated in the plot legend.

2-5 years of experience, which is an anticipated result, since these intervals correspond
to the recent growth in popularity of ML among practitioners. Overall, the demographic
information indicates that our data is well balanced and diverse.

Next, we analysed the adoption of practices grouped by the demographic factors
introduced earlier. We display the answers from the practice questions in Figure 4.2, grouped
and normalised using the Likert scale used in the survey. Figure 4.2a shows the percentage
of answers grouped by regions. As discussed earlier, Europe is somewhat over-represented
in our data set. However, the adoption of practices for Europe does not present striking
differences when compared to South America or Asia. Conversely, the respondents from
North America have a significant higher number of adopted practices (corresponding to
answers “Completely” or “Mostly”) than other regions. Since this region is well represented
in our set of responses, it is likely that practitioners from North America have a higher
adoption of practices. Moreover, since Europe does not present striking differences with
other regions, it is likely that little bias is introduced by its over-representation.

4.5 FINDINGS ON PRACTICE ADOPTION 61

Figure 4.2b shows the adoption of practices grouped by the organisation type. We
observe that tech companies have a higher rate of complete adoption than others. Research
organisations tend to have lower practice adoption. This could reflect that they are aware
of the practices, but only develop prototypes, for which adoption is not needed, or partial
adoption is sufficient. In fact, for non-deployment practices only, adoption rates are similar.

For team size — Figure 4.2c — we observe a trend towards higher adoption of practices
(and also lower percentage of practices that were not adopted at all) as team size increases.
This could be caused by better task distribution among team members, or it could be a
result of larger teams including members with different backgrounds. Similarly, for team
experience, there is a trend towards higher adoption of practices as the team experience
increases, as seen in Figure 4.2d. These results were anticipated, since more experience or
a deeper involvement in technology exposes team members to the knowledge needed to
adopt best practices. A contrasting trend can be observed only for teams with more than 5
years of experience, where the percentage of practices that are only partially or not at all
adopted increases slightly. This result may reveal that practitioners who started very early
may be unaware of practices that are developed recently.

The results presented above confirm our questions were clear and achieved their goals,
and that the answer scale did not introduce bias.

Practice adoption ranking. We now explore the adoption of practices, based on
the practice types discussed in Section 4.1. In particular, we are interested in finding out
whether traditional SE practices are equally adopted in ML engineering and which new or
modified practices are popular among practitioners. Moreover, we also comment on the
least and most adopted practices.

The practices are classified as follows: (1) new practices, designed specifically for the
ML process, (2) modified practices, derived from traditional SE practices, but adapted for
the ML process and (3) traditional practices, applied equally in traditional SE and ML. This
classification is illustrated in the “Type” column of Table 4.8.

In order to measure the adoption rate of the practices, we devised a ranking algorithm
with the following steps:

1. Compute for each practice the percentage h of respondents with at least high adoption
(counting “Completely” answers), the percentage m with at least medium adoption
(counting “Completely” and “Mostly”), and the percentage ! with at least low adoption
(counting “Completely”, “Mostly”, and “Partially”). As an example, for practice 1 we
obtained h = 9.62%, m = 34.04%, and [= 65.92%.

2. Convert each percentage into a rank number. For practice 1, we obtained ry, = 22,
rm =23,and r; = 19.

3. Take the average of the three ranks for each practice and then rank the practices
according to this average. For practice 1, rank 22 was obtained, as can be seen in
Table 4.8.

Thus, the final rank is the average of: the practice rank on at least high adoption, its rank
on at least medium adoption, and its rank on at least low adoption. By accumulating the
answers in step 1, we expect to cancel out the noise stemming from fuzzy boundaries
between subsequent answer types.

62 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

Table 4.3: Adoption of practices based on the practice type.

Practice At least At least At least
Type high adoption medium adoption low adoption
Traditional 15.6% 47.8% 76.8%
Modified 11.3% 42.0% 76.9%
New 16.9% 50.0% 83.9%

The results are presented in the supplementary materials and the online version of
the publication [245]. We note that the most adopted practices (practices 6, 7) are related
to establishing and communicating clear objectives and metrics for training. Versioning
(practice 16), continuous monitoring of the model during experimentation (practice 14) and
writing reusable scripts for data management (practice 3) complete the top 5 positions. It
is interesting to note that the most adopted practices are either new or modified practices,
and not traditional SE practices.

At the other end of the spectrum, we note that the least adopted practices (practices
9, 10) are related to feature management. Writing tests (practice 17), automated hyper-
parameter optimisation (practice 13) and shadow deployment (practice 22) complete the
5 least adopted practices. In general, the least adopted practices require more effort and
knowledge. Some practices, related to testing (practices 8, 17) or documentation (practice
9) are also known to raise issues in traditional SE. Moreover, shadow deployment (practice
22) and AutoML (practice 13) require advanced infrastructure.

In order to compare the adoption of practices grouped by their type, we averaged
the three percentages described earlier (without transforming them into ranks), for each
practice type. The results are presented in Table 4.3. We observe that the most adopted
practices are new practices, specifically designed for ML, followed by traditional and
modified practices. Traditional practices in the “Team” category are ranked highly, since
collaborative development platforms have become common tools among practitioners and
offer good support for information sharing and coordination inside a team. In contrast,
traditional practices related to code quality, such as running regression tests (practice 17)
or using static analysis tools to check code quality (practice 19), have low adoption.

Influence of data type on practice adoption. The practices presented in Table 4.8
are general and should apply to any context. However, the type of data being processed
influences the choice of algorithms and might also influence the adoption of practices. For
example, when processing images or text, it is common to rely on deep neural networks
(DNNs), where training is not preceded by a feature extraction step. Conversely, for other
types of ML algorithms, a feature extraction step is common. Here, we investigate the
influence of the type of data to be processed on the adoption of practices. Moreover, we
explore the practices with distinct adoption rates per data type.

The percentage of respondents per data type and the corresponding overall practice
adoption rates are presented in Table 4.4. We employ the same percentages described
earlier to assess the practice adoption rates per data type. We observe that, in our data
set, tabular data, text, images and videos are predominant (each above 25%) and have very
similar adoption rates. Audio and time series have lower representation (under 8%), making

4.6 ANALYSIS OF PRACTICES AND EFFECTS 63

Table 4.4: Adoption of practices based on the data type.

Adoption
Data Tvpe Perc. of Atleast Atleast Atleast
yp respondents high medium low

Tabular Data 31.7% 18.0% 50.1% 70.2%
Text 29.7% 19.3% 52.6% 71.4%
Images, Videos 26.4% 19.3% 50.5% 71.5%
Audio 8.8% 24.42% 55.8% 72.6%
Time Series 2.6% 28.2% 60.3% 72.6%
Graphs 0.5% - - -

their adoption rates less reliable. Still, apart from the “At least high” category, adoption
rates remain similar. The “Graphs” data type is used rarely (0.5%), making adoption rates
too unreliable to report.

When comparing the adoption of individual practices, grouped by data type, we ob-
served that several practices tend to have higher adoption for particular data types. For
all comparisons, we used the “at least high” adoption rate. First, practice 13, on automatic
hyper-parameter optimisation, has an adoption rate that is more than 8% higher for tab-
ular data than for text or images. This result could be due to the the algorithms or tools
used. The tool support for automatic hyper-parameter optimisation in more traditional ML
methods, such as random forests or SVMs — which are popular for tabular data — is more
mature than for newer techniques, e.g., DNNs. Second, practice 29, on enforcing privacy
and fairness, has an adoption rate for tabular data that is more than 10% higher than that
for text or images. Last, practice 12, on the capacity to run training experiments in parallel,
has adoption rates for text and images that are over 10% higher than that for tabular data.
Perhaps the infrastructure needed to run experiments with text or images, where DNNs
are used extensively and parallelisation is required to achieve good results, facilitates the
practice adoption.

4.6 ANALYSIS OF PRACTICES AND EFFECTS

Following the practice adoption questions, in the questionnaire there were four questions
about the perceived effects of adopting these practices. These questions were designed to
test the hypothesis that adopting a set of practices will lead to a desired effect. A mapping
between practices and effects, as initially hypothesised, can be found in Table 4.6.

Correlations among practices. First, we report results from an analysis of the cor-
relation between practices. We employ the Spearman rank correlation coefficient, p, in
light of the ordinal nature of the Likert scale used in our questionnaire. To determine the
statistical significance of the observed correlations, we perform t-tests with a significance
level of 0.01.

In total we found 244 statistically significant, moderate to strong correlations (p = 0.35),
of which we report on the most informative ones. For example, writing reusable scripts

64 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

Table 4.5: Description of the effects studied.

Effects Description

Agility The team can quickly experiment with new data and al-
gorithms, and quickly assess and deploy new models

Software Quality The software produced is of high quality (technical and
functional)

Team Effectiveness Experts with different skill sets (e.g., data science, software
development, operations) collaborate efficiently

Traceability Outcomes of production models can easily be traced back
to model configuration and input data

for data management (practice 3) correlates positively with testing for skews between
different models (practice 23, p = 0.35). This suggests that the ability to reuse code for
data transformation can facilitate model evaluation. Furthermore, sharing the training
objectives within the team (practice 6) correlates positively with using a shared backlog
(practice 27, p = 0.38) and using relevant metrics to measure the training objective (practice 7,
p =0.43). Testing the feature extraction code (practice 8) correlates positively with practices
9 (p =0.35) and 10 (p = 0.56), on feature documentation and management. This indicates
that practitioners tend to use advanced feature management methods concomitantly and
that the feature management practices complement each other. As expected, practice 8
correlates positively with practice 17, on running regression tests (p = 0.37).

Performing peer review on training scripts (practice 11) correlates positively with all
team practices — using collaborative development platforms (practice 26, p = 0.40), working
against a backlog (practice 27, p = 0.44) and good team communication (practice 28, p = 0.44).
This result is in line with our expectations, since collaborative platforms provide features
for code review, and this is further enhanced by good communication within the team. Peer
review also correlates positively with using static analysis tools for code quality (practice
19, p = 0.48), which suggests that teams prioritising code quality apply various techniques
for this purpose.

The practices for deployment correlate positively between themselves, suggesting that
teams with advanced deployment infrastructures tend to adopt all practices. For example,
automated model deployment (practice 20) correlates positively with shadow deployment
(practice 22, p = 0.48) and automated roll backs (practice 24, p = 0.51). Moreover, continuous
monitoring of deployed models (practice 21) correlates positively with logging predictions
in production (practice 25, p = 0.51). These results indicate that the deployment practices
are complementary and that adopting some enables the adoption of others.

Linear relationship between practices and effects. Second, we used the initial map-
ping from practices to effects (presented in Table 4.6) to investigate the hypothesis that
adopting a set of practices leads to each desired effect. For the analysis, we trained four
simple, linear regression models, one for each set of practices and effects in Table 4.6.
The effects description is presented in Table 4.5. For each model, we used the F-test for
linear regression to test the null hypothesis that none of the practices are significant in
determining the effect, with a significance level of 0.01. Since some of the data sets were

4.6 ANALYSIS OF PRACTICES AND EFFECTS 65

Table 4.6: Linear regression models describing the dependence of effects on the practices that were initially
hypothesised to influence them. For each effect, we report the p-value from the F-test for regression and the R?
coefficient of determination.

Effects Practices p-value R?

Agility 12,18,22,24,28 7-107* 0.84
Software Quality 9,10,11,17,18,19 5-1073 0.95
Team Effectiveness 6, 26, 27, 28 1-107 0.98
Traceability 3,5, 16, 25, 27 4-107° 0.75

Table 4.7: Mean squared error (MSE), R? and Spearman correlation (p) between the predicted and the true
outcomes for Random Forest Regression trained to predict the effects from the practices in the second column.
The results are extracted from a test data set consisting of 25% of the data.

. MSE/R?/ p
Effects Practices RF Grid Search
Agility 12, 18, 20, 21, 22, 28 0.25/0.80/0.92
Software Quality 9,10, 11, 17, 18, 19 0.17/0.87 / 0.91
Team Effectiveness 6, 26, 27, 28 0.19/0.84/0.92
Traceability 3,5, 16, 21, 25, 27 0.21/0.83/0.93

imbalanced, i.e., contained substantially more examples for the positive or negative effect,
we applied random under-sampling to balance those sets.

The null hypothesis was rejected for all effects; the respective p-values from the F-test
are shown in Table 4.6. We also performed t-tests to assess whether any of the coefficients
in the regression models were statistically significantly different from zero, and found
evidence that (at significance level 0.01) this was the case. For example, the t-value of
practice 25 for traceability is 6.29. Moreover, the R? values, also shown in the table, are
high for all effects, which indicates that the observed effects are rather well described by a
linear model of the degree of adoption of the associated practices.

Non-linear relationship between practices and effects. Last, we report the results
from training statistical models to predict each perceived effect from sets of practices.
Unlike the linear regression models described earlier, here, we additionally considered
ML models that do not assume a linear relationship between the practices and effects.
Moreover, in order to strengthen the evaluation, we performed hold-out testing, using a
test set of 25% of the data for each effect, which was only used for the final assessment of
our models. We also revised the sets of practices associated with two of the effects (agility
and traceability), in order to enhance the prediction accuracy of the models as assessed on
validation data.

For evaluation, we consider a random forest (RF) regression model whose hyper-
parameters were optimised using grid search. During training, we used 5-fold cross-
validation on the training data (i.e., the 75% of the data retained after setting aside the
test sets). For all experiments, we used under-sampling on the training data to remove
class imbalance. We also experimented with the SMOTE over-sampling algorithm for

66 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

o Agility Software Quality Team Effectiveness 0 Traceability

Most
Adopted

*
3
< 12
0.8 [}
) < 28
[J
21 21
E 0.6 ° *
= 5
o <* 0
2 18 [
[} []
=)
g 0.4 2
a *
0.2
2
[}
Least
Adopted
2 M \e) N % Q 5 Q X
N o o o o? o2 oX W
0(@‘\ o@o
e Practice Importance «©

Figure 4.3: Practice adoption and importance, for each effect and practice. The practice importance is the Shapley
value extracted from the grid search RF models in Table 4.7, using the test data set.

regression [50, 273], but did not observe significant increases in performance of our models.
For grid search used for hyper-parameter optimisation of our RF models, we used 384
candidate configurations for each of the five folds.

The performance of the predictive model on test data is shown in Table 4.7. For all
effects, we used three standard evaluation metrics: mean squared error (MSE), the R?
coefficient of determination, and the Spearman correlation coefficient (p) for predicted
vs true outcomes. We observe that, in all scenarios, the effects can be predicted from the
practices with very low error and a high coefficient of determination.

Importance of practices. We also studied the contribution of each practice to the
final effect, in order to determine the practices that are the most important for each effect.
Towards this end, we used a well-known concept from cooperative game theory called the
Shapley value to quantify the contributions of individual practices [78, 159]. In our case,
the Shapley value intuitively reflects the increase in predictive accuracy caused by a single
practice, averaged over all possible subsets of practices already considered in a given model.
In order to maintain consistency across all effects, and because the models obtained from
AutoML are ensembles that are more difficult to analyse, we performed All Shapley value
computations are performed on the model from Table 4.7. We have computed Shapley
values on training and test data, and obtained consistent results for all effects.

In order to showcase the importance of each practice for an effect, we contrast it with
the adoption ranking of the practices from Section 4.5. We plot the Shapley values and the
normalised ranks in Figure 4.3. The plot indicates, given our data, which practices are most
important for achieving a desired effect. We observe that some very important practices

4.7 DI1SCUSSION 67

have low adoption rates, while some less important practices have high adoption rates. For
example, practice 25 is very important for “Traceability", yet relatively weakly adopted. We
expect that the results from this type of analysis can, in the future, provide useful guidance
for practitioners in terms of aiding them to assess their rate of adoption for each practice
and to create roadmaps for improving their processes. We note that our analysis currently
does not take into account functional dependencies between the practices.

4.7 DISCUSSION

We now comment on the relation between practice adoption and the challenges from
Section 4.2, and discuss threats to the validity of our results.

Engineering challenges vs. practice support. When comparing practice adoption
(Table 4.8) with the engineering challenges referenced in Section 4.2, we observe that many
challenges are supported by well adopted engineering practices.

In particular, versioning the artefacts related to ML projects, considered a challenge
by [14] and corresponding to practice 16 in our study, has a high adoption rate (rank 3). The
challenges raised by experiment management [14] and prototyping [160], such as clearly
specifying desired outcomes or formulating a problem (practices 6, 7), as well as monitoring
experiments and sharing their outcomes (practices 14, 15), also have high adoption rates.
These results suggest that these challenges have been met by practitioners.

In contrast, the challenge of testing ML artefacts [14, 117, 160], corresponds to practices
8 and 17, which have low adoption in our study. Although we do not detail all testing
methods for ML, as done in [311], the adoption rates for the two testing practices in our
study suggests that testing remains challenging.

Several practices presented in this study have low adoption and are not mentioned in
previous studies as challenging; this is particularly the case for the practices related to
feature management (practices 8, 9 and 10) as well as automating hyper-parameter optimi-
sation and model selection (practice 13). Although these practices have been recommended
in the literature, we plan to further validate their relevance through future participant
validation (member check) interviews and by collecting additional data.

Threats to validity. We identify three potential threats to the validity of our study
and its results. First, the data extracted from literature may be subject to bias. To limit
this bias, several authors with different backgrounds have been involved in the extraction
process. Also, the pilot interviews and survey produced no evidence suggesting that
any of the practices we identified are not recognised by practitioners, nor did we find
any indications that important practices were missing from our list. Nevertheless, in the
future, we intend to test completeness and soundness of our catalogue of practices through
validation interviews.

Second, the survey answers may be subject to bias. As shown in Section 4.5, some
groups of respondents are over-represented and may introduce selection bias. In particular,
although the adoption rates for respondents in Europe do not present striking differences
when compared to those in South America or Asia, Europe remains over-represented. Also,
some bias may stem from respondents in North America, for which the adoption patterns
are different, while they are not equally represented to other groups. This bias can be
removed by gathering more data, as we plan to do in the future.

68 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

Last, the measurements used to investigate the relationship between groups of practices
and their intended effects may be subject to bias. Rather than measurements of actual
effects, we used the perceived effects as evaluated by the survey respondents. We have not
established that perceived effects indeed reflect actual effects, which is an important and
ambitious topic for future research.

4.8 CONCLUSIONS AND FUTURE RESEARCH

We studied how teams develop, deploy and maintain software solutions that involve
ML components. For this, we mined both academic and grey literature and compiled a
catalogue of 29 SE best practices for ML, grouped into 6 categories. Through a survey with
313 respondents, we measured the adoption of these practices and their perceived effects.

Contributions. We reported on the demographic characteristics of respondents and
the degree of adoption of (sets of) practices per characteristic. For example, we found
that larger teams tend to adopt more practices, and that traditional SE practices tend to
have lower adoption than practices specific to ML. We also found that tech companies
have higher adoption of practices than non-tech companies, governmental organisations
or research labs.

Further analysis revealed that specific sets of practices correlate positively with effects
such as traceability, software quality, agility and team effectiveness. We also trained ML
models that can predict with high accuracy the perceived effects from practice adoption.

We contrasted the importance of practices, i.e., their impact on desirable effects as
revealed by these predictive models, with practice adoption, and thus indicating which
practices merit more (or less) attention from the ML community. For example, our results
suggest that traceability would benefit most from increased adoption of practice 25, the
logging of production predictions with model versions and input data. At the level of
teams or organisations, these same results can be used to critically assess current use of
practices and to prioritise practice adoption based on desired effects. For example, a team
with a strong need for agility and low adoption of associated practices may plan to increase
adoption of those practices.

Future research. We plan to further increase the number of respondents of our survey,
so we can perform even more fine-grained analyses. We may also add more questions,
for example to better measure the effects of practices related to AutoML, a relatively new
direction that is receiving sharply increasing attention in academia and industry. We
also plan to better cover the traditional best practices from SE, using a process similar
to the other practices. Through validation interviews with respondents, we plan to add
depth to the interpretation of our findings, especially regarding the relationships between
practices and their effects. We also intend to develop and test a data-driven assessment
instrument for ML teams, to assess and plan their adoption of engineering practices. While
our study is restricted to ML we may also investigate to which extent our findings are
applicable for other domains within the broader field of Al. Overall, our hope is that
this line of work can facilitate the effective adoption of solid engineering practices in the
development, deployment and use of software with ML components, and thereby more
generally contribute to the quality of Al systems. Furthermore, we are convinced that
other areas of Al would benefit from increased attention to and adoption of such practices.

4.8 CONCLUSIONS AND FUTURE RESEARCH 69

To strengthen the online catalogue in this direction, we extended it with various practices
related, for example, to trustworthy Al development [247].

70 4 SOFTWARE ENGINEERING FOR MACHINE LEARNING

Table 4.8: SE best practices for ML, grouped into 6 classes.

Nr. Title Class

1 Use Sanity Checks for All External Data Sources Data

2 Check that Input Data is Complete, Balanced and Well Distributed Data

3 Write Reusable Scripts for Data Cleaning and Merging Data

4 Ensure Data Labelling is Performed in a Strictly Controlled ProcesPData

5 Make Data Sets Available on Shared Infrastructure (private or Data
public)

6 Share a Clearly Defined Training Objective within the Team Training

7 Capture the Training Objective in a Metric that is Easy to Measure ~ Training
and Understand

8 Test all Feature Extraction Code Training

9 Assign an Owner to Each Feature and Document its Rationale Training

10 Actively Remove or Archive Features That are Not Used Training

11 Peer Review Training Scripts Training

12 Enable Parallel Training Experiments Training

13 Automate Hyper-Parameter Optimisation and Model Selection =~ Training

14 Continuously Measure Model Quality and Performance Training

15 Share Status and Outcomes of Experiments Within the Team Training

16 Use Versioning for Data, Model, Configurations and Training Training
Scripts

17 Run Automated Regression Tests Coding

18 Use Continuous Integration Coding

19 Use Static Analysis to Check Code Quality Coding

20 Automate Model Deployment Deployment

21 Continuously Monitor the Behaviour of Deployed Models Deployment

22 Enable Shadow Deployment Deployment

23 Perform Checks to Detect Skews between Models Deployment

24 Enable Automatic Roll Backs for Production Models Deployment

25 Log Production Predictions with the Model’s Version and Input Deployment
Data

26 Use A Collaborative Development Platform Team

27 Work Against a Shared Backlog Team

28 Communicate, Align, and Collaborate With Multidisciplinary Team
Team Members

29 Enforce Fairness and Privacy Governance

Part 11

Designing robust components

73

ADVERSARIAL
MACHINE LEARNING

In the the second part of the thesis we address the challenge of designing robust
deep learning models in the small world. In particular, we investigate the design
of robust deep learning based computer vision models against intentional per-
turbations (adversarial examples), and the design of robust deep learning based
planning algorithms. In this chapter, we give a brief introduction to adversarial
examples — inputs intentionally designed to decrease the performance of deep
learning models, while being in close resemblance to training data. Given the
surprisingly small size the perturbation needed to create adversarial examples, a
wide body of literature conjectures on their existence, and how this phenomenon
can be mitigated. A complete characterisation of adversarial examples can be
found in our previous publication [242]. Here, we focus on describing the most
common methods to generate and protect against adversarial examples, and
discuss their relevance to safety and security of deep learning models.

This chapter is a short summary of [R A. Serban, E. Poll, J. Visser, Adversarial Examples on Object Recognition: A
Comprehensive Survey, ACM Computing Surveys, 2020 [242].

74 5 ADVERSARIAL MACHINE LEARNING

5.1 INTRODUCTION

We discuss the ability of DL models to cope with uncertainties in the operational envi-
ronment, also called algorithmic robustness. Recent publications [198, 267] showed DL
models exhibit low robustness, and triggered an impressive wave of publications. Notably,
DL models are sensitive to small, intentional, perturbations — used to build inputs which
substantially decrease their performance, while being in close resemblance to training data.
The term adversarial examples was first used to describe such inputs by Szegedy et al. [267].

Since an intention is required, many publications claim security consequences, e.g., [96,
142, 187, 199], and hypothesize that commercial deployment is hindered by low robust-
ness. In contrast, other publications show these claims are sometimes exaggerated and
demand that clear security requirements are formulated before security consequences are
claimed [45, 86]. In between, many publications investigate the existence of adversarial
examples from a theoretical perspective and shed light on this particular behaviour of
ML algorithms [39, 235]. Overall, there are two emergent reasons to study adversarial
examples: (1) because attackers might use them to exploit ML algorithms and (2) because
they show that ML algorithms are not robust, which may stop them from being adopted in
some domains (particularly in safety-critical systems).

Although adversarial examples can be found for a variety of tasks, we restrict the
presentation to object recognition because this task is particularly relevant to autonomous
systems, and to the i-CAVE project. Nevertheless, adversarial example are constantly
explored in other tasks. Of particular interest is malware detection [92, 111, 139] because
it implies direct consequences on security. Other tasks such as speech recognition [43, 44],
facial recognition [257] or video processing [152, 272, 288] are also explored.

This chapter is organised as follows. We start with a brief characterisation of adversarial
examples in Section 5.2. Next, we introduce methods to create adversarial examples in
Section 5.3 and defences in Section 5.4. We show that adversarial training - i.e., including
adversarial examples in the training data set — is the most effective defence to date. The
chapter ends with a general discussion about the implications of adversarial examples
to robustness, safety and security of DL models in Section 5.5. Conclusions follow in
Section 5.6.

5.2 ML BACKGROUND AND ADVERSARIAL EXAMPLES

Prerequisites. A computer is said to learn from experience w.r.t. a task and a performance
measure if its measured performance on the task increases with experience [179]. In this
chapter, we focus on the task of object recognition: given a set of images defined on the
input space X with their labels from the output space V), sampled from a fixed, but unknown
probability distribution D over the space Z = X x Y, a ML algorithm attempts to find a
mapping f : X — Y which minimizes the number of misclassified samples. We assume that
X is a metric space and we can define distance functions between two points of the space.
The error made by a prediction f(x;) = y; when the true label is y; is measured by a loss
function [: Y xY — R. Through learning, we select a function f* from a hypotheses space
F such that the expected loss r(f) = E(y,,,.p)[I(f(x), y)] is minimal: f* = argmincr r(f). In
practice, D is not known and only a set of samples S (defined as a set of pairs {(x;,yi)} ;)

5.2 ML BACKGROUND AND ADVERSARIAL EXAMPLES 75

is available for training. Thus, a ML algorithm uses the empirical loss to approximate the
expected loss:

N

feargmin Eg . s[(f(x).9)) (5.1)
fer

The hypotheses space F can be any mapping from & to Y such as a linear function or
a DNN. Choosing F for a task adds an inductive bias from the algorithm designer and
involves a trade-off between expressivity and generalization: if is not expressive enough,
the algorithm will not be able to learn complex hypotheses. On the opposite, if F is too
expressive, the algorithm will overfit on the training data. The loss function is generally
chosen to be zero when f(x;) = y; and positive otherwise. The most common loss function
for object recognition is the cross-entropy loss.

The Probably Approximately Correct (PAC) [278] theoretical model for statistical learn-
ing guarantees that given enough samples for a desired accuracy € and for the probability of
getting non-representative samples from the training distribution ¢ (0 < €, § < 1), the empir-
ical risk will have an error less than or equal to € with probability 1 - §: P(|r(f) -r(f) =€) =
1-4. In this framework, given the choice for € and §, we can derive the sample complexity
for learning a hypothesis with minimal risk. An important assumption of this model is
that training and test data are drawn from the same probability distribution D. Moreover,
all data are sampled independently from distribution D (also called independent and iden-
tically distributed (i.i.d)). A hypothesis behind the existence of adversarial examples is that
they are sampled from a different distribution than the training data [85, 147, 172, 263].
However, this hypothesis was questioned by developing attacks that can easily bypass
detectors which learn the distribution of adversarial examples [41].

Adversarial Examples. Adversarial examples are inputs intentionally designed to be in
close resemblance with samples from the distribution D, but cause a misclassification.
Formally, given a classification function f and a clean sample x, which gets correctly
classified by f with label y, an adversarial example x” is constructed by applying the
minimal perturbation 5 to input x such that x” gets classified with a different label j:
argmin, f(x + 1) = y. Similarly, in the initial paper on adversarial examples, Szegedy
et al. [267] search for the perturbation solving the following optimisation problem:

. ’
min. 7= x|y,

st f(x)=79,

where |||, is a distance function defined on the metric space X Searching for the minimal
perturbation is often a complex task because the search space is non-linear and non-
convex [145, 199]. However, many approximation solutions have been proposed. Finding
solutions to Eq. 5.2 is illustrated in Figure 5.1. Some examples of perturbations are illustrated
in Figure 5.2.

The distance function most commonly used for adversarial examples in the object
recognition domain is the p-norm:

n p
Ixlp = <Z|xilp) , (5.3)
i=1

(5.2)

76 5 ADVERSARIAL MACHINE LEARNING

Figure 5.1: Adversarial example in input and representation space [225]. While the two pictures of cars are
similar in the image space, the activation patterns of the second car are close to the activation patterns of the dog.
Therefore, the second car gets classified as a dog. Moving the activation patterns from cars to dogs while keeping
the representation in the image space similar is equivalent to searching for a solution to Eq. 5.2 and generating an
adversarial example.

where p € {0,2,00}. The choice for p influences the coordinates changed in the initial
sample as follows:

« when p = 0 the distance measures the number of different coordinates between the
normal input and the adversarial; corresponding to the number of pixels altered in
the original image.

« when p = 2 the distance measures the Euclidean distance between the original and
the adversarial image. This metric remains small when there are many small changes
to many pixels and increases when there is a big change in one or multiple pixels.

« when p = co the distance measures the maximum change in any of the coordinates
and is equivalent to the maximum bound for changing each pixel in an image, without
restricting the number of changed pixels.

Historical considerations. Even though the term adversarial examples was first coined
around 2014 in research by Szegedy et al. into DNNs [267], adversarial machine learning
was established long before. Unfortunately, as other authors have also observed [30, 87],
recent publications concerning DNNs seem unaware of the earlier research on adversarial
machine learning and loose important perspective in this field. In particular, the importance
of thread modelling to security is overlooked.

The first publication regarding adversarial ML was published in 2004, when Dalvi
et al. [62], followed by Lowd and Meek [157], managed to fool linear classifiers for spam
detection by making changes to spam e-mails [30]. Barreno et al. [20] first introduced
a taxonomy for attacks and defences in adversarial settings, and later refined it in [21].

5.2 ML BACKGROUND AND ADVERSARIAL EXAMPLES 77

Thresher

(a) Specific perturbations for each (b) Universal perturbations — only one per-
new input. The images in the first turbation can be applied to any picture on
column are inputs correctly clas- the left to generate adversarial examples
sified, the ones in the middle are on the right [182].

the perturbations and the images

on the last column are the resulting

adversarial examples [267].

Figure 5.2: An illustration of adversarial examples.

This early taxonomy defines ML threat models and is comprehensive enough to include
adversarial examples. However, the notion of minimal perturbation was not yet adopted.
Thereafter, a large body of publications discussed adversarial attacks against ML models
at both training time [31, 224] and test time [88, 157] or defences against such attacks [38,
137]. Attacks at training time modify or poison the training data set (before training), while
attacks at test time only modify the samples used for test (after training). In parallel to
developing attacks and defences, several publications proposed methods to evaluate the
security of ML models against adversarial attacks [21, 32]. Biggio and Roli [30] trace an
interesting parallel between the evolution of adversarial ML and the rise of DNNS.

Adversarial examples represent attacks against machine learning models at test time.
Moreover, they have a special trait: the perturbations used to fool classifiers are desired
to be minimal, or as small as possible. In practice, such perturbations are very small and
barely noticeable to human observers (see Figure 5.2). In this thesis we are concerned with
recent literature, triggered by Szegedy et al. [267] and the widely adopted definition of
adversarial examples presented in Eq. 5.2. This body of work focuses on DNNs and was
triggered by the surprisingly small perturbations needed to fool such algorithms.

From a security standpoint, we can make another distinction between publications
before and after Szegedy et al. [267]: generally, publications before Szegedy et al. look
at attacks on systems providing security functionality (e.g., spam or virus detection), in
contrast to more recent papers [30, 200] which look at secure functionality of any application
of ML algorithms, i.e., if any application of ML algorithms is secure. This distinction will
be further developed in Section 5.5.

Overviews. We published a comprehensive study of adversarial examples [242], which
builds on previous work [3, 156] by relating the threats posed by adversarial examples
to security, safety and robustness of MLs. Moreover, we discuss the hypotheses on the

78 5 ADVERSARIAL MACHINE LEARNING

existence of adversarial examples and their property of being transferable between different
ML models. For detailed information please refer to the publication mentioned above [242].

5.3 METHODS TO GENERATE ADVERSARIAL EXAMPLES

General optimisation algorithms - e.g., L-BFGS - can be successfully used to find solutions
to Eq. 5.2 [267]. However, depending on the input size the computation may require a
large computational budget. In order to speed up adversarial attacks, Goodfellow et al. [91]
showed that taking a small step towards increasing the loss function w.r.t. to an input suffices
to find perturbations. The procedure - called the fast gradient sign method (FGSM) - is
defined as:

n = esign(Vyl(0,x,y)), (5.4)

where € controls the perturbation budget. Although not optimal, FGSM only requires
to evaluate the gradient w.r.t. an input once, which makes it very fast. However, FGSM
searches for perturbations in one direction and is therefore not very effective. In order to
strengthen FGSM, Madry et al. [162] proposed to iteratively apply FGSM and project the
outcome in the norm ball defined using the perturbation budget e:

Vs = {x'| I -2l <). (5.5)
This procedure - called projected gradient descent (PGD) - is defined as:

xy = [J (oo + esign(Vy 1(6,x71.7))). (5.6)

x+}7

Naturally, the quality of the resulting adversarial examples depends on the number of
iterations n. Using a large number of iterations, PGD can better approximate the norm
ball around an input, and lead to more representative adversarial examples. However, it
negatively affects the computation time. When n = 1, PGD is equivalent to FGSM.

Besides the attacks based on optimisation algorithms (L-BFGS) and on FGSM, a large
number of attacks have been proposed by optimising surrogate functions [42], using
evolutionary algorithms [187, 265] or generative models [19, 209]. A common characteristic
of these attacks is that they require access to the model parameters. Therefore, from a
security point of view, they can be described as white-box attacks [242].

Szegedy et al. [267] showed that adversarial examples also transfer between different
ML models. This property was later explored by Papernot et al. [198] in an attempt to
generate black-box, attacks i.e., attacks which do not require access to the model param-
eters. The authors showed that adversarial examples crafted on one model can transfer
between several ML techniques such as linear regression, support vector machines or
DNN . Therefore, the attacker can train a substitute model and craft adversarial examples
without access to the parameters of the model under attack.

This investigation triggered a new generation of attacks which are more relevant to real
world scenarios; in which attackers do not have access to the model parameters, but can
query it. For example, Chen et al. [53] present an attack based on zeroth-order optimisation
that is derivative free. This method can estimate the gradient across the perturbation’s
direction taking into consideration the value of the objective function at two neighbouring

5.4 DEFENCES AGAINST ADVERSARIAL EXAMPLES 79

points (corresponding to adding or subtracting a small perturbation). Thus it also eliminates
the need to train substitute models. Similar approaches were developed by Narodytska
and Kasiviswanathan [184], Ilyas et al. [115] or Rosenberg et al. [221] outside the object
recognition domain.

More recently, attacks based on ensembles of diverse attacks have been proposed as
an extension of PGD, in order to overcome some failures due to sub-optimal step sizes, or
mis-specification of the objective function [59].

5.4 DEFENCES AGAINST ADVERSARIAL EXAMPLES

Similar to adversarial attacks, a wide range of defences have been proposed based on
different strategies [242]: e.g., detection of adversarial examples [93, 175], input transfor-
mations [52, 214], feature removal [80], or using formal methods to verify that adversarial
examples can not be found within some bounds [67, 296].

However, most defences only alleviate a model’s sensitivity to small changes in the input
by minimising the gradients during the learning phase, or by constructing models without
useful gradients. Nonetheless, forbidding access to gradient information is not enough to
limit an attacker from constructing adversarial examples [199]. This phenomenon, called
gradient masking [199, 200] was identified to give a false sense of security and leads to an
improper evaluation of adversarial defences [15, 41, 274]. Defences that exploit gradient
masking can be sometimes broken with stronger attacks [41, 45]. Moreover, defences which
rely on formal verification can only provide guarantees for the training data set, and can
be bypassed by slightly different test data [209].

The most effective adversarial defence to date (which does not rely on gradient masking)
is adversarial training, and consists of adding a regularisation term to the loss function:

I() = al(0,x,y)+(1- a)l(0,x", y), (5.7)
where x” is an adversarial example generated from input x and « controls the contribution
of adversarial examples to the loss function. The most effective choice of @ is zero [162],
which poses the learning problem as a min-max problem where the inner maximisation
seeks to find the worst adversarial example for an input, and the outer minimisation seeks
to strengthen the model against it:

f= ar}%r;ﬁnE(x,y%S[xl}g’; 10,x",)], (5.8)
€ x

The inner maximisation can be solved with any efficient algorithm from Section 5.3.
In practice, only the PGD attack was used successfully. However, in order to obtain an
accurate estimation of Uy, PGD requires a large number of iterations. The number of
iterations has a direct impact on training time because each iteration of PGD requires to
compute the gradients. In order to limit this impact, PGD is commonly used with less than
ten iterations for training, but with more iterations for testing. Faster ways to perform
adversarial training exist, and will be discussed in Section 6.2.

80 5 ADVERSARIAL MACHINE LEARNING

We also mention that adversarial training brings benefits beyond robustness, such as
more interpretable gradients [276] or better transferability [226]. However, a trade-off
between robustness and accuracy is known to exist [276].

5.5 IMPLICATIONS OF ADVERSARIAL EXAMPLE TO ROBUST-
NESS, SAFETY AND SECURITY OF ML

Given the large number of publications and claims regarding adversarial examples, we
discuss the relevance of adversarial robustness to security, safety, and the economics of
building more robust models. Moreover, since p-norm is the dominant similarity metric, we
also comment on its relevance. This section ends with a discussion on the representations
learned by DNNs, and how they impact adversarial examples.

On the relevance of robustness to security. Gilmer et al. [86] express some skepticism
about whether adversarial examples are always a serious security concern. Here it is
interesting to note again that much of the early work on adversarial machine learning
[21, 157] concerned applications of ML for security tasks, such as detecting spam, malware,
or network intrusions. In such applications there is by definition an attacker interested in
causing misclassification, as the whole point of the system is to defend against such an
attacker, and hence miss-classifications have a security impact. By contrast, most recent
work on adversarial learning focuses on computer vision. While adversarial examples
may seem worrying thinking of some applications of computer vision for autonomous
systems, this does not imply that there is an interesting way for attackers to exploit it.
For example, Eykholt et al. [74] use perturbed stop signs to attack autonomous vehicles.
However, the perturbations are far from sensible and can be detected by human observers.
Simply obscuring or removing the sign may be easier ways to achieve the same effect.

On the relevance of robustness to safety. From an engineering perspective, safety is
the ability of a system to protect its users from harmful or non-desirable outcomes. The
distinction between security and safety is that security protects a system against intentional,
malicious, attacks while safety protects a system from unintended mishaps in the operational
environment. Some publications aim to improve or validate the safety of DNNs - e.g., [84,
113, 158]. However, safety is an inherent property of a system and not of an algorithm
solely. Moreover, safety becomes important when a system can produce physical or material
damage to humans, assets or the environment. Talking about safety for systems without
such impact - e.g., an image based search engine using ML - is futile. In order to guarantee
safety, one should make sure that possible errors are detected and contained inside the
system without affecting its normal operation. Take the example of an autonomous vehicle.
If the outcome of its computer vision system is cross checked with information coming
from maps, the effect of using adversarial examples on traffic signs can be detected and
contained inside the system, reducing their impact on safety.

The discussion of ML safety in relation to robustness should take into account the
operational environment of an algorithm because some perturbations (such as those needed
to build adversarial examples) may never appear in some environments, but may be common

5.5 D1scussioN AND CONCLUSIONS 81

in others. Besides, it might also be interesting to benchmark an algorithm and increase its
robustness to common corruptions and perturbations [103].

On the relevance of p-norm. The dominant similarity metric in the literature is the p-
norm distance defined in Eq. 5.3. Choosing an adequate metric is still an open question.
However, since there are no solutions to robustness for the p-norm distance, it is hard to
believe that using other metrics will result in more robust models [45]. Nonetheless, there is
an increased interest to explore new distance functions, e.g., the Wasserstein distance [297]
or using physical parameters underlying the image formation process [155]. We argue that
the p-norm remains relevant for experimental settings; however, it must be paired with
relevant threat models in order to evaluate its impact in security, and search for operational
environments where it impacts safety.

On the economics of defending against adversarial examples. Until now there seems
to be a trade-off between accuracy and robustness to adversarial examples, inherent to the
algorithms and the training methods used. This means robustness comes at a cost. Whether
these cost are acceptable, and how high they can be, will depend on the application and the
context. Given that the real impact of adversarial examples on safety and security is still
to be determined, it remains to be seen which defences can be cost-effective in practice.
Nonetheless, recent draft regulation emphasises robustness [77] and hints towards a future
in which robustness will be needed for compliance.

On the representations learned by DNNs. The sensitivity of DNNs to adversarial exam-
ples raises questions about their ability to learn high level abstractions from data. Although
it is believed that increasing the depth of a network helps increasing the level of abstraction
and it was observed that early layers in convolutional networks learn filters that resemble
contour extractors, while deeper layers learn more complex patterns, DNNs seem to learn
superficial abstractions restricted to the space on which they operate. In object recogni-
tion, the training objectives lie in pixel space, and not in a conceptual or relational space.
Pixel spaces are necessary for extracting first order information about the task, but seem
to be insufficient for higher level abstractions needed to overcome complex perception
systems. Moreover, the capacity to create adversarial inputs which are not intelligible by
humans (as in [187]) shows that DNNs use different features than we wish for. Research in
adversarial examples strengthen the conclusions from Jo and Bengio [122] which analysed
convolutional networks in different regimes and showed they exhibit a tendency to learn
surface regularities, rather than higher-level abstract concepts. Therefore, adversarial
examples might be intrinsic to the methods used to solve ML tasks, or to the current
training procedures. In this context, it is interesting to search for models which learn
a better representation of the world and which may solve the sensitivity to adversarial
examples as a side effect. Research carried out recently shows that robustness against
adversarial examples can indeed be achieved this way, using supervision from language
representations, and by training very large models [212]. However, this opens up a new
range of adversarial attacks [89].

82 5 ADVERSARIAL MACHINE LEARNING

5.6 CONCLUSIONS

We provided a brief introduction to the adversarial examples phenomenon that will support
the next two chapters. For a comprehensive study of this phenomenon, we refer the reader
to our previous publication [242]. We note that adversarial examples are an intriguing
phenomenon of DL algorithms, and their existence can raise both safety or security alarms.
A key take away is that the phenomenon of adversarial examples has no generally accepted
explanation or solution. Moreover, until now all defenses (including the ones using formal
verification) have been broken. Therefore, the field remains active and spans several future
research directions.

In the next two chapters, we focus solely on decreasing the impact of adversarial
training on training time.

83

DEEP REPULSIVE PROTOTYPES
FOR ADVERSARIAL ROBUSTNESS

As discussed previously, the most compelling defence against adversarial examples
is adversarial training, and consists of complementing the training data set with
adversarial examples. Yet adversarial training severely impacts training time
and depends on finding representative adversarial samples. In this chapter, we
propose to train models on output spaces with large class separation in order to
gain robustness without adversarial training. We introduce a method to partition
the output space into class prototypes with large separation and train models to
preserve it. Experimental results shows that models trained with these prototypes —
which we call deep repulsive prototypes — gain robustness competitive with

adversarial training, while also preserving more accuracy on natural samples.
Moreover, the models are more resilient to large perturbation sizes. For example,
we obtained over 50% robustness for CIFAR-10, with 92% accuracy on natural
samples and over 20% robustness for CIFAR-100, with 71% accuracy on natural
samples without adversarial training. For both data sets, the models preserved
robustness against large perturbations better than adversarially trained models.

This chapter has been published as R A. Serban, E. Poll, J. Visser, Deep Repulsive Prototypes for Adversarial
Robustness, arxiv, 2021 [240].

84 6 REPULSIVE ADVERSARIAL PROTOTYPES

6.1 INTRODUCTION

As mentioned in Section 5.4, adversarial training is subject to several trade-offs. Firstly,
the time needed to generate adversarial examples substantially increases training time.
Recent attempts to generate adversarial examples faster exist [298]. However, they are (at
the moment) unstable and introduce new issues such as catastrophic forgetting [10].

Secondly, a trade-off between accuracy on natural samples and robustness on adversarial
examples is known to exist [307]. This trade-off implies that robustness against adversarial
examples comes with a cost of losing accuracy on natural examples, and can be controlled
through adversarial training [307]. Lastly, adversarial training overfits on training data
and provides little robustness against data outside this distribution [217, 309].

A model robust to adversarial examples should provide: (i) inter-class separability,
(ii) intra-class compactness, and (iii) marginalisation or removal of non-robust features [116,
260]. However, adversarial training does not impose explicit constraints for meeting these
properties (e.g., inductive biases). Therefore, it depends only on finding representative
adversarial examples for training.

In supervised classification, adversarial training uses the standard softmax cross-entropy
loss. Recently, there is increasing evidence that softmax partitions the output space into
class centroids situated at equal distance from the origin (inter-class separability), and that
adversarial robustness can be improved by clustering the data points in the proximity of
these centroids (intra-class compactness) [105, 196].

However, the distance between class centroids is insufficient to provide robustness, and
even models with high intra-class compactness are vulnerable to adversarial attacks. In this
chapter we tackle this issue by enforcing large inter-class separation prior to training using
class prototypes [262]. Using this inductive bias we gain more control over the output
space structure, and can decrease the number of training samples needed [174].

We show that training with class prototypes optimised to provide large inter-class
separation helps to gain robustness competitive with adversarial training, without ad-
versarial training. Moreover, training with class prototypes involves a smaller trade-off
between accuracy and robustness, and a higher resilience against large perturbations.
The prototypes are built prior to training with little overhead, through an optimisation
procedure that increases the distance between their centres. As a result of this repelling
optimisation procedure, and because we use deep neural networks for empirical validation,
we call the prototypes deep repulsive prototypes. We test repulsive prototypes on CIFAR-10
and CIFAR-100, and observe consistent results on both data sets, with 51.3% and 20.5%
robustness against iterative adversarial attacks.

This chapter is organised as follows. Initially, we introduce background information and
discuss related work in Section 6.2. Later, we present repulsive prototypes in Section 6.3,
followed by an evaluation against white and black-box attacks in Section 6.4. We conclude
with a discussion in Section 6.5 and future work in Section 6.6.

6.2 BACKGROUND AND RELATED WORK

As mentioned in Section 5.4, the quality of adversarial examples depends on the number of
iterations n from Eq. 5.6, page 78. Using a large number of iterations, projected gradient

6.2 BACKGROUND AND RELATED WORK 85

descent (PGD) can better approximate the space around an input we want to provide
robustness to, and leads to more representative adversarial examples for training. However,
it negatively affects training time.

Several attempts have been made to change the training procedure in order to enforce
inter-class separability or intra-class compactness, and also decrease the impact of adver-
sarial training. Mao et al. [164] used a triplet loss (inspired by metric learning), where one
element of the triplet loss is an adversarial example. An attempt to reduce the impact of
adversarial training on training time was made by only generating one adversarial example
for each triplet data. Further inductive biases, such as careful negative sample selection for
the triplet loss, help to improve robustness.

Papernot and McDaniel [196] showed that explicitly tailoring intra-class compactness
using k-neighbours in the representation space helps to detect adversarial examples. Hess
et al. [105] proved a similar result and proposed a method based on the Gauss kernel to
enforce intra-class compactness and improve robustness. Pang et al. [193] introduced a loss
function to enforces inter-class separability using the centroids of the Max-Mahalanobis
distribution. During inference, the class centroid closer to the input’s deep representation
(measured using the Euclidean distance) was used to classify an input. The defence builds
on earlier work by Pang et al. [194], where at inference time an input is interpolated with
samples from the same predicted class, and from distinct classes in order to alleviate the
impact of perturbations. Unfortunately, none of these defences proved effective [275].

Jin and Rinard [121] showed that manifold regularisation improves adversarial robust-
ness significantly while retaining better accuracy on natural examples, without adversarial
training. Their proposal induces local stability in the neighbourhood of natural inputs even
if the model classifies the inputs incorrectly. This is in contrast with adversarial training,
where a model is trained to classify correctly worst case adversarial examples.

Mustafa et al. [183] used class prototypes to enforce inter-class separability, by including
a prototype separation constraint in the loss function. A convex polytope is assigned as
prototype to each class and during training the distance between all class polytopes is
maximised. Thus the class centroids are learned together with the internal representation.
However, adding the distance maximisation term to the loss function does not suffice to
improve robustness, and they propose to add similar constraints to hidden layers. When
paired with adversarial training, robustness increases at a decreased cost for accuracy on
natural samples.

Mettes et al. [174] showed that defining class prototypes a priori to training in order
to enforce desired properties of the output space (e.g., large margin separation) improves
training in several settings; such as few-shot classification, regression or joint classification
and regression. Instead of constantly re-estimating and calibrating the prototypes — as
in Mustafa et al. [183] or others [94, 262] — they propose to define the output space as a
hyper-sphere and partition it into predefined class prototypes. During training, the distance
between the model’s output and class prototypes is minimised. The a priori definition of
class prototypes enables control over several factors such as the output space size, or its
shape. In this paper we take a similar path and define class prototype prior to training.

86 6 REPULSIVE ADVERSARIAL PROTOTYPES

Figure 6.1: Repulsive prototypes. The grey spheres represent prototypes obtained using the L, distance, and the
blue cubes are obtained using the Lo, distance.

6.3 REPULSIVE PROTOTYPES FOR ROBUSTNESS

The idea behind building class prototypes for adversarial robustness is to explicitly design
prototypes with large inter-class separation, and during training enforce intra-class com-
pactness. To this end, the input or the output space is partitioned into hyper-planes specific
to each class, to which we impose separation constraints. Similar approaches have been
used in the past, e.g., by Schiilkop et al. [233] who used the smallest sphere enclosing the
data to estimate the VC-dimension for support vector classifiers, or by Wang et al. [284]
who used separating spheres in the feature space for classification.

We propose an approach similar to Wang et al. [284] and Nguyen and Tran [188], and
more recent work by Mettes et al. [174], where the separation boundaries are imposed
to the output space — instead of the input space — because the output space allows more
flexibility and can achieve larger margin separation. Prior to learning, the D-dimensional
output space is divided into k prototypes P = {p1,---, pr }, where each prototype corresponds
to a class. For a binary classification problem and a Euclidean output space, we wish to
find two hyper-spheres with centres at ¢, ¢z — one enclosing samples from the positive
class and the other enclosing samples from the negative class — and maximise the distance
between them:

min e} +€ - rle -
€1,€2,€1,C2
s't' ”.f(xl) - Cl "2 = 6123Vi’ yl = +1
If(xi) - c1]® = €2,vi,y; = -1 (6.1)

If(xi) - c2)? < €2,vi,y; = -1
If(xi) - col? = €2, Vi, y; = +1,

where r is a constant that represents the repulsive degree between the two prototypes,
and €1, €, define the d(-)-ball around the prototype centres for which we want to provide
robustness (corresponding to the uncertainty set in Eq. 5.8, page 79).

For non-separable data sets, the constraints above can be relaxed by introducing slack
variables and regularisation terms to the objective function. Although the objective in

6.4 EMPIRICAL EVALUATION 87

Eq. 6.1 is not convex, it can be reformulated to have a convex form and solved using
Lagrange multipliers. However, in practice the constraints can be relaxed and the problem
can be solved in two steps: firstly find prototypes with large separation (to provide inter-
class separability), and secondly train models to fit the data within the proximity of the
prototype centres (to provide intra-class compactness). An approximate solution to the
first problem can be found using gradient descent on the unconstrained objective:

min 612 + e% —r|e1 - cz||2,
€1,€2,C1,C2

with a generalisation to k-classes and any metric space:

mm Z d (cis). (6.2)
(ij,i#j)e

The choice of r can also be controlled using the learning rate y for gradient descent. The
choice of d(-) influences the prototypes and the classification regions defined in the output
space. For example, using the Euclidean L, distance leads to hyper-spherical classification
regions, and using the Chebyshev L, distance leads to hyper-cubical regions. An illustration
is provided in Figure 6.1, where the grey spheres represent regions for perturbations in
the L, space and the blue cubes are regions for perturbations in the L., space around the
centres. Iterating over Eq. 6.2 is equivalent to increasing d(-) or adding slack variables to
Eq. 6.1. Larger distances between class prototypes introduce buffers between classification
boundaries and should improve robustness.

The second step — training models to fit the data within the proximity of the prototype
centres — can be solved by minimising the distance between the prototype centres and the
model’s output. The choice for this distance function is part of the threat model and it is
the same as d(-) from Eq. 6.2, which induces the following loss function:

N

1= (1-d(f(xi). py))°, (6.3)

i=

—_

where p,, is the prototype specific to class y;.

6.4 EMPIRICAL EVALUATION

All experiments are performed using a vanilla ResNet-18 network (the smallest variant of
ResNet). Capacity is known to help adversarial robustness [162, 302]. Therefore, we avoid
using larger networks. During training with repulsive prototypes only natural samples are
used, i.e., no adversarial training is performed.

Firstly, we adopt a white-box threat model for testing, where attackers presumably
have full knowledge of the model under attack, the training and the testing data [45]. To
generate adversarial examples we use the PGD (Eq. 5.6, page 78) PyTorch implementation
from Cleverhans, with different iterations and random restarts [197]. Testing against larger
n is recommended, as it shows if the model exhibits a false sense of robustness or obfuscates
attack vectors [45].

88 6 REPULSIVE ADVERSARIAL PROTOTYPES

Table 6.1: Prototype selection on CIFAR-10.

Output Clean
Dimension (D) Epochs Samples PGD-20
20 50 90.3 379
100 50 90.6 39.9
200 50 89.5 40.7
100 100 91.0 487
200 100 91.1 38.7

Attackers are constrained to generate adversarial examples in the € = 8 (normalised)
Ly norm ball around inputs — a common benchmark for adversarial robustness. Since the
distance between prototypes is larger than €, we expect models trained with repulsive
prototypes to also exhibit resilience to higher € values. To test this hypothesis, we use
robustness curves obtained by step-wise increasing the size of the perturbation in the
interval [8,16].

We compare with results from literature on two common data sets; CIFAR-10 and
CIFAR-100 [140]. The first one consists of 60 000 32x32 colour images and 10 classes (with
5000 images for training and 1000 images for testing per class). The second data set
consists of 60 000 32x32 images and 100 classes (with 500 training images for training and
100 images for testing per class). We use minimal pre-processing for training, consisting of
random cropping and random horizontal flip. No pre-processing is used for testing.

For training, we use the cyclical learning rate [259], mixed precision arithmetic and early
stopping, as they are reported to improve training time and prevent overfitting [217, 298].

Later in this section we also adopt a black-box threat model, where attackers can only
observe the outcome of the models under attack. For evaluation we use the transferability
attack, where adversarial examples are generated with a distinct model, and transferred to
the models under attack [45, 264].

6.4.1 PROTOTYPE SELECTION

Several parameters influence the quality of the prototypes: the output space dimension D,
the choice of ¢, r, the learning rate y and the number of epochs for solving Eq. 6.2. Since r
and p can be compressed to one constant, and (to some extent) the effect of the learning
rate can be attenuated by running the optimisation longer, the most important parameters
are the output space dimension and the number of epochs. As mentioned earlier, when not
mentioned otherwise we use the same choice for € = 8 (normalised).

Previously, it has been shown that increasing D can benefit both classification and
regression [174]. In order to determine the influence of D on robustness and accuracy, we
run an experiment on the CIFAR-10 data set, training a ResNet-18 model for 50 epochs
with different output sizes D € {50,100,200} — corresponding to multiplying the number
of classes k with factors of {5,10,20}. Testing is performed with natural and perturbed
samples using the PGD attack, with n = 20. In all cases, the prototypes are generated by

6.4 EMPIRICAL EVALUATION 89

Table 6.2: CIFAR-10 results, € = 8. The models are ! ResNet-18, 2PreActResNet-18, >*WideResNet-34-10, ResNet-110.

PGD PGD Adv.

Run Epochs Natural 20 100 Training
Regular! 120 93.7 0 0 None
Repulsive! 127 92.0 51.3 484 None
Madry? 200 87.2 45.8 - PGD-7
Early Stop® 100 86.1 56.1 - PGD-10
TRADES? 100 84.9 56.6 - PGD-10
RHS* 300 91.8 426 - PGD-7

running gradient descent on Eq. 6.2 for 100 epochs, with y = 0.01. This modest optimisation
budget is sufficient to obtain large distances between the prototypes.

The results are presented in Table 6.1. We observe that increasing the output dimen-
sion D has almost no impact on accuracy on natural samples, but a significant impact on
robustness, for all values of D except the last one. For the last two values of D we ran
training longer and observe that the largest output space (i.e., 200) has a bigger tendency
to overfit for adversarial examples, while maintaining similar accuracy on natural sam-
ples (corresponding to 100 epochs in Table 6.1). This phenomenon will be elaborated in
Section 6.5.

The initial experiments on prototype selection reveal that the output size is important
for adversarial robustness, but plays a marginal role for accuracy on natural samples.

6.4.2 CIFAR-10

Following the previous experiments, we present the results from training a ResNet-18
model on CIFAR-10 with the same parameters as earlier, but run the optimisation for longer
and test it against stronger attacks. For all experiments, the output dimension is D = 100,
corresponding to multiplying the number of classes by a factor of ten.

We benchmark our results against the following results from literature: (i) the initial
results for adversarial training from Madry et al. [162], (ii) the improved results for ad-
versarial training from Rice et al. [217] which use early stopping to prevent overfitting
in adversarial training, (iii) the work of Zhang et al. [307] which trades more accuracy
on natural samples in order to gain robustness, and (iv) the work of Mustafa et al. [183]
which use class prototypes jointly optimised during training, and where the inter-class
separation constraints are applied to multiple layers, and paired with adversarial training,.
We note that Zhang et al. report the highest robustness. However, Rice et al. showed that
early stopping improves robustness, and reduces the gap between Madry et al. and Zhang
et al., while also preserving more accuracy on natural samples.

While Madry et al. and Mustafa et al. use PGD adversarial training with n = 7, Zhang
et al. and Rice et al. use n = 10. As mentioned above, adversarial training adds a non-trivial
overhead, and a higher n further increases it. While faster methods to perform adversarial
training exist, they achieve at most similar results to classical adversarial training. Therefore,

90 6 REPULSIVE ADVERSARIAL PROTOTYPES

—— Repulsive prototypes Early stop

50 \\

Accuracy

Perturbation size

Figure 6.2: Robustness curves for CIFAR-10, obtained by testing with PGD-20, and various perturbation sizes (€).

we compare our results with the state-of-the-art for classical adversarial training. Since
our method does not add any significant overhead to training, whenever we discuss the
impact on training we compare with Wong et al. [298], which is (at the moment) the fastest
way to perform adversarial training, albeit not stable [10].

The results are presented in Table 6.2, where the acronyms follow the order above: (i)
Madry [162], (ii) Early Stop [217], (iii) TRADES [307], (iv) RHS [183]. The Regular run was
trained on natural samples with the softmax cross-entropy loss, and a multi-step learning
rate scheduler that starts from 0.1 and decays by a factor of 0.1 at epochs 50 and 100. For
the models in literature we present the reported results, since with the exception of Rice
et al. the results could not be reproduced precisely.

For the model trained using repulsive prototypes (the Repulsive run) we report the
robustness against the PGD attack with 20 and 100 iterations. During training, the cyclical
learning rate was reduced by a factor of ten compared to Smith [259]. We found that
using smaller learning rates benefits robustness and has little impact on natural accuracy.
The reason for this is that larger updates may push the samples closer to the decision
boundaries, where it is easier for adversarial perturbations to induce undesirable behaviour.
For all models we also report the accuracy on natural samples, the number of epochs
needed to reach the results and the architecture used for training.

We observe that training with repulsive prototypes yields higher accuracy on natural
samples (92%) than methods based on adversarial training, and competitive robustness
(51.3%) compared with the state-of-the-art (56.6%), at a relatively small increase of training
epochs (+27). This is a gain even for Wong et al. [298], which uses the Fast Gradient Sign
Method (FGSM) attack and thus requires at least two forward and backward passes at
each epoch. Moreover, TRADES and Early Stop use n = 10 for adversarial training (which
increases robustness over Madry), and use a WideResNet-34-10 architecture, which has
over 34 * 10® more training parameters than ResNet-18. Both capacity and a higher n are
known to increase robustness [162].

Figure 6.2 illustrates the robustness curve obtained by testing the models with PGD
n = 20, against different perturbation sizes. For comparison, we use the Early Stop model

6.4 EMPIRICAL EVALUATION 91

Table 6.3: CIFAR-100 results, € = 8. The models are are ResNet-18, 2PreActResNet-18, 3ResNet-110.

PGD PGD Adv.

Run Epochs Natural 20 100 Training
Regular! 120 73.8 0 0 None
Repulsive! 106 71.7 205 200 None
Madry? 200 59.8 22.6 - PGD-7
Early Stop? 100 52.7 28.1 - PGD-10
Early Stop-R> 100 54.1 20.8 - PGD-10
RHS? 300 683 202 - PGD-7

by Rice et al., the only one for which the results could be reproduced with precise accuracy.
We observe that training with repulsive prototypes yields models which are more resilient
to higher perturbations than adversarially trained models (equivalent to a milder slope in
Figure 6.2). Moreover, the overall decrease in accuracy is significantly smaller for models
trained with repulsive prototypes; preserving more than 60% of the initial robustness when
the perturbation size is doubled.

6.4.3 CIFAR-100

We perform and report complementary experiments on the CIFAR-100 data set. The key
difference between the two is that the number of classes increases by a factor of ten.
Therefore, the output space partitioning is more challenging.

Moreover, since the last fully connected layer of ResNet-18 has 512 nodes, we use a
multiplicative factor of 50 instead of 100 for D in order to preserve a possible compression
in the last layer, as for CIFAR-10. Experiments with different multiplicative factors, as
those discussed in Table 6.1, are available in the project’s repository.

The results are presented in Table 6.3, with the notable difference that TRADES was not
tested on this data set neither in the original paper [307] or in the Early Stop paper [217].
Moreover, for Early Stop we could not reproduce the results reported in the paper. Therefore,
we also report on a new benchmark, Early Stop-R, which is obtained using the model
parameters shared in the project’s repository by Rice et al. Also note that for CIFAR-100
Early Stop uses the PreActResNet-18 architecture instead of WideResNet.

We observe that training with repulsive prototypes yields significantly higher accuracy
on natural samples (71.7%) compared with adversarial training methods, where the maxi-
mum is achieved by Madry et al. [162] (59.8%). Moreover, competitive robustness (20.5%)
with adversarial training (22.6%) can be observed, at almost no increase in training epochs
(+6). The results reported for Early Stop by Rice et al. show 7.6% more robustness than
training with repulsive prototypes, at the cost of losing 17% accuracy on natural samples.
A similar result can be observed for CIFAR-10, which indicates that training with repulsive
prototypes trades less accuracy on natural samples, at the cost of a modest contraction in
robustness.

Similarly to CIFAR-10, we present in Figure 6.3 the robustness curve obtained by testing

92 6 REPULSIVE ADVERSARIAL PROTOTYPES

—— Repulsive prototypes Early stop

Accuracy

Perturbation size

Figure 6.3: Robustness curves for CIFAR-100, obtained by testing with PGD-20, and various perturbation sizes (¢).

with different perturbation sizes. We compare the results with the Early Stop-R model,
which uses the final parameters published by Rice et al.. We observe that, as for CIFAR-
10, training with repulsive prototypes yields models resilient to large perturbation sizes,
preserving more than half of the initial robustness when increasing the perturbation by a
factor of two.

6.4.4 BLACK-BOX EVALUATION

Besides the white-box threat model investigated above, we evaluate the models in a black-
box scenario. In particular, we use the transferability attack, in which an attacker trains a
substitute model and uses it to craft adversarial examples.

Black-box attacks are used to evaluate the model’s robustness, but also to detect if the
defences employed give a false sense of security - e.g., due to obfuscating gradients [15].
Since training with repulsive prototypes does not add any transformation or randomisation
which may have adverse effects (such as gradient obfuscation), we expect the defence
to behave similarly to adversarial training — a defence known to have no side effects.
Therefore, we compare transferability on repulsive prototypes with transferability on
adversarially trained models.

Su et al. [264] showed that the architecture can impact transferability. Particularly
when the network’s building blocks are different (e.g., between the Inception architecture
which uses different filter sizes and ResNet which uses invariant filter sizes and residual
connections), robustness has higher variance. However, when the building blocks are the
same, but the depth of the network increases (e.g., ResNet-50 vs. ResNet-101), robustness
has smaller variance.

Therefore, since all the models from this paper use a variant of the ResNet architecture,
we use a substitute model based on it. We also assume that an attacker has access to
the training data set and does not need to apply data augmentation [198]. For crafting
adversarial examples we use the Regular model from Tables 6.2 and 6.3. For testing, we use
the PGD attack with n = 20 and compare with the Early Stop and Early Stop-R models.

6.5 D1scussioN 93

—— CIFAR-10 PGD-20 CIFAR-10 Clean CIFAR-100 PGD-20
—— CIFAR-100 Clean

80|

60|

40|

Accuracy

20|

Epochs

Figure 6.4: Overfitting in training with repulsive prototypes.

Table 6.4: Robustness against transferred adversarial examples. The models are 'ResNet-18, *WideResNet-34-10,
3PreActResNet-18

Source Target CIFAR-10 CIFAR-100
Regular! Repulsive! 72.5 36.2
Regular! Early Stop? 75.1 -
Regular! Early Stop-R® - 374

The results for both CIFAR-10 and CIFAR-100 are presented in Table 6.4. We observe
that (i) robustness against black-box attacks is higher than robustness against white-box
attacks, which indicates that both defences have no adverse side effects such as obfuscated
gradients, and (ii) both models achieve similar robustness, consistent with the results
from Tables 6.2 and 6.3. Since for CIFAR-10 Early Stop uses a more complex architecture,
we expect the model to also have higher robustness (which corresponds with the results
from Su et al. [264], and the higher gap in Table 6.4).

However, since the target models have different architectures and loss functions, we
expect them to also have distinct internal representations. Therefore, the transferability
results should have higher variance than those from Tables 6.2 and 6.3. Yet the results from
Table 6.4 suggest that the target models have similar failing modes, and raise the question
if some samples are more sensitive to perturbations than others, and if the samples are
common between the target models. An enquiry follows in the next section.

6.5 DiscussioN

Firstly, we investigate if robustness is linked to properties of the testing data set, or of
certain samples. Following the observation from the last section — that models trained with
repulsive prototypes and with adversarial examples behave similarly against black-box
attacks — we plot the confusion matrices for adversarial examples on CIFAR-10, for the

94 6 REPULSIVE ADVERSARIAL PROTOTYPES

[EEULE518.0 96.0 60.0 23.0 9.0 7.0 10.0 51.0 161.0 63.0 [EEELTY .280 73.0 46.0 40.0 27.0 24.0 19.0 109.0 39.0

100. 3.0 90 60 60 4.0 1.0 23.0109.0|

36.0 7.0 377.0 83.0 91.0 57.0 46.0 29.0 19.0 12.0

29.0 390.0 11.0 10.0 0.0 4.0 0.0 7.0 10.0 50.0
97.0 47.0 538.0104.0139.0 71.0 20.0 20.0 12.0 31.0
58.0 70.0 94.0 400.0148.0212.0 15.0 125.0 35.0 76.0 22.0 25.0 90.0 303.0 63.0 173.0 84.0 64.0 21.0 29.0
95.0 26.0 90.0 76.0 429.0 98.0 27.0 94.0 25.0 147.0[ECIEIE 30.0 8.0 164.0114.0415.0 83.0 153.0 84.0 19.0 10.0

10.0 54.0 53.0 129.0 35.0 379.0 11.0 42.0 8.0 30.0 11.0 7.0 62.0 146.0 63.0 457.0 40.0 65.0 14.0 13.0

77.0 107.0128.0175 0122.0169,0.37 0 78.0 147.0] 25.0 17.0 156.0158. 0178.0105.0. 36.0 15.0 16.0

[EYSE 10.0 28.0 15.0 56.0 115.0 42.0 3.0 SO0 10.0 62.0 ISR 16.0 1.0 28.0 59.0 89.0 61.0 230. 4.0 21.0

103.045.0 6.0 12.0 1.0 1.0 50 15.0 G320 45.0 152.0 61.0 31.0 40.0 38.0 19.0 16.0 210.870

[QNS® 3.0 137.0 5.0 150 2.0 17.0 9.0 7.0 29.0 349.0JNKUME 39.0 120.0 16.0 42.0 17.0 12.0 13.0 26.0 330.
&

¢ 5 @ &
&L

(a) Repulsive. (b) Early Stop. (c) Misclassified and nearest correctly
classified samples.

S D D L & ¢ & Q&
& ¢ & 8 & £ & &

Figure 6.5: Adversarial confusion matrices for the (a) Early Stop, and for the (b) Repulsive models in Table 6.2.
Figure (c) shows misclassified samples (left) and the nearest correctly classified samples in the representation
space (right).

Repulsive and Early Stop models (Figures 6.5b and 6.5a).

We observe that 60% of the top-1 misclassified classes are the same for both models
(e.g., planes misclassified as ships). This percentage increases to 90% when we judge the
top-2 classes (e.g., planes misclassified as ships or birds). We also analysed the overlap
between misclassified adversarial examples by the two models and found that over 65% of
the samples were common. This result indicates that some samples may be more sensitive
to perturbations. For the Repulsive model, it indicates that for some samples training fails
to provide intra-class compactness. When perturbed, these samples are easier to move to
incorrect regions.

In order to further investigate this phenomenon, we performed random sampling on
the misclassified examples for manual inspection. For all samples, we also extracted the
closest examples from the predicted (wrong) class. Two such examples are displayed in
Figure 6.5¢c, where the pictures on the left are the incorrectly classified examples and the
ones on the right are the closest examples in the predicted class. We observe that both
examples have many common characteristics with the closest sample in the incorrect
classification regions. Similar results could be observed for other samples (suppressed due
to space constraints). Previously, Jo and Bengio [122] showed that neural networks have
a tendency to learn surface regularities rather than higher-level abstractions. Our initial
investigation indicates that samples with similar surface regularities are also more sensitive
to adversarial perturbations, even if the models using them are trained with distinct loss
functions. A deeper investigation into this phenomenon is planned for future work.

Secondly, we note that training with repulsive prototypes for adversarial robustness is
more sensitive than pursuing the highest accuracy on natural samples. This is a consequence
of the loss function (Eq. 6.3) which measures a distance, and taking large steps towards
minimising it may push samples closer to the classification boundaries, rather than closer
to the prototypes. Larger steps are not relevant for natural samples, but are important
for robustness. In order to alleviate this effect we used smaller learning rates and early
stopping. However, this also means that models trained with repulsive prototypes are

6.6 CONCLUSIONS AND FUTURE RESEARCH 95

prone to overfitting for robustness. Figure 6.4 shows the behaviour of the Repulsive models
trained on both data sets studied. We observe that, while the models are stable on natural
samples, they are prone to overfitting against adversarial examples. Moreover, the models
seem likely to overfit faster when trained with repulsive prototypes than with adversarial
training [217].

Lastly, we note that prototypes designed prior to training can also embed other prop-
erties in the output space. For example, Mettes et al. used word2vec [177] to designed
prototypes. Adding more structure to the output space may lead to higher abstractions —
e.g., to compositionality, as in word2vec — and it is an interesting avenue for future work.

6.6 CONCLUSIONS AND FUTURE RESEARCH

We introduce deep repulsive prototypes for adversarial robustness - a training method
which partitions the output space prior to training into prototypes with large class separa-
tion, and train models to preserve it. Repulsive prototypes help models to gain robustness
competitive to adversarial training, while removing the need to generate adversarial ex-
amples. Moreover, models trained with repulsive prototypes are less sensitive to large
perturbations and trade less accuracy on natural samples for robustness.

Our results indicate that the output space size is important for robustness, and that test
samples with similar surface regularities are more sensitive to adversarial perturbations.
For future work we propose to search for better ways to design prototypes for robustness,
which may embed other properties to the output space than large inter-class separation.
Moreover, we plan to further investigate if mis-classified samples present similar surface
regularities with samples in the predicted class, and find ways to remove the tendency of
neural networks to rely on surface regularities.

97

LEARNING TO LEARN

FROM MISTAKES:

RoOBUST OPTIMISATION FOR
ADVERSARIAL NOISE

In this chapter we aim to overcome the impact of adversarial training on training

time using meta- and transfer-learning. Towards this goal, we train robust DL

models in low data regimes, and transfer adversarial knowledge to new models. In
particular, we train a meta-optimiser which learns to robustly optimise a model

using adversarial examples, and it is able to transfer the knowledge learned to

new models without the need to generate new adversarial examples. Experimen-

tal results show the meta-optimiser is consistent across different architectures

and data sets, suggesting it is possible to learn and transfer knowledge about

adversarial vulnerabilities.

This chapter This chapter has been published as [B A. Serban, E.Poll, §. Visser, Learning to Learn from Mistakes:
Robust Optimization for Adversarial Noise, International Conference on Artificial Neural Networks [243].

98 7 META ADVERSARIAL LEARNING

7.1 INTRODUCTION

As mentioned in Section 5.4, although many defences against adversarial examples have
been proposed, most solutions overfit on the training data and behave poorly against data
outside this distribution [217, 309]. Theoretical investigations suggest these results are
expected because training robust models requires more data [61], more computational
resources [39] or accepting a trade off between accuracy and robustness [277]. Moreover,
solutions to one vulnerability have a negative impact on others [119].

On a different path, designing ML algorithms capable to rapidly adapt to changes in the
operational environment, to adapt to distribution shifts or capable to learn from few samples
is an active research field. Particularly, the field of meta-learning investigate optimisation
algorithms learned from scratch for faster training [11], with less resources [215] and for
fast adaptation [76].

In this chapter, we show that meta-learning algorithms can be used to extract knowledge
from a model’s vulnerability to adversarial examples and transfer it to new models. Towards
this goal, we train a meta-optimiser to learn how to robustly optimise other models using
adversarial training. Later, when asked to optimise new models without seeing adversarial
examples, the trained meta-optimiser can do it robustly. This process is analogous to
learning a regularisation term for adversarial examples, instead of manually designing one.
The experimental results suggest a broader horizon, in which algorithms learn how to
automatically repair or treat vulnerabilities without explicit human design.

This chapter is organized as follows. In Section 7.2 we introduce related work. Sec-
tion 7.3 formalizes meta-learning and the adversarial training problems, and gives im-
plementation details. Section 7.4 presents experimental results on two distinct data sets,
followed by a discussion in Section 7.5 and conclusions in Section 7.6.

7.2 BACKGROUND AND RELATED WORK

Until recently, solving the outer minimisation objective from Eq. 5.8, page 79, relied on
static, hand designed algorithms, such as stochastic gradient descent or ADAM. [132]. The
literature surrounding this topic is focused on tailoring update rules for specific classes of
problems. This line of research is driven by the no free lunch theorem of optimisation [295]
which states that, on average, in combinatorial optimisation no algorithm can do better than
a random strategy; suggesting that designing specific algorithms for a class of problems is
the only way to improve performance.

Recent advancements in the field of meta-learning have taken a different approach,
posing the problem of algorithm design dynamically and modelling it with neural net-
works [11], or as a reinforcement learning (RL) problem [149]. In both cases, the algorithms
show empirically faster convergence and the ability to adapt to different tasks.

For example, in Andrychowicz et al. [11] the hand designed update rules are replaced
with a parametrized function modelled with a recurrent neural network (RNN). During
training, both the optimiser and the optimisee parameters are adjusted. The optimisation
algorithm design now becomes a learning problem, allowing to specify constraints through
data examples. Their results suggest the optimiser performs favourably against state-of-
the-art optimisation methods and shows a high adaptability between different tasks.

7.3 META ADVERSARIAL LEARNING 99

The method has roots in the previous research of Schmidhuber [234], where RNNs
were designed to update their own weights, and in Bengio et al. [29], which designed
parametric update rules for neural networks. The results of back-propagation from one
network were only later fed to a second network which learns to update the first [305].
Andrychowicz et al. [11] build on previous work using a different learning architecture.
Similarly, Ravi and Larochelle [215] used this paradigm to train neural networks in a few
shot regime, and Santoro et al. [227] augmented it with memory networks. Meta-learning
has also shown promising results in training algorithms for fast adaptation [76].

Instead of using RNNs, Li and Malik [149] formulate the optimisation problem as a
RL problem where the reward signal represents successful minimisation, and train an
agent using guided policy search. Later, the authors refine their method for training neural
networks [150]. In both cases the agent learns to optimise faster than hand designed
algorithms and exhibits better stability.

Recent research in adversarial examples has also tackled the need to decrease training re-
sources by either accumulating perturbations [254, 298] or by restricting back-propagation
to some layers of the model [306]. While the latter method requires forward and backward
passes, the former reduces the need to do backward passes in order to generate adversarial
examples. Adversarial training has also been used in meta-learning, but with the goal of
increasing the algorithm’s robustness against adversarial examples [90, 303] and not to
abstract or transfer information from adversarial training.

7.3 META ADVERSARIAL LEARNING

Meta-learning frames the learning problem at two levels: acquiring higher level (meta)
information about the optimisation landscape and applying it to optimise one task. In
this chapter, we are interested to learn robust update rules and transfer this knowledge
to new tasks without additional constraints. We focus on training robust ML models
through adversarial training, which is one of the most effective defences against adversarial
examples [162]. Because generating adversarial examples during training is time consuming,
especially for iterative procedures and can only provide robustness for the inputs used
during training [309], through meta-learning we learn to optimise robustly without explicit
regularisation terms and transfer the knowledge to new tasks, without the need to generate
new adversarial examples.

At a high level, adversarial training discourages local sensitive behaviour — in the
vicinity of each input in the training set — by guiding the model to behave constantly in
regions surrounding the training data. The regions are defined by a chosen uncertainty set
(as in Eq. 5.8, page 79). This procedure is equivalent to adding a prior that defines local
constancy, for each model we want to train. In most cases, specifying this prior is not trivial
and requires the design of new regularisation methods [180], new loss functions [296] or
new training procedures [178]. Here, we take a different approach and try to learn a regu-
larisation term automatically using meta-learning. During the meta-knowledge acquisition
phase, the meta-optimiser learns to perform the updates robustly using adversarial training.
Later, the knowledge acquired is transferred to new models using the meta-optimiser to
train new models, without generating adversarial examples. In the next paragraphs we
describe the meta-optimiser, some implementation details and the adversarial training

100 7 META ADVERSARIAL LEARNING

procedure.

Learning to optimise. The learning function defined in Section 5.2, f(-), is parametrised
with a set of parameters 6. Upon seeing new data, we update the parameters in order to
minimise the prediction errors. The update consists in moving one step in the opposite
direction of the gradient:

Ors1 = 61 - iV, 1(2, (7.1)

where p (the learning rate) determines the size of the step. Different choices of y or ways
to automatically adapt it results in different optimisation algorithms such as stochastic
gradient descent or ADAM [132].

In order to avoid overfitting or impose additional constraints such as constancy around
inputs, it is common to add a regularisation term to the loss function which will be back-
propagated and reflected on all parameter updates. Instead of looking for regularisation
terms manually, we use a method to automatically learn robust update steps with regulari-
sation included.

As discussed in Section 7.2, a parametrised update rule has been previously represented
with a RNN [11, 215] or as a RL problem [149]. In this paper, we follow an approach similar
to [11] and model the update rule with a RNN with long short-term memory (LSTM) cells:

Or =01 +c,

where :

ct = frep1+ ir1Gt, (7.2)

is the output of an LSTM network m with input Vg, (I(-)):

[c] = m(Vs, he, @), (7.3)

ht+1

and ¢ are the LSTM’s parameters. In [215], the authors consider each term in Eq. 7.2
equivalent to each term in Eq. 7.1 - e.g., f; = 1, c;-1 = 6; — and disentangle the internal
state of the LSTM, h;, with special terms for individual updates of f; and i;. This type of
inductive bias brings benefits in some cases and will be further discussed in Section 7.5.
However, in this paper we try to avoid such biases whenever possible.

Parameters Sharing and Gradient Preprocessing. In order to limit the number of
parameters of the optimiser, we follow a procedure similar to [11, 215] in which for each
parameter of the function we want to optimise, ;. ,, we keep an equivalent internal state
of the optimise, h;.p, but share the weights ¢ between all states. This procedure allows
a more compact optimiser to be used and makes the update rule dependent only on its
respective past representation, thus being able to simulate hand designed optimisation
features such as momentum.

Moreover, since gradient coordinates can take very distinct values, we apply a common
normalization step in which the gradients are scaled and the information about their

7.4 EMPIRICAL EVALUATION 101

Log. loss

—— ADAM
LaL
L2L-Transfer
—— Transfer-NOT

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Steps Steps Steps Steps

(a) € =0.05 (b) e =0.1 (c)e=02 d)e=03

Figure 7.1: The loss landscape when training a neural network on the MNIST data set, perturbed with FGSM and
different perturbation sizes (¢). The meta-optimiser is trained with adversarial examples — label L2L - transferred
to a scenario where training is performed with normal and adversarial data, but tested with adversarial examples —
label L2L-Transfer — and compared with a meta-optimiser trained with normal data and transferred to adversarial
settings — label Transfer-NOT - and with ADAM. Best seen in colour.

magnitude and their direction is separated:

(k’gﬁﬂ ,sign(V)) V] > e P
(-1,ePV) otherwise.

V —

(7.4)

We experiment with different values for p by grid search and observe that increasing the
size of p yields better results when the perturbations are larger. However, for consistency,
we use p = 10 for all experiments.

The meta-optimiser’s parameters are updated using an equivalent to Eq. 7.1. Since its
inputs are based on the gradient information of the function to be optimised (the optimisee),
the updates will require second order information about it (taking the gradient of the
gradient). This information is commonly used for meta-learning - e.g., in [76, 291] — and
will be further discussed in Section 7.5. However, in this paper only first order information
is used, corresponding to limiting the propagation of the optimiser’s gradient on the
optimisee parameters (or stopping the gradient flow in the computational graph).

7.4 EMPIRICAL EVALUATION

In all experiments the optimiser consists of a two-layer LSTM network with a hidden state
size of twenty. We compare the results on training two types of neural networks on two
distinct data sets with the adaptive optimiser ADAM.

We focus on two experiments related to training neural networks, as in prior work on
meta-learning [11, 149, 150, 215]. More experiments with minimising other functions -
e.g., logistic regression — and an integration with the Cleverhans framework are available
in the project’s repository. In all cases, an optimiser is trained using normal and adversarial
examples on a data set and tested by training a robust optimisee without generating
adversarial examples. Several perturbation sizes are analysed, as introduced below.

102 7 META ADVERSARIAL LEARNING

—— ADAM
LaL
L2L-Transfer
—— Transfer-NOT

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Steps Steps Steps Steps

(a) € = 0.05 (b)e=0.1 (c)e=0.2 (de=03

Figure 7.2: The loss landscape when training a neural network on the MNIST data set perturbed with the PGD
method and different perturbation sizes (€). The legend is detailed in the caption of Figure 7.1.

7.4.1 MNIST

We begin by training a small, fully connected, neural network with 20 units and ReLU
activation on the MNIST data set. The perturbations take different values in the set € €
{0.05,0.1,0.2,0.3} for both attacks introduced earlier (Eq. 5.4) and Eq. 5.6). We experiment
with different learning rates by grid search and find the best to be 0.001 for the meta-
optimiser. Training is performed using the common cross entropy loss function, with a
batch size of 128. We shuffle the training data set (consisting of 60.000 examples) and divide
in two parts equally: the first is used to train a meta-optimiser using both normal data and
adversarial examples and the second is used to test its performance while training with
normal data and testing with perturbed data. Each experiment ran for 100 steps. The results
are illustrated in Figures 7.1 and 7.2. All experiments are done using a = 0.5 in Eq. 5.7,
page 79, during training and a = 0.0 during the meta-optimiser transfer phase, as first
introduced in [91]. In addition to ADAM’s performance compared to the meta-optimiser,
we evaluate the performance of the meta-optimiser during training and the performance
of training a meta-optimiser using « = 1 and testing with « = 0 (L2L and Transfer-NOT
labels in Figures 7.1 and 7.2). Figure 7.1 illustrates the results from generating adversarial
examples using the FGSM method (Eq. 5.4, page 78).

In all cases, the meta-optimiser is able to transfer the information learned during
training and has comparable performance to ADAM (in some cases performing better). We
remind that during testing the optimiser uses normal data, but the plots are generated by
feeding adversarial perturbed data to the optimisee. This implies that the meta-optimiser
proposes update rules which lead to smooth surfaces around the tested inputs. Moreover,
it is able to learn a robust regularisation term during training and transfer it to new tasks
without the need to generate new data. Also, the trained meta-optimiser exhibits more
stable behaviour. These results bring evidence that adversarial training leads to more
interpretable gradients [277].

When the optimiser is trained only with normal examples, but used to optimise the
model using adversarial examples — Transfer-NOT label in Figure 7.1 - its performance
decreases significantly. This result implies that a meta-optimiser is domain specific and

7.4 EMPIRICAL EVALUATION 103

Table 7.1: MNIST PGD results, € = 8.

PGD PGD
Run Ep. Natural 20 100
Regular 100 99.0 0 0
L2L 100 98.6 92.0 91.2

L2L-Transfer 100 97.8 91.8 90.9

Madry? 100 98.8 929 91.8

does not have the general behaviour of ADAM, an observations which will be further
discussed in Section 7.5.

In Figure 7.2 we illustrate the results from running similar experiments, but generate
adversarial examples using the PGD method from Eq. 5.6, page 78. Training with PGD is
generally performed only using the perturbed examples (corresponding to « = 0 in Eq. 5.7,
page 79), as in the original paper [162]. We take a similar approach in this paper.

The results are consistent with the FGSM method, although the gap between ADAM
and the transferred meta-optimiser is smaller. A constant decrease in performance is also
observed, possibly corresponding to the decrease in performance specific to adversarial
training [277]. Nevertheless, the results are consistent and bring evidence that the meta-
optimiser is able to learn robust update rules.

The accuracy results — similar to the one in Table 6.2 — are presented in Table 7.1.
The optimisation ran for 60 epochs, using cross-validation (as described earlier). Here,
we observe that the meta-learning algorithm is able to preserve similar accuracy against
the PGD attack, for different number of iterations. Only a small decrease is observed,
which may once again correspond to the decrease in performance specific to adversarial
training [277]. This result is expected, since unlike the method presented in the previous
chapter, we now rely on adversarial training to extract knowledge during the meta-learning
phase.

7.4.2 CIFAR-10

We present the results from training a model using both convolution and fully connected
layers on the CIFAR-10 data set. The network consists of three convolutional layers with
kernel size 3, a fully connected layer with 32 hidden units and a logits layer of size 10. All
activation functions are ReLU, the loss is cross-entropy and batch normalization is used in
the convolutional layers. The meta-optimiser is trained using a learning rate of 0.001.

Since there are striking differences between convolutional and linear layers, we use two
sets of parameters for the meta-optimiser — one for optimising all convolutional layers and
one for the linear layers. Moreover, since the CIFAR-10 problem is more difficult, we train
the optimisee for 1000 steps and present the results in Figure 7.3 for perturbations generated
with FGSM and in Figure 7.4 for PGD. The evaluation was performed as earlier, using
2-fold cross validation for training a meta-optimiser in adversarial settings and transfer it
to training a model in normal settings, but tested with adversarial examples.

104 7 META ADVERSARIAL LEARNING

—— ADAM
L2L
L2L-Transfer
—— Transfer-NOT

200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800
Steps Steps Steps Steps

(a) € =0.05 (b) e=0.1 (c)e=02 (de=03

Figure 7.3: The loss landscape when training a neural network on the CIFAR-10 data set, perturbed with the
FGSM method and different perturbation sizes (€). The legend is detailed in the caption of Figure 7.1.

We observe that in the case of FGSM, the transferred meta-optimiser (label L2L-Transfer,
Figure 7.3) exhibits similar behavior as in the MNIST experiments: it has similar and some-
times better performance than ADAM. We remind that, in this case, no adversarial examples
are used during training. The meta-optimiser trained normally, but tested with adversarial
examples (Transfer-NOT label, Figure 7.3) performs visibly worse, which strengthens the
observation that meta-learning optimisation is domain specific.

Figure 7.4 shows results from running the same experiment using perturbations gener-
ated with PGD, with a number of 7 steps, as in the original paper [162]. In all cases, the loss
improvements are small, although the meta-optimiser exhibits better performance than
ADAM both during training and testing. However, the improvements in training time are
significant since after training an adversarial meta-optimiser, it can be applied to different
models without the need to execute the PGD steps for each batch of data.

Table 7.2 shows the final results after training for 60 epochs. Once again, we observe
that the meta-optimiser offers robustness competitive with adversarial training, while
removing the need to generate adversarial samples.

7.5 DI1SCcUSSION

Typically used to rapidly adapt to new tasks or generalize outside the i.i.d assumption,
meta-learning algorithms show promising results to reduce the training samples needed
for adversarial training. The results presented in this paper suggest these algorithms can
be used in the future to build adversarial defences with less computational resources and
capable to adapt to new data.

We hereby note some weaknesses discovered during the process. Although capable of
achieving better performance than hand crafted optimisers [11, 150] and, as discussed in
Section 7.4, showing promising results in transferring information about adversarial exam-
ples, meta learning algorithms still suffer from broader generalization. In particular, trained
optimisers can not generalize to different activation functions, or between architectures
with noticeable differences [291]. This means that an optimiser trained for ReLU can not
be used for sigmoid (or other) activation functions. Moreover, if the meta-optimiser is not

7.6 CONCLUSIONS AND FUTURE RESEARCH 105

1.00

0.85 —— ADAM
LaL
—— L2L-Transfer

—— Transfer-NOT

200 400 600 800 200 400 600 800 200 400 600 800 200 400 600 800
steps steps steps steps

(a) € = 0.05 (b) e =0.1 (c)e=02 d)e=03

Figure 7.4: The loss landscape when training a neural network on the CIFAR-10 data set, perturbed with the PGD
method and different perturbation sizes (€). The legend is detailed in the caption of Figure 7.1.

Table 7.2: CIFAR PGD results, € = 8.

PGD PGD
Run Ep. Natural 2 100
Regular 100 83.3 0 0
L2L 100 81.9 434 419

L2L-Transfer 100 81.6 42.9 415

Madry? 100 825 436 422

trained with specific data that will be later used, it does not exhibit general behaviour. For
example, if the meta-optimiser does not use any adversarial examples during training, but
it encounters such examples during testing, it faces difficulties. This behaviour is illustrated
in the figures above with the label Transfer-NOT.

Second order information (taking the gradient of the gradient, as introduced in Sec-
tion 7.3) was not used in this paper. As shown in [291], this information can help the
meta-optimiser better generalize and induce more stable behaviour. However, it also intro-
duces more complexity. Analysing the trade-off between the optimiser’s complexity and
its ability to learn and transfer knowledge related to adversarial vulnerabilities is left for
future research.

7.6 CONCLUSIONS AND FUTURE RESEARCH

We introduce a method to learn how to optimise ML models robust to adversarial examples,
in low data regimes. Instead of specifying custom regularisation terms, they are learned
automatically by an adaptive optimiser. Acquiring meta information about the optimisation
landscape under adversarial constraints allows the optimiser to reuse it for new tasks.
For future research, we propose to train the meta-optimiser concomitantly with different
perturbation types — e.g., I, lb-norm — and test if the optimiser can learn to robustly optimise
under all constraints. Other perturbations, such as naturally occurring perturbations [103]

106 7 META ADVERSARIAL LEARNING

can also be included. Another research direction is to use the meta-optimiser to refine a
trained model and evaluate if it is possible to robustly regularise it with less data.

107

COUNTEREXAMPLE-GUIDED

STRATEGY IMPROVEMENT FOR
POMDPs USsING RECURRENT
NEURAL NETWORKS

In this chapter we tackle the problem of robust decision making for autonomous
systems under uncertainty. This problem is relevant for any autonomous system
for which the environment is not completely known, which is the case in most real-
world scenario. In particular, we study strategy synthesis for partially observable
Markov decision processes (POMDPs) — i.e., determine strategies that provably
adhere to probabilistic temporal logic constraints. This problem is known to be
computationally intractable. We propose a novel method to solve this problem
by combining techniques from machine learning and formal verification. Firstly,
we train a deep learning model to encode POMDP strategies. The deep learning
model accounts for memory-based decisions without the need to expand the full
belief space of a POMDP. Secondly, we restrict the deep learning based strategy
to represent a finite-memory strategy and implement it on a specific POMDP. For
the resulting finite Markov chain, formal verification techniques provide provable
guarantees for temporal logic specifications.

This chapter has been published as[2) S. Carr; N. Jansen, R. Wimmer, A. Serban, B. Becker, U. Topcu, Counterexample-
Guided Strategy Improvement for POMDPs Using Recurrent Neural Networks, International Joint Conference on
Artificial Intelligence, 2019 [46].

108 8 VERIFIABLE PLANNING UNDER UNCERTAINTY

8.1 INTRODUCTION

Autonomous agents that plan decisions under uncertainty and incomplete information
can be mathematically represented as partially observable Markov decision processes
(POMDPs). In this setting, when an agent makes decisions within an environment, it obtains
observations and infers the likelihood of the system being in a certain state (also known as
the belief state). POMDPs are effective in modelling a number of real-world applications -
e.g., [126, 271] - and are the standard model for decision making in autonomous systems
where the environment is not completely known.

Traditional POMDP problems seek to compute a strategy that maximizes a cumulative
reward over a finite horizon. However, the agent’s behaviour is often required to obey more
strict specifications. For example, reachability, liveness or, more generally, specifications
expressed in temporal logic (e.g., LTL [207]) describe tasks that cannot be expressed using
reward functions [153]. For example, one would like to verify upfront that an autonomous
agent has low probability of reaching a bad state and guarantee safe operation. Therefore,
a robust decision making algorithm must satisfy with high probability the specifications.

Strategy synthesis for POMDPs is difficult, both from a theoretical and practical per-
spective. For infinite- or indefinite-horizon problems, computing an optimal strategy is
undecidable [161]. Optimal action choices depend on the whole history of observations and
actions, thus requiring an infinite amount of memory. When restricting the specifications
to maximize accumulated rewards over a finite horizon and limiting the available memory,
computing an optimal strategy is PSPACE-complete [195]. This problem is, practically,
intractable even for small instances [176]. Moreover, even when strategies are restricted to
be memoryless, finding an optimal strategy within this set is still NP-hard [280]. For more
general specifications like LTL properties, synthesis of strategies with limited memory is
even harder, namely EXPTIME-complete [48]).

The intractable nature of these problems gave rise to approximate [101], point-
based [205], or Monte-Carlo-based [258] methods. However, none of these approaches
provides guarantees for given temporal logic specifications. The tool PRISM-POMDP
[190] does so by approximating the belief space into a fully observable belief MDP, but is
restricted to small examples. Other techniques - such as those using satisfiability modulo
theory solvers over a bounded belief space [285] or a label-based simulation over sets of
belief models [98] — are also only restricted to small examples.

Although strategy synthesis for POMDPs is difficult, a candidate strategy resolves
non-determinism and partial observability for a POMDP, and yields a so-called induced
discrete-time Markov chain (MC). For this simpler model, verification methods are capable
to efficiently certify temporal logic constraints and reward specifications for billions of
states [18]. Tool support is also available via probabilistic model checkers such as Storm [64].

However, there is a tension between directly synthesizing an optimal strategy and
efficient verification of a candidate strategy. Here, two questions arise: (i) how to generate
a suitable strategy, and (ii) how to improve a strategy if verification refutes the specifica-
tion? Machine learning (ML) and formal verification techniques address these questions
separately. In this chapter, we bridge methods from both fields in order to guarantee that a
candidate strategy learned through ML provably satisfies temporal logic specifications.

8.2 BACKGROUND AND RELATED WORK 109

First, we learn a randomized strategy' via recurrent neural networks (RNNs) [107] -
which we refer to as the strategy network. RNNs are a good candidate for learning a strategy
because they can successfully represent temporal dynamic behaviour [202]. Second, we
extract a concrete (memoryless randomized) candidate strategy from the RNN and use it
directly on a given POMDP, resulting in the MC induced by the POMDP and the strategy.
Formal verification reveals whether specifications are satisfied or not. In the latter case, we
generate a counterexample [293], which points to parts of the MC (and by extension of
the POMDP), that are critical for the specification. For those critical parts, we use a linear
programming (LP) approach that locally improves strategy choices (without guarantees on
the global behaviour). From the improved strategy, we generate new data to retrain the
RNN. We iterate that procedure until the strategy network yields satisfactory results.

While the strategies are memoryless, allowing randomisation over possible choices and
relaxing determinism is often sufficient to capture necessary variability in decision-making.
The intuition is that deterministic choices at a certain state may need to vary depending on
previous decisions, thereby trading off memory. However, randomization in combination
with finite memory may supersede infinite memory even more for many cases [7, 125]. We
encode finite memory directly into a POMDP by extending its state space. We can then
directly apply our method to create finite-state controllers (FSCs) [176].

As previously discussed, the investigated problem is undecidable for POMDPs [161]
and therefore the approach is naturally incomplete. Soundness is provided, as verification
yields hard guarantees on the quality of a strategy.

This chapter is organised as follows. Section 8.2 introduces the formal foundations on
POMDP and related work. Section 8.3 describes the strategy synthesis procedure, followed
by details on how the strategy is trained using RNNs in Section 8.3.1. The method’s
effectiveness is demonstrated using a selection of temporal logic examples, as well as
comparing to well-known benchmarks [261] in Sect. 8.4. Conclusions and future work
follow in Section 8.5.

8.2 BACKGROUND AND RELATED WORK

Preliminaries. A probability distribution over a finite or countably infinite set X is a
function y: X — [0, 1] <R with), p(x) = u(X) = 1. The set of all distributions on X is
Distr(X). The support of a distribution p is supp(p) = {x € X |pu(x) > 0}.

A Markov decision process (MDP) M is a tuple M = (S, Act, P) with a finite (or countably
infinite) set S of states, a finite set Act of actions, and a transition function P : Sx Act —
Distr(S). We use a reward function r: Sxa — R. A finite path = of an MDP M is a
sequence of states and actions; last(r) is the last state of 7. The set of finite paths of M is
Paths}\;.[n. A discrete-time Markov chain (MC) is an MDP with |Act(s)| = 1 for all s€ S.

A strategy y for and MDP M is a function y : Paths%n — Distr(Act) with supp (y(n)) c
Act(last(ﬂ)) for all = € Paths}viln. A strategy y is memoryless if last(r) = last(zr”) implies

y(r) = y(r’) for all 7" € Paths]‘;.[n.

1 Also referred to as stochastic strategy or policy.

110 8 VERIFIABLE PLANNING UNDER UNCERTAINTY

For an MDP M = (S, Act, P) and a strategy y € '™, the MC induced by M and y is given

by MY = (Paths}\/l.ln,PV) where:

PY(r, ") = (8.1)

otherwise.

{P(last(ﬂ), a,s")-y(r)(a) if 7’ =ras’,

A partially observable Markov decision process (POMDP) is a tuple M = (M, Z, O), with

M = (S, Act, P) the underlying MDP of M, Z a finite set of observations and O: S — Z
the observation function. The set of all finite observation-action sequences for a POMDP
M is denoted by ObsSeq%l. An observation-based strategy for a POMDP M is a function
y: ObsSqui\l./}l — Distr(Act) such that supp(y(O(r))) < Act(last(r)) for all x € Paths”iln.
I'M is the set of observation-based strategies for M.
A memoryless observation-based strategy y € F?A is analogous to a memoryless MDP
strategy, formally we simplify to y : Z — Distr(Act), i.e.,we decide based on the current
observation only. Similarly, POMDP together with a strategy yields an induced MC as
in Def. 8.1, resolving all nondeterminism and partial observability. A general POMDP
strategy can be represented by infinite-state controllers. Strategies are often restricted to
finite memory; this amounts to using finite-state controllers (FSCs) [176].

A k-FSC for a POMDP is a tuple A = (N, ny, y,8) where N is a finite set of k memory
nodes, ny € N is the initial memory node, y is the action mapping y : N xZ — Distr(Act)
and § is the memory update § : N x Zx Act — N. Let y4 € ['M denote the observation-
based strategy represented by the FSC A. The product M x.A of a POMDP and a k-FSC
yields a (larger) “flat” POMDP where the memory update is directly encoded into the
state space [125]. The action mapping y is left out of the product. A memoryless strategy
Y€ I“?/l"A then determines the action mapping and can be projected to the finite-memory
strategy y4 € 1"?4.

Specifications. We consider linear-time temporal logic (LTL) properties [207]. For a set
of atomic propositions AP, which are either satisfied or violated by a state, and a € AP, the
set of LTL formulas is given by:

Ya|(FAY)|-¥| 0¥ |OY|(FUY). (8.2)

Intuitively, a path 7 satisfies the proposition a if its first state does; (i1 A) is satisfied, if
7 satisfies both ¢4 and i»; =) is true on 7 if ¢ is not satisfied. The formula o ¢ holds on
if the subpath starting at the second state of satisfies 1. The path x satisfies O ¢ if all
suffixes of 7 satisfy . Finally, x satisfies (¢4 U y) if there is a suffix of & that satisfies y»
and all longer suffixes satisfy /1. ¢ i abbreviates (true U).

For POMDPs, one wants to synthesize a strategy such that the probability of satisfying
an LTL-property respects a given bound, denoted ¢ =P_,(¢) for ~ € {<,=<,2,>} and 1 €[0,1].
In addition, undiscounted expected reward properties ¢ = E_,(0 a) require that the expected
accumulated cost until reaching a state satisfying a respects A € Ryg.

If ¢ (either LTL or expected reward specification) is satisfied in a (PO)MDP M under
Y, we write MY E ¢, that is, the specification is satisfied in the induced MC, see Eq. 8.1.
While determining an appropriate strategy is still efficient for MDPs, this problem is in

8.3 STRATEGY SYNTHESIS 111

general undecidable for POMDPs [49]. In particular, for MDPs, to check the satisfaction of
a general LTL specification one needs memory. Typically, tools like PRISM [144] compute
the product of the MDP and a deterministic Rabin automaton. In this product, reachability
of so-called accepting end-components ensures the satisfaction of the LTL property. This
reachability probability can be determined in polynomial time. PRISM-POMDP [190]
handles the problem similarly for POMDPs, but note that a strategy needs memory not
only for the LTL specification but also for observation dependencies.

Finally, given a (candidate) strategy y, checking whether MY k ¢ holds can be done
both for MDPs and POMDPs in polynomial time [18].

Related Work. Besides the publications mentioned in Section 8.1, previous work has
used recurrent neural network (RNN) to synthesize strategies for POMDPs. These meth-
ods fall within the policy gradient class of algorithms specific to reinforcement learn-
ing (RL) [266]. In this setting, the strategy is parameterized and updated by performing
gradient ascent on the error function (typically chosen to maximize the discounted reward).

In order to cope with arbitrary memory in POMDPs, policy gradients methods need
some notion of memory. RNNs are suitable for this task because (1) they are differentiable
end-to-end and (2) they are designed to exhibit dynamic temporal behavior. Indeed, [292]
were the first to employ a RNN to learn (finite-memory) strategies for POMDPs. In particular,
the authors used a long short-term memory (LSTM) architecture which is able to leverage
both long and short term events in the past.

Recent progress in deep learning (DL) enabled scaling deep neural networks (DNNs) to
solve complex problems. For example, [181] developed a DNN-based Q-learning algorithm
able to play video games straight from video frames, under partial observability. Instead
of using RNNs, the memory problem is solved by replaying a series of frames at every
step. Later, [100] added an LSTM cell to enhance the algorithm’s capacity with both long
and short term memory. From there on, the field rapidly moved to explore new ways of
improving the memory representation [201, 211, 228]. However, even though they yield
good performance on a variety of tasks, these methods do not provide guarantees on the
strategies learned. In fact, it is very hard to perform any reasoning about these strategies.

8.3 STRATEGY SYNTHESIS

For a POMDP M and a specification ¢, where either ¢ = P_;(1/) with ¢ an LTL formula,
or ¢ = E_;(¢ a), the problem is to determine a (finite-memory) strategy y € I'* such that
MYk ¢. If such a strategy does not exist, the problem is infeasible.

The workflow of the proposed method is illustrated in Fig. 8.1: We start by training a
RNN using observation-action sequences generated from an initial strategy as discussed
in Section 8.3.1. The trained strategy network represents an observation-based strategy,
taking as input an observation-action sequence and returning a distribution over actions
(Section 8.2). For a POMDP M, we use the output of the strategy network in order to resolve
nondeterminism. The strategy network is thereby used to extract a memoryless strategy
y € T and as a result we obtain the induced MC M. Model checking of this induced MC
evaluates whether the specification ¢ is satisfied or not for the extracted strategy. In the

112 8 VERIFIABLE PLANNING UNDER UNCERTAINTY

‘ Local Improvement ‘ Training Data
Linear Program POMDP Observation-
for each s € &’ Action Sequences

Recurrent
Neural Network

}

‘ Counterexamples

‘ Set S’ ¢ S of critical states

X Strategy
1
UNSAT | Strategy y for M
] |
‘ Model Checking Induced Model
MY Eg? DTMC MY
H)
SAT :

'

i Concrete Model
o POMDP. M
Specification ¢

Figure 8.1: Flowchart of the RNN-based refinement loop.

former case, the synthesis procedure is finished. The extraction and evaluation is explained
in Section 8.3.2.

If the specification is not satisfied, we obtain a counterexample highlighting critical
states of the POMDP. We employ a linear programming (LP) approach that locally improves
action choices of the current strategy at these critical states, described in Section 8.3.3.
Afterwards, we retrain the RNN by generating new observation-action sequences obtained
from the new strategy. We iterate this procedure until the specification is satisfied or a
fixed iteration threshold is reached. For cases where we need to further improve, we use
domain knowledge to create a specific memory-update function of a k-FSC A (Section 8.3).
Then, we compute the product M’ = M x.A. We iterate with M as starting point and
thereby determine a concrete k-FSC including the action mapping.

8.3.1 LEARNING STRATEGIES WITH RECURRENT NEURAL NETWORKS

As mentioned in Section 8.2, policy gradient algorithms are used to map observations to
actions and are not well suited for POMDPs due to their inability to cope with arbitrary
memory. To overcome this weakness, we make explicit use of memory using RNNs - a
family of neural networks designed to exhibit dynamic temporal behaviour.

Constructing the Strategy Network. We use the LSTM architecture [107] in a similar
fashion to policy gradient methods and model the output as a probability distribution on
the action space (described formally by y : ObsSeq%l — Distr(Act)). Having stochastic
output units, we avoid computing gradients on the internal belief states, as it is, for example,
done in [176]. Using back propagation through time, we can update the strategy during
training. Thus, for a given observation-action sequence from ObsSquﬁ\ﬁl , the model learns

8.3 STRATEGY SYNTHESIS 113

a strategy j € I, The output is a discrete probability distribution over the actions Act,
represented using a final softmax layer.

RNN Training. We train the RNN using a slightly modified version of sampling re-usable
trajectories [129]. In particular, for a POMDP M = (M, Z, O) and a specification ¢, instead
of randomly generating observation sequences, we first compute a strategy y € I'™ of the
underlying MDP M that satisfies ¢. Then we sample uniformly over all states of the MDP
and generate finite paths (of a fixed maximal length) from Paths%,: of the induced MC MY,
Sin

thereby creating multiple trajectory trees. For each finite path = € Path fin» We generate

one possible observation-action sequence 7, € ObsSqui\gl such that 7 = 29, ap, ..., an-1,2n
with z; = O(x[i]), where n[i] denotes the i-th state of & for all 1 < i < n. We form the
training data set D from a (problem specific) number of m observation-action sequences
with observations as input and actions as output labels. Both input and output sets were
processed using one-hot-encoding. To fit the RNN model, we use the Adam optimiser [132]
with a cross-entropy error function.

Sampling Large Environments. In a POMDP M with a large state space (|S| > 10°),
computing the underlying MDP strategy y € I'M affects the performance. In such cases, we
restrict the sampling to a smaller environment that shares the observation Z and action
spaces Act with M. For example, consider a grid-world scenario with a moving obstacle
that has the same underlying probabilistic movement for different problem sizes. Such a
framework can provide a similar dataset regardless of the size of the grid.

8.3.2 STRATEGY EXTRACTION AND EVALUATION

We first describe how to extract a memoryless strategy from the strategy network for a
specific POMDP, then we formalize the extension to FSCs to account for finite memory.
Finally, we explain how the strategies can be evaluated.

Given a POMDP M, we use the trained strategy network y : ObsSqu{‘l./:l — Distr(Act)
directly as observation-based strategy. Note that the RNN is inherently a predictor for the
distribution over actions and will not always deliver the same output for one input. While
we always use the first prediction we obtain, one may also sample several predictions and
take the average of the output distributions.

Extension to FSCs. As mentioned before, LTL specifications as well as observation-
dependencies in POMDPs require memory. Consider therefore a general FSC A = (N, nz, v, §)
(Section 8.2). We first predefine the memory update function & in a problem-specific way,
for instance, § changes the memory node when an observation is repeated. Consider
observation sequence 7, € ObsSeqjc\gl with 7, = 29, ay, ..., zp. Assume, the FSC is in memory
node ny € N at position i of n,. We define §(ng, zj, a;) = ny,1, if 7[i] = (z;, a;i), and there
exists a j < i such that ,[j] = (2;, aj) with z; = z;. Similarly, we account for specific memory
choices akin to the relevant LTL specification.

Once § has been defined, we compute a product POMDP M x A which creates a state
space over SxN. The training process is similar to the method outlined above but instead of

114 8 VERIFIABLE PLANNING UNDER UNCERTAINTY

generating observation-action sequences from ObsS eqj}ﬁl, we generate observation-node-
action sequences

(z0,19), a9, ..., an-1,(zn, np) from ObsSeq}A{}:A. In this case, the RNN is learning the mapping
of observation and memory node to the distribution over actions as an FSC strategy network:
YFsC ObsSqul./}:A x N — Distr(Act)

In order to extract the memoryless FSC A from the FSC strategy network yrsc, we
collect the predicted distributions across the product set of all possible observations z € Z
and all possible memory nodes n € N. From this prediction, the FSC A is constructed from
the action mapping y(z,n) = yrsc(z, n) and the predefined memory update function §.

Evaluation. We assume that for POMDP M = (M, Z, O) and specification ¢, we have a
finite-memory observation-based strategy y € '™ as described above. We use the strategy
y to resolve all nondeterminism in M, resulting in the induced MC MY, see Def. 8.1. For
this MC, we apply model checking, which in polynomial time reveals whether MY k ¢. For
the fixed strategy y we extracted from the strategy network, this provides hard guarantees
about the quality of y regarding ¢. As mentioned before, this strategy is only a prediction
obtained from the RNN - so the guarantees necessarily do not directly carry over to the
strategy network.

8.3.3 IMPROVING THE STRATEGY

Next we describe how to compute a local improvement for a strategy that does not satisfy
the specification. In particular, we have POMDP M = (M, Z, O), specification ¢, and the
strategy y € M with MY ¥ ¢. We then create diagnostics on why the specification is not
satisfied.

First, without loss of generality, we assume ¢ = P_;(¢). Let y(z)(a) denote the prob-
ability of choosing action a € Act upon observation z € Z, under the strategy y. Let
Pr’(s) denote the probability to satisfy i/ within the induced MC MY . For some threshold
A €[0,1], a state s € S is critical iff Pr*(s) > A’. We define A’ as a function I’ : Sx1 — R
with respect to the threshold A from the original specification and the state s. We define
the set of critical decision under the strategy y.

A probability y(z)(a) > 0 according to an observation-based strategy y €I is a critical
decision iff there exist states s,s” € S with s € 071(z), P(s,a,s’) > 0, and s’ is critical. Intu-
itively, a decision is critical if it may lead to a critical state. The set of critical decisions
serves as counterexample, generated by the set of critical states and the strategy y. Note
that even if a specification is satisfied for y, the sets of critical decisions and states may
still be non-empty as they depend on the definition of the criticality-threshold A’.

For each observation z € O with a critical decision, we construct an optimisation
problem that minimises the number of different (critical) actions the strategy chooses per
observation class.

In particular, the probabilities of action choices under y are redistributed such that the
critical choices are minimised.

max min 8.3
Y(2)(a),acAct s€S Ps (83)

8.4 EMPIRICAL EVALUATION 115

s.t.

vs€0'(2). ps=), y(@(@)-), P(s,as) p(s)

acAct s’€S

If the objective function is zero, then we have found an observation-based strategy, as
there are no choices that are inconsistent with the observations any more. Otherwise, we
select a class for which at least two different actions are necessary and then we generate a
new set of paths starting from the critical states. After converting these new paths into
observation-action sequences, we retrain the RNN. By gathering more data from these
apparently critical situations, we locally improve the quality of the strategies at those
locations and gradually introduce observation-dependencies.

8.3.4 CORRECTNESS AND TERMINATION

Correctness of our approach is ensured by evaluating the extracted strategy on the POMDP
using model checking. As the investigated problem is undecidable for POMDPs [161], our
approach is naturally incomplete. In order to enforce termination after finite time, we abort
the refinement loop after a specified number of iterations, or as soon as the progress from
one iteration to the next (in terms of the model checking results) falls below a threshold.

8.4 EMPIRICAL EVALUATION

We evaluate tthe RNN-based synthesis procedure on benchmark examples that are subject
to either LTL specifications or expected cost specifications. For the former, we compare to
the tool PRISM-POMDP, and for the latter we compare to PRISM-POMDP and the point-
based solver SolvePOMDP [281]. Recall that, in general, a strategy over the continuous
belief space induces an infinite memory strategy for POMDPs. PRISM-POMDP employs
a discretization (we chose the default level of discretization) of that belief space which
technically induces a finite-memory strategy. Therefore solutions from PRISM-POMDP
are approximate; the tool computes an upper and lower bound on the optimum.

We selected the two solvers from different research communities because they provide
the possibility for a straightforward adaption to our benchmark setting. In particular,
the tools support undiscounted rewards and have a simple and similar input interface.
Extended experiments with, for instance, Monte-Carlo-based methods [258] are interesting
but beyond the scope of this paper.

For a fair comparison, instead of terminating the synthesis procedure once a spec-
ification is satisfied, we always iterate 10 times, where one iteration encompasses the
(re-)training of the RNN, the strategy extraction, the evaluations, and the strategy improve-
ment as in Sect. 8.3. For instance, for a specification ¢ = P_,(¢), we leave the A open and
seek to compute Ppin (1), that is, we compute the minimal probability of satisfying i/ for
a strategy that satisfies ¢. We cannot guarantee to reach that optimum, but we rather
improve as far as possible within the predefined 10 iterations. The notions are similar for
P., and Ppax as well as for expected cost measures E_) (E.) and Epjn (Emax)-

We will now shortly describe our experimental setup and present detailed results for
both types of examples.

116 8 VERIFIABLE PLANNING UNDER UNCERTAINTY

A Problem |S| |Act| |Z]

4 Navigation (c) ct 4 256

“—" Delivery (c) c? 4 256

T (c) c? 4 256

X n Maze(c) 3c+8 4 7

= Grid(c) c? 4 2

TXT RockSample[4,4] 257 9 2

< ‘ RockSample[5,5] 801 10 2

B X RockSample[7,8] 12545 13 2

(a) (b)

Figure 8.2: (a) Example environment and (b) Benchmark metrics

Implementation and Setup. We employ the following Python toolchain to realize the
full RNN-based synthesis procedure. First, we use the deep learning library Keras [54]
to train the strategy network. To evaluate strategies, we employ the probabilistic model
checkers PRISM (LTL) and STORM (undiscounted expected rewards).We evaluated on a
2.3 GHz machine with a 12 GB memory limit and a specified maximum computation time
of 10° seconds.

8.4.1 TEMPORAL LOGIC EXAMPLES

We examined three problem settings involving motion planning with LTL specifications.
For each of the settings, we use a standard grid-world formulation of an agent with 4 action
choices (cardinal directions of movement), see Fig. 8.2a. Inside this environment there are
a set of static (x) and moving (X) obstacles as well as possible target cells A and B. Each
agent has a limited visibility region, indicated by the green area, and can infer its state
from observations and knowledge of the environment. We define observations as Boolean
functions that take as input the positions of the agent and moving obstacles. Intuitively,
the functions describe the 8 possible relative positions of the obstacles with respect to the
agent inside its viewing range.

1. Navigation with moving obstacles — an agent and a single stochastically moving
obstacle. The agent task is to maximize the probability to navigate to a goal state
A while not colliding with obstacles (both static and moving): ¢; = Ppax (X U A)
with x = xuXx,

2. Delivery without obstacles — an agent and static objects (landmarks). The task is
to deliver an object from A to B in as few steps as possible: ¢z = Ep,in(0(AA < B)).

3. Slippery delivery with static obstacles — an agent where the probability of mov-
ing perpendicular to the desired direction is 0.1 in each orientation. The task is
to maximize the probability to go back and forth from locations A and B without
colliding with the static obstacles x: @3 = Ppax (O AA OO BA=O X), with x = X,

Evaluation. Fig. 8.3 compares the size of counterexample in relation to the probability
of satisfying an LTL formula in each iteration of the synthesis procedure. In particular,

8.4 EMPIRICAL EVALUATION 117

Refinement statistics

1,500 ‘ T] 1
3 X 10.8
ks : <
7z L000p t06 D
g XX x >
= XX xx 104 T
E 500 x
Q
o 102

0 | | | |

Iteration number

Probability
X Counterexamples

Figure 8.3: Progression of the number of critical states and the probability of satisfying an LTL specification as a
result of local improvement steps.

we depict the size of the set S’ S of critical states regarding ¢; = Pmax (—X U A) for the
Navigation example with grid-size 6. Note that even if the probability to satisfy the
LTL specification is nearly one (for the initial state of the POMDP), there may still be
critical intermediate states. As can be seen in the figure, while the probability to satisfy the
LTL formula increases, the size of the counterexample decreases. In particular, the local
improvement (Eq. 8.3, Sect. 8.3.3) is demonstrated to be effective.

Table 8.1 contains the results for the above LTL examples. Note that the sizes of the
FSCs were included to demonstrate the trade-off between computational tractability and
expressivity: a larger FSC means that the strategy can store more information, which may
lead to better choices. However, larger FSCs require more computational effort and may
require more data for training the RNN. We convey this trade-off in the experiments, as
the size of the FSC is often problem-specific. Naturally, the strategies produced by the
procedure will not have higher maximum probabilities (or lower minimum expected cost)
than those generated by the PRISM-POMDP tool. However, they scale for significantly
larger environments and settings. In the larger environments (N avigation(15) and upwards
indicated by a star) we employ the sampling technique outlined at the end of Sect. 8.3.1
on a dataset with grid-size 10. The strategy still scales to these larger environments even
when trained on data from a smaller state space.

Also in Table 8.1, we compare the effect of increasing the value of k for several k-FSCs.
In smaller instances with grid-sizes of 4 and 5, memory-based strategies significantly
outperform memoryless ones in terms of quality (the resulting probability or expected
cost) while not consuming significantly more time. The increase in performance is due to
additional expressiveness of an FSC-based strategy in these environments with a higher
density of obstacles.

Summarized, our method scales to significantly larger domains than PRISM-POMDP
with competitive computation times. As mentioned before, there is an inherent level of
randomness in extracting a strategy. While we always take the first shot result for our
experiments, the quality of strategies may improved by sampling several RNN predictions.

118 8 VERIFIABLE PLANNING UNDER UNCERTAINTY

Table 8.1: Synthesizing strategies for examples with LTL specs.

RNN-based Synthesis PRISM-POMDP

Problem States Type, ¢ | Res. Time (s)‘ Res. Time (s)
Navigation (3) 333 PM.. 1| 074 14.16] 0.84 73.88
Navigation (4) 1088 Pyl o1 | 082 22.67]0.93 1034.64
Navigation (4) [2-FSC] 13373 PM o | 091 47.26| - -
Navigation (4) [4-FSC] 26741 PM o, [0.92 5942 - -
Navigation (4) [8-FSC] 53477 PM., o1 | 0.92 85.26| - -
Navigation (5) 2725 P, o1 | 0.91 34.34| MO MO
Navigation (5) [2-FSC] 33357 PM ¢, | 0.92 115.16| - -
Navigation (5) [4-FSC] 66709 PM ¢, [0.92 15961 - -
Navigation (5) [8-FSC] 133413 PM ¢, | 0.92 250.91 - -
Navigation (10) 49060 PM ¢y | 0.79 822.87| MO MO
Navigation (10) [2-FSC] 475053 PM. ¢, | 0.83 118541 - -
Navigation (10) [4-FSC] 950101 PM. . ¢, | 0.85 148877 - -
Navigation (10) [8-FSC] 1900197 PM o, | 0.81 1805.22| - -
Navigation (15) 251965 JPmaX, ¢1| 091 1271.80* | MO MO
Navigation (20) 798040 JPm o | 0.96 4712.25*| MO MO
Navigation (30) 4045840 JPmX, o | 0.95 25191.05* | MO MO
Navigation (40) - PM | TO TO| MO MO
Delivery (4) [2-FSC] 80]Emm, | 6.02 3535| 6.0 28.53
Delivery (5) [2-FSC] 125]Emm, @2 | 8.11 78.32| 8.0 102.41
Delivery (10) [2-FSC] 500 EM . ¢, |18.13 120.34 | MO MO
Slippery (4) [2-FSC] 460 JPmaX, @3] 0.78 67.51]0.90 5.10
Slippery (5) [2-FSC] 730 JPmax ¢ | 0.89 84.32|0.93 83.24
Slippery (10) [2-FSC] 2980 JPmaX, 3| 0.98 119.14| MO MO
Slippery (20) [2-FSC] 11980 PM s | 0.99 1580.42 | MO MO

8.4.2 COMPARISON TO EXISTING POMDP ExXAMPLES

For comparison to existing benchmarks, we extend two examples from PRISM-POMDP
for an arbitrary-sized structure: Maze(c) with ¢ +2 rows and Grid(c) — a square grid with
length c. We also compare to RockSample [258] (see Table 8.2b for problem metrics).

These problems are quite different to the LTL examples, in particular the significantly
smaller observation spaces. As a result, a simple memoryless strategy is insufficient for a
useful comparison. For each problem, the size of the k-FSC used is given by: Maze(c) has
k = (c+1); Grid(c) has k = (¢ - 1) and RockSample with b rocks has k = b.

Our method compares favorably with PRISM-POMDP and pomdpSolve for Maze and
Grid (Table 8.2). However, the proposed method performs poorly in comparison to pomdp-
Solve for RockSample: An observation is received after taking an action to check a particular
rock. This action is never sampled in the modified trajectory-tree based sampling method
(Sect. 8.3.1). Note that our main aim is to enable the efficient synthesis of strategies under
linear temporal logic constraints.

8.5 CONCLUSIONS AND FUTURE RESEARCH

We introduced a new RNN-based strategy synthesis method for POMDPs and LTL spec-
ifications. While we cannot guarantee optimality, our approach shows results that are

8.5 CONCLUSIONS AND FUTURE RESEARCH 119

Table 8.2: Comparison for standard POMDP examples.

RNN-based Synthesis PRISM-POMDP pomdpSolve
Problem Type | States Res Time (s)‘ Res Time (s)| Res Time (s)

Maze (1) Eﬁ“ 68 4.31 31.70 | 4.30 0.09| 4.30 0.30
Maze (2) M 83 531 4665| 523 2176| 523 0.67
Maze (3) Eﬁn 98 8.10 58.75| 7.13 38.82| 7.13 2.39
Maze (4) xn 113 11.53 58.09| 8.58 543.06 | 8.58 7.15
Maze (5) ﬁn 128 14.40 68.09(13.00 4110.50|12.04 132.12
Maze (6) Eﬁn 143 22.34 71.89| MO MO|18.52 1546.02
Maze (10) EM | 203 10021 158.33| MO MO| MO MO
Grid (3)]Eﬁ“ 165 2.90 38.94| 2.88 2.332| 2.88 0.07
Grid (4)]Eﬁ:}n 381 4.32 79.99| 4.13 1032.53| 4.13 0.77
Grid (5) EM | 727 6623 9142 MO MO| 542 194
Grid (100 EM | 5457 13.630 268.40| MO MO| MO MO
RockSample[4,4] EM | 2432 17.71 35.35| N/A N/A|18.04 0.43
RockSample[5,5] EM | 8320 1840 43.74| N/A N/A|19.23 621.28
RockSample[7,8] E;}, | 166656 20.32 860.53| N/A N/A | 21.64 20458.41

often close to the actual optimum, with competitive computation times for large problem
domains. For future research, we are interested in extending our method to continuous state
spaces, together with abstraction techniques that would enable to employ our model-based
method.

121

CONCLUSIONS

We tackled several challenges in the design, development and deployment of robust au-
tonomous systems. We regard autonomous systems as software systems capable to perceive
the environment they operate in, reason about it and plan future actions — where both
perception and planning are based on deep learning models. Since robustness has broad
implications along each stage of the software development life cycle for autonomous sys-
tems, we proposed a holistic approach to achieve robustness that incorporates (i) a macro,
system wide, perspective, and (ii) a micro, algorithmic, perspective.

Autonomous systems consist of multiple traditional software components, with which
deep learning components for perception and planning have to be integrated. Therefore,
we started from a macro, system wide perspective. In Chapter 2 we studied how software
systems can be (re-)architected to support robust integration of deep learning components.
Through a mixed-methods empirical study we identified twenty architectural tactics that
can be used by practitioners to satisfy quality requirements of systems with deep learning
components. These tactics represent an empirical framework that support the process of
(re-)architecting software systems with deep learning components.

In Chapter 3 we observed that deep learning components complicate traditional soft-
ware architecture design because of the inability to verify that deep learning components
will satisfy their intended functionality and can cope with stochastic events coming from
the operational environment. Since traditional software architecture analysis methods do
not consider this complication, they fall short for systems with deep learning components.
To facilitate the comparison of architecture alternatives for systems with deep learning
components, we proposed a software architecture evaluation method that makes uncer-
tainty a central decision driver. The method supports reasoning over how architectural
patterns can mitigate uncertainty and enables comparison of different architectures focused
on the interplay between deep learning and traditional software components. We also
showed that design patterns used in safety-critical systems can be used to build robust
autonomous systems with deep learning components.

In Chapter 4 we study the challenges raised by deep learning components at all stages
of the development life cycle. Through an empirical study, we compiled a catalogue of
engineering best practices for deep learning applications. Moreover, we studied the effects

122 9 CONCLUSIONS

of adopting the practices and the importance of each practice for the effects. These results
provide a basis for quality assessment and improvement for teams developing software
with deep learning components.

In the second part of the thesis, we zoomed in on the challenges raised by the devel-
opment of robust deep learning components from a micro, algorithmic perspective. In
particular, we tackled the development of computer vision models robust against adversarial
examples and of verifiable deep learning based planning algorithms.

We focused on reducing the impact of adversarial training — the most effective defence
against adversarial examples — on training time. Since adversarial training relies on finding
representative adversarial samples for training, a procedure that slows down training
considerably, it is imperative to find methods to develop robust computer vision models
by alleviating the impact of adversarial training. To tackle this challenge, we proposed
in Chapter 6 to train models on output spaces with large class separation, in order to
gain robustness without adversarial training. We introduced a method to partition the
output space into class prototypes with large separation and train models to preserve the
separation. Experimental results show that models trained with these prototypes — which
we call deep repulsive prototypes — gain robustness competitive with adversarial training,
while also preserving more accuracy on natural samples. Moreover, the models are more
resilient to large perturbation sizes.

In Chapter 7 we proposed a method to train robust classifiers with small training
data sets and transfer the knowledge learned about robustness between different models.
Towards this goal, we trained a meta-optimiser which learns to robustly optimise a model
using perturbed samples and used it to transfer the knowledge learned to new models. Thus,
the method eliminates the need of adversarial training once the meta-optimiser is trained.
We show empirically that the meta-optimiser is consistent across different architectures
and data sets, suggesting it is possible to transfer knowledge about robustness between
different models.

In Chapter 8 we investigated the robustness of deep learning based planning algorithms,
where formal verification can not be applied directly because the planning algorithms are
too complex. In this context, we studied the problem of strategy synthesis for partially
observable Markov decision processes, where the strategy is synthesised by a deep learning
algorithm. To determine if the strategies adhere to (probabilistic) temporal logic constraints
is computationally intractable and theoretically hard. In order to overcome this limitation,
we introduce a method that combines techniques from deep learning and formal verification.
The strategy is learned using a recurrent neural network and restricted to represent a finite
memory strategy, which can be implemented on a specific partially observable Markov
decision process. This allows formal verification techniques to be used in order to provide
guarantees against temporal logic specifications.

9.1 CONTRIBUTIONS
Several contributions were made in this thesis, as follows:

Chapter 2 introduced an empirical study of software architecture for deep learning,
which resulted in:

9.1 CONTRIBUTIONS 123

« evidence that traditional software architecture challenges remain relevant for soft-
ware systems with deep learning components, although new architectural challenges
for deep learning also emerge;

« twenty solutions to the software architectural challenges for deep learning found
both in literature and practice;

« a link from architectural solutions to software quality attributes which allowed the
definition of twenty architectural tactics that can be used to satisfy individual quality
attributes of software systems with deep learning components.

Chapter 3 introduced a method to compare software architectures with deep learning
components, which resulted in:

« evidence that traditional software architecture evaluation methods do not take into
account the uncertainty related to deep learning components;

« a method to compare software architectures with deep learning components that
takes into account this uncertainty;

« a case study that demonstrates this method can be used to compare software archi-
tectures with deep learning components and evidence that software architecture
design patterns for safety critical systems can be used to decrease the uncertainty of
systems with deep learning components.

Chapter 4 introduced a study of software engineering best practices for deep learning,
which resulted in:

« a catalogue of twenty-nine software engineering best practices for machine and deep
learning applications;

« evidence that adoption of practices leads to measurable effects, such as traceability;

« an analysis of the contribution of each practice to the effects, which allows practi-
tioners to estimate the return of investment for adopting the practices.

Chapter 5 introduced a brief summary of adversarial examples, based on a previous
publication that provides:

« acomprehensive and self-contained survey of the field of adversarial examples which
compares more than 100 attacks and defences;

« a comprehensive presentation of the hypotheses behind the existence of adversarial
examples;

« a detailed discussion of the implications of adversarial examples to safety, security
and robustness of deep learning.

124 9 CONCLUSIONS

Chapter 6 introduced a method to train robust deep learning models against adversarial
examples without adversarial training, which resulted in:

« evidence that the impact of adversarial training can be alleviated by choosing induc-
tive biases;

« evidence that the output space of classifiers is a good inductive bias for training
robust deep learning models;

« a method to partition the output space into class prototypes that can be used to
train models as robust as those adversarial trained, without the need to generate
adversarial examples for training.

Chapter 7 introduced a meta-learning method to transfer knowledge about adversarial
examples between models, which resulted in:

« evidence that knowledge about adversarial examples can be learned by a meta
optimiser;

« evidence that the knowledge learned by a meta optimiser can be transferred to other
models;

« amethod to train adversarial robust models with meta-learning, which reduces the
impact of adversarial training significantly.

Chapter 8 introduced a method to formally verify strategies of deep learning based
planning algorithms, which resulted in:

« evidence that the strategies learned with recurrent neural networks can be reduced
to formally verifiable problems;

« a method to formally verify these strategies;

« a method to improve the strategy using counter-examples generated by formal
verification tools.

9.2 REFLECTION ON RESEARCH QUESTIONS

We provide a reflection on the research questions from Table 1.1 in light of the contributions
of this thesis.

How can software systems be (re-)architected to enable robust integration of deep
learning components? The research presented in Chapter 2 designed to answer this
question revealed that, although traditional software architecture challenges remain rele-
vant for software with deep learning components, new challenges specific to deep learning
also emerge. While traditional challenges have been well studied, we observed that new
challenges have little support in the literature. Therefore, we designed and performed
a broader study involving practitioners, which allowed us to present an extensive set of

9.2 REFLECTION ON RESEARCH QUESTIONS 125

solutions for all challenges. Software architecture is not always a fixed stage of the devel-
opment life cycle. For example, in Agile development the software architecture is designed
as the software is developed, while in Waterfall development the software architecture
is designed upfront. Trends such as “Just enough software architecture" [75] propose to
make architecture decisions as new risks are identified during software development.

The results of our study revealed that practitioners adopt a similar process for designing
the software architecture of systems with deep learning components, tackling new concerns
once they emerge. Unfortunately, this results in practitioners focusing more on traditional
architecture concerns such as scalability or performance and less on concerns that are
emphasised by deep learning, such as robustness. We believe that a method that bridges
upfront and continuous architecture design is more suitable for systems with deep learning
components, in order to embrace issues that arise with deep learning and the experimental
development life cycle.

We made efforts to link architectural decisions and solutions to quality attributes of
a system, such that the outcomes of architecture decisions can be better understood and
mapped to quality attributes of deep learning components. A tactic driven approach seems
suitable for (re-)architecting systems to enable robust integration of deep learning, as
tactics can be used both upfront and continuous. Moreover, the effects of some tactics
can be measured directly by instrumenting the system or the deep learning components.
Therefore, evidence for the outcomes of the tactics employed can be gathered rapidly. Our
initial efforts in this direction allowed us to compile a set of twenty architectural tactics
that can be used to satisfy quality attributes of systems with deep learning components.
Nonetheless, this set of tactics is not complete and we expect new tactics that address new
quality attributes to emerge soon.

How to compare software architectures with deep learning components? As
we just mentioned, practitioners still focus on solving traditional software architecture
challenges, such as scalability or performance. Therefore, it is likely that traditional
architecture evaluation methods tailored for these quality attributes can be used for software
with deep learning components.

However, by analysing the literature we observed a lack of methods to evaluate how well
an architecture copes with uncertainty of DL components, also called uncertainty due to
“automated learning". This type of uncertainty is inherent to all deep learning components.
Therefore, architecture evaluation methods should take into account this type of uncertainty,
which is particularly relevant for safety critical systems, where deep learning components
can appear to be functioning normally but produce wrong or uncertain predictions. In
such scenarios, traditional architecture evaluation methods fall short, because the deep
learning components will appear to be functioning normally.

To overcome this challenge, we proposed an architecture evaluation method that takes
into account the uncertainty of deep learning components, both locally, as it impacts one
component, and globally, as it propagates through a system. We validated our approach
through a use-case, which brought evidence that different software architectures can lead
to distinct uncertainty outcomes. We believe developments in this direction are needed in
order to complement traditional architecture evaluation methods and enable comparisons
of architectures with deep learning components. Moreover, since uncertainty can be

126 9 CONCLUSIONS

measured or approximated at run-time, these methods can be extended to analyse systems
in operation and dynamically reconfigure them. This direction is tackled in the research
field of self-adaptive systems, although the lack of studies involving systems with deep
learning components is surprising. Nonetheless, we expect new developments in this field
as deep learning becomes prevalent.

How do teams design, develop and deploy software with deep learning compo-
nents? Software architecture is just one stage of the software development life cycle.
Since all other stages can impact the robustness of autonomous systems, we performed
a broader study to understand how teams design, develop and deploy systems with deep
learning components. We note that in this case deployment includes maintenance and
retirement of these systems.

To understand the team processes, we mined a broad set of best practices for each stage
of the development life cycle, including team organisation and governance aspects. By
running a global survey with over 300 participant teams, we could understand how teams
adopt these practices and how these practice relate to various effects. We observed that
practice adoption increases with team size and experience.

We also observed the adoption of best practices for engineering is rather low. In a
subsequent study we extended the initial set of practices with practices related to trust-
worthy development of deep learning [247]. These practices included, among others,
assurance of robustness. Unfortunately, we observed that the practices related to trust-
worthy deep learning have even lower adoption. These results are currently a cause of
concern. Nonetheless, we expect that popularisation of best engineering practices together
with new incentives (such as new regulations) will increase practice adoption and lead to
more robust autonomous systems.

How can we reduce the impact of adversarial training on robust computer vision
algorithms? The sensitivity of deep learning models to adversarial examples has been
studied intensively in the last five years. However, most defences against adversarial
examples have been broken and no technical solution for this issue exists. The most
effective defence is still adversarial training, which involves complementing the training
data set with adversarial examples.

Nonetheless, the process to generate adversarial examples is resource intensive and
slows down the training process significantly. To alleviate this limitation, we proposed two
methods. The first one is based on adding an inductive bias for learning, by partitioning the
output space into class prototypes with large class separation. When new models are trained
to preserve this separation, they become almost as robust against adversarial examples as
adversarially trained models without the need to generate adversarial examples.

Also, the deep learning community seems to be firmly against inductive biases, in
spite of the fact that they bring benefits. Subsequent experiments, performed at larger
scale [212], showed that similar prototypes can be learned with supervision from language
models and brings additional evidence that by specifying constraints on the output space
we can develop robust models for computer vision. The second method we introduce is
based on meta-learning and shows that information about the optimisation landscape of
adversarially trained models can be transferred to new models without the need to generate

9.3 FUTURE RESEARCH 127

adversarial examples. While both methods reduce or remove the impact of adversarial
training, we can not yet train completely robust models. Therefore, this remains an open
problem.

Can we reduce the complexity of deep learning based planning algorithms and
allow formal verification? Our work on reducing the complexity of deep learning
based planning algorithms to allow formal verification shows it is possible to do so. The
resulting strategy is correct, as each strategy prediction is evaluated using model checking,
but not complete. The method is scalable, but not optimal.

Moreover, the method is limited to scenarios in which the underlying structure of
the problem is known or can be uncovered. For large problems — such as performing
reinforcement learning from unstructured raw observations (e.g., images) — we still do not
have solutions that can allow formal verification. When training reinforcement learning
algorithms from unstructured raw observations, the strategies learned are competitive.
However, they can not be formally verified. We believe this interplay between reducing the
representation of the world from unstructured raw observations to allow formal verification
will play an important role in safe reinforcement learning. However, the solutions will
likely be context-dependent, because a universal solution is not tractable.

9.3 FUTURE RESEARCH

Concrete future research directions were discussed in each chapter. We here provide higher
level comments regarding our view on robustness of autonomous systems and the two main
topics studied: software engineering for machine and deep learning and robust computer
vision and planning.

With regard to to software engineering for machine and deep learning, we believe it
is necessary to continue to expand and develop operational practices that can be directly
applied by practitioners. We already made efforts to expand the catalogue of practices
presented in Chapter 4 with practices regarding trustworthy development of deep learning
components [247]. Further efforts to expand this catalogue of practices to tackle other
engineering concerns should be paired with advanced techniques for measuring practice
adoption. More fundamentally, a definition of quality for machine and deep learning
components, compatible with previous quality definitions for traditional software, is needed.
Research along these lines will provide practitioners with comparative measurements and
benchmarks for the quality of their systems and propose step-wise improvements for
distinct quality goals. Our initial exploration on this subject showed that applying more
advanced data processing techniques for subjective adoption measurements coming from
survey data (e.g., using item response theory) can be successfully used as an assessment
and step-wise improvement instrument. Nevertheless, more concrete measurements that
can be applied to code, data, infrastructure or team processes are needed.

Through various interactions with practitioners, we also observed a lack of educational
materials in the area of software engineering for machine learning. Data scientists and
machine learning practitioners have distinct backgrounds - ranging from physics, astron-
omy, to computer science or engineering — and their curriculum does not always provide
education in software engineering. We made efforts to communicate the results gathered

128 9 CONCLUSIONS

in the first part of the thesis in a manner that is easily accessible to practitioners with
distinct backgrounds and believe this material can serve as support for future courses and
educational materials on the topic of software engineering for machine learning.

With regard to to the vulnerability of computer vision models to adversarial examples,
we observed that research in this area is, for the most part, driven by benchmarks. While
this approach helps to define comparative evaluation methods for adversarial robustness,
we believe a more fundamental approach is needed. The vulnerability to adversarial
examples shows the representations learned by neural networks are not consistent with
the real world, are not semantically consistent and not criticisable. We believe that (i)
using concepts from topology that can add structure to the internal representations or (ii)
using multi-modal learning to pair representations learned from different data types will
bridge the gap between the real world and the internal structure of neural networks. A first
step in this direction has shown that large scale multi-modal learning benefits adversarial
robustness [212]. However, it opens up a new range of adversarial attacks [89].

Since security is generally considered an arms race, we expect that clever attackers will
find new methods to generate adversarial examples, no matter how sophisticated machine
and deep learning models are and how well they perform on standard benchmarks. There-
fore, we believe research in adversarial machine learning should borrow more concepts
from traditional security, such as defining threat models, performing risk analyses and
deciding when the vulnerability to adversarial examples is an important security threat.

With regard to to planning algorithms, we observed that deep learning based planning
algorithms, such as the family of algorithms developed in deep reinforcement learning,
can achieve better performance when not limited by the constraints imposed for making
formal verification possible. However, such algorithms become impossible to formally
verify. From an engineering perspective, the trade-offs between using planning algorithms
that can or can not be formally verified should be discussed when the software architecture
of a system is defined. Methods such as the one presented in Chapter 3, which make
uncertainty a central decision driver, can be directly used or adapted depending on the use
case. From a research perspective, a line of work that we find interesting is learning state
representations from the environment, which can be later used in formal verification [9].
Our initial efforts in this direction showed it is possible to learn world representations for
formal verification for simple use cases. However, scaling this method to larger worlds is
left for future research.

Overall, we believe that the development of robust autonomous systems will always
have to span multiple aspects, corresponding to different stages of the development life
cycle. While there is no silver bullet to system or algorithmic robustness, the integration
of contributions from software engineering and machine learning provides promising
perspectives.

129

BIBLIOGRAPHY

REFERENCES

(1]

(2]

Towards Using Probabilistic Models to Design Software Systems with Inherent Uncer-
tainty - Supplementary materials, September 2020. Zenodo. doi: 10.5281/zenodo.
4700095. URL https://doi.org/10.5281/zenodo.4700095.

An Empirical Study of Software Architecture for Machine Learning - Supplementary
Material, February 2021. Zenodo. doi: 10.5281/zenodo.4564113. URL https://doi.org/
10.5281/zenodo.4564113.

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in
computer vision: A survey. IEEE Access, 2018.

Vijay Badrinarayanan Alex Kendall and Roberto Cipolla. Bayesian segnet: Model
uncertainty in deep convolutional encoder-decoder architectures for scene under-
standing. In Proceedings of the British Machine Vision Conference (BMVC), pages 1-12,
2017.

Algorithmia. Best practices in machine learning infrastructure. https://algorithmia.
com/blog/best-practices-in-machine-learning-infrastructure, 2019. [Online; ac-
cessed 22-03-2021].

Altexsoft. How to organize data labelling for machine learning. https://www.altexsoft.
com/blog/datascience/how-to-organize-data-labeling-for-machine-learning-\
approaches-and-tools/, 2018. [Online; accessed 22-03-2021].

Christopher Amato, Daniel S Bernstein, and Shlomo Zilberstein. Optimizing fixed-
size stochastic controllers for POMDPs and decentralized POMDPs. AAMAS, 21(3):
293-320, 2010.

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. Software
engineering for machine learning: A case study. In ICSE-SEIP, pages 291-300. IEEE,
2019.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Coté,
and R Devon Hjelm. Unsupervised state representation learning in Atari. In NeurIPS,
volume 32, pages 3104-3112, 2019.

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving
fast adversarial training. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, NeurIPS, volume 33, pages 16048-16059, 2020.

https://doi.org/10.5281/zenodo.4700095
https://doi.org/10.5281/zenodo.4564113
https://doi.org/10.5281/zenodo.4564113
https://algorithmia.com/blog/best-practices-in-machine-learning-infrastructure
https://algorithmia.com/blog/best-practices-in-machine-learning-infrastructure
https://www.altexsoft.com/blog/datascience/how-to-organize-data-labeling-for-machine-learning- \ approaches-and-tools/
https://www.altexsoft.com/blog/datascience/how-to-organize-data-labeling-for-machine-learning- \ approaches-and-tools/
https://www.altexsoft.com/blog/datascience/how-to-organize-data-labeling-for-machine-learning- \ approaches-and-tools/

130

BiBLIOGRAPHY

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by
gradient descent by gradient descent. In NeurIPS, pages 3981-3989, 2016.

Adina Aniculaesei, Jorg Grieser, Andreas Rausch, Karina Rehfeldt, and Tim War-
necke. Toward a holistic software systems engineering approach for dependable
autonomous systems. In International Workshop on Software Engineering for Al in
Autonomous Systems, pages 23-30. IEEE, 2018.

Ashraf Armoush. Design patterns for safety-critical embedded systems. PhD thesis,
RWTH Aachen University, 2010.

Anders Arpteg, Bjorn Brinne, Luka Crnkovic-Friis, and Jan Bosch. Software engi-
neering challenges of deep learning. In Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 50-59. IEEE, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples. ICML, 80:
274-283, 2018.

Cigdem Avci, Bedir T, and Ioannis Athanasiadis. Software architectures for big data:
a systematic literature review. Big Data Analytics, 5(1):1-53, 2020.

Felix Bachmann, Len Bass, and Mark Klein. Deriving architectural tactics: A step
toward methodical architectural design. Technical report, Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst, 2003.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

Shumeet Baluja and Ian Fischer. Learning to attack: Adversarial transformation
networks. In AAAI 2018.

Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. Doug Tygar.
Can machine learning be secure? In ASIACCS, pages 16—25. ACM, 2006.

Marco Barreno, Blaine Nelson, Anthony D. Joseph, and JD. Tygar. The security of
machine learning. Machine Learning, 81(2):121-148, 2010.

Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-
Wesley Professional, 2003.

Anatoliy Batyuk, Volodymyr Voityshyn, and Volodymyr Verhun. Software archi-
tecture design of the real-time processes monitoring platform. In International
Conference on Data Stream Mining & Processing, pages 98-101. IEEE, 2018.

Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. TFX: A tensorflow-
based production-scale machine learning platform. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1387-1395, 2017.

REFERENCES 131

[25]

(34]

Denis Baylor, Kevin Haas, Konstantinos Katsiapis, Sammy Leong, Rose Liu, Clemens
Menwald, Hui Miao, Neoklis Polyzotis, Mitchell Trott, and Martin Zinkevich. Con-
tinuous training for production ML in the tensorflow extended (TFX) platform. In
2019 USENIX Conference on Operational Machine Learning (OpML 19), pages 51-53,
2019.

Edmon Begoli and James Horey. Design principles for effective knowledge discovery
from big data. In Joint Working Conference on Software Architecture and European
Conference on Software Architecture, pages 215-218. IEEE, 2012.

Sagar Behere and Martin Torngren. A functional reference architecture for au-
tonomous driving. Information and Software Technology, 73:136-150, 2016.

Hrvoje Belani, Marin Vukovic, and Zeljka Car. Requirements engineering challenges
in building ai-based complex systems. In International Requirements Engineering
Conference Workshops (REW), pages 252-255. IEEE, 2019.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization
of a synaptic learning rule. In Optimality in Artificial and Biological Neural Networks,
pages 6—8. Univ. of Texas, 1992.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 84:317-331, 2018.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support
vector machines. ICML, page 1467-1474, 2012.

Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pattern
classifiers under attack. In TKDE, volume 26, pages 984-996. IEEE, 2013.

Alessandro Biondi, Federico Nesti, Giorgiomaria Cicero, Daniel Casini, and Giorgio
Buttazzo. A safe, secure, and predictable software architecture for deep learning in
safety-critical systems. IEEE Embedded Systems Letters, 12(3):78-82, 2019.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang,
et al. End to end learning for self-driving cars. arXiv:1604.07316, 2016.

Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualita-
tive research in psychology, 3(2):77-101, 2006.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D Sculley. The ML
test score: A rubric for ML production readiness and technical debt reduction. In
International Conference on Big Data (Big Data), pages 1123-1132. IEEE, 2017.

Cristiano Breuel. ML Ops: Machine learning as an engineered disciplined. https://
towardsdatascience.com/ml-ops-machine-learning-as-an-engineering-discipline\
-b86ca4874a3f, 2019. [Online; accessed 22-03-2021].

https://towardsdatascience.com/ml-ops-machine-learning-as-an-engineering-discipline \ -b86ca4874a3f
https://towardsdatascience.com/ml-ops-machine-learning-as-an-engineering-discipline \ -b86ca4874a3f
https://towardsdatascience.com/ml-ops-machine-learning-as-an-engineering-discipline \ -b86ca4874a3f

132

BiBLIOGRAPHY

(38]

[39]

[43]

[44]

[45]

[46]

[49]

Michael Briickner, Christian Kanzow, and Tobias Scheffer. Static prediction games
for adversarial learning problems. JMLR, 13(1):2617-2654, 2012.

Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples
from computational constraints. In ICML, pages 831-840, 2019.

David Budgen, Mark Turner, Pearl Brereton, and Barbara A Kitchenham. Using
mapping studies in software engineering. In PPIG, volume 8, pages 195-204, 2008.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In AlSec, pages 3-14. ACM, 2017.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In S&P, pages 39-57. IEEE, 2017.

Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks
on speech-to-text. In S&P Workshops, pages 1-7. IEEE, 2018.

Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr, Clay
Shields, David Wagner, and Wenchao Zhou. Hidden voice commands. In USENIX
Security, pages 513-530, 2016.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber,
Dimitris Tsipras, Ian J. Goodfellow, Aleksander Madry, and Alexey Kurakin. On
evaluating adversarial robustness. arXiv:1902.06705, 2019.

Steven Carr, Nils Jansen, Ralf Wimmer, Alexandru C. Serban, Bernd Becker, and Ufuk
Topcu. Counterexample-guided strategy improvement for pomdps using recurrent
neural networks. In IJCAIL pages 5532-5539, 2019.

Simon Chan. A design pattern for machine learning with Scala. https://www.youtube.
com/watch?v=hhXs4AOGRpl, 2020. [Online; accessed 22-03-2021].

Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia. Qualita-
tive analysis of POMDPs with temporal logic specifications for robotics applications.
In ICRA, pages 325-330, 2015.

Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. What is decidable
about partially observable Markov decision processes with w-regular objectives.
Journal of Computer and System Sciences, 82(5):878-911, 2016.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. JAIR, 16:321-357, 2002.

Marsha Chechik. Uncertain requirements, assurance and machine learning. In
International Requirements Engineering Conference (RE), pages 2-3. IEEE, 2019.

[52] Jiefeng Chen, Xi Wu, Yingyu Liang, and Somesh Jha. Improving adversarial robust-

ness by data-specific discretization. arXiv:1805.07816, 2018.

https://www.youtube.com/watch?v=hhXs4AOGRpI
https://www.youtube.com/watch?v=hhXs4AOGRpI

REFERENCES 133

[53]

[54]

[55]

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In AlSec, page 15-26. ACM, 2017.

Francois Chollet. Keras. https://keras.io, 2015.

Marcus Ciolkowski, Oliver Laitenberger, Sira Vegas, and Stefan Biffl. Practical
experiences in the design and conduct of surveys in empirical software engineering.
In Empirical methods and studies in software engineering, pages 104-128. Springer,
2003.

Cloudfactory. The ultimate guide to data labeling for ml. https://www.cloudfactory.
com/data-labeling-guide, 2019. [Online; accessed 22-03-2021].

Daniele Codetta-Raiteri and Luigi Portinale. Dynamic bayesian networks for fault
detection, identification, and recovery in autonomous spacecraft. IEEE Transactions
on Systems, Man, and Cybernetics, 45(1):13-24, 2014.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In IEEE CVPR, pages 3213-3223,
2016.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks. In ICML, pages 2206-2216, 2020.

Daniela S Cruzes and Tore Dyba. Recommended steps for thematic synthesis in
software engineering. In International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 275-284. IEEE, 2011.

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence
of adversaries. In NeurIPS, volume 31, 2018.

Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. Adversarial
classification. In KDD, page 99-108. ACM, 2004.

Elizamary de Souza Nascimento, Iftekhar Ahmed, Edson Oliveira, Marcio Piedade
Palheta, Igor Steinmacher, and Tayana Conte. Understanding development process
of machine learning systems: Challenges and solutions. In ESEM, pages 1-6. IEEE,
2019.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A
storm is coming: A modern probabilistic model checker. In CAV, volume 10427 of
LNCS, pages 592-600. Springer, 2017.

Google Devs. Testing and debugging in machine learning. https://developers.google.
com/machine-learning/testing-debugging/pipeline/production, 2019. [Online; ac-
cessed 22-03-2021].

https://keras.io
https://www.cloudfactory.com/data-labeling-guide
https://www.cloudfactory.com/data-labeling-guide
https://developers.google.com/machine-learning/testing-debugging/pipeline/production
https://developers.google.com/machine-learning/testing-debugging/pipeline/production

134

BiBLIOGRAPHY

[66]

[69]

Liliana Dobrica and Eila Niemela. A survey on software architecture analysis
methods. IEEE Transactions on Software Engineering, 28(7):638—653, 2002.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and
Pushmeet Kohli. A dual approach to scalable verification of deep networks. UAL 1
(2):1-38, 2018.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Se-
lecting empirical methods for software engineering research. In Guide to advanced
empirical software engineering, pages 285-311. Springer, 2008.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture. In ICCV, pages 2650-2658,
2015.

Naeem Esfahani and Sam Malek. Uncertainty in self-adaptive software systems. In
Software Engineering for Self-Adaptive Systems II, pages 214-238. Springer, 2013.

Naeem Esfahani, Sam Malek, and Kaveh Razavi. Guidearch: guiding the exploration
of architectural solution space under uncertainty. In ICSE, pages 43-52. IEEE, 2013.

Leire Etxeberria, Catia Trubiani, Vittorio Cortellessa, and Goiuria Sagardui.
Performance-based selection of software and hardware features under parameter
uncertainty. In International Conference on Quality of Software Architectures, pages
23-32, 2014.

[73] Julian Everett. Daisy architecture. https://datalanguage.com/blog/daisy-architecture,

[74]

[79]

2019. [Online; accessed 22-03-2021].

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world
attacks on deep learning visual classification. In CVPR, pages 1625-1634. IEEE, 2018.

George Fairbanks. Just enough software architecture: a risk-driven approach. Marshall
& Brainerd, 2010.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In ICML, pages 1126-1135, 2017.

Luciano Floridi. Establishing the rules for building trustworthy ai. Nature Machine
Intelligence, 1(6):261-262, 2019.

Alexandre Fréchette, Lars Kotthoff, Tomasz P. Michalak, Talal Rahwan, Holger H.
Hoos, and Kevin Leyton-Brown. Using the shapley value to analyze algorithm
portfolios. In AAAI pages 3397-3403, 2016.

Freeandopenmachinelearning. ML reference architecture. https:
//freeandopenmachinelearning.readthedocs.io/en/latest/architecture.html,
2020. [Online; accessed 22-03-2021].

https://datalanguage.com/blog/daisy-architecture
https://freeandopenmachinelearning.readthedocs.io/en/latest/architecture.html
https://freeandopenmachinelearning.readthedocs.io/en/latest/architecture.html

REFERENCES 135

(80]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

Ji Gao, Beilun Wang, Zeming Lin, Weilin Xu, and Yanjun Qi. Deepcloak: Masking
deep neural network models for robustness against adversarial samples. ICLR
Workshops, 2017.

David Garlan. Software engineering in an uncertain world. In FSE/SDP Workshop on
Future of Software Engineering Research, pages 125-128, 2010.

Vahid Garousi, Michael Felderer, and Mika V Méntyla. Guidelines for including
grey literature and conducting multivocal literature reviews in software engineering.
Information and Software Technology, 106:101-121, 2019.

Vahid Garousi, Michael Felderer, Mika V Méntyl4, and Austen Rainer. Benefitting
from the Grey Literature in Software Engineering Research, pages 385-413. Springer,
2020.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. Ai 2: Safety and robustness certification of neural
networks with abstract interpretation. In S&P, pages 3-18. IEEE, 2018.

Partha Ghosh, Arpan Losalka, and Michael J. Black. Resisting adversarial attacks
using gaussian mixture variational autoencoders. In AAAIL pages 541-548, 2018.

Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E. Dahl.
Motivating the rules of the game for adversarial example research. arXiv:1807.06732,
2018.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu,
Martin Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv:1801.02774, 2018.

Amir Globerson and Sam Roweis. Nightmare at test time: robust learning by feature
deletion. ICML, pages 353-360, 2006.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig
Schubert, Alec Radford, and Chris Olah. Multimodal neurons in artificial neural
networks. Distill, 6(3):e30, 2021.

Micah Goldblum, Liam Fowl, and Tom Goldstein. Robust few-shot learning with
adversarially queried meta-learners. arXiv:1910.00982, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv:1412.6572, 2014.

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick
McDaniel. Adversarial perturbations against deep neural networks for malware
classification. arXiv:1606.04435, 2016.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel. On the (statistical) detection of adversarial examples. arXiv:1702.06280,
2017.

136

BiBLIOGRAPHY

[94]

Samantha Guerriero, Barbara Caputo, and Thomas Mensink. Deep nearest class
mean classifiers. In ICML, Worskhop Track, 2018.

[95] Joy Paul Guilford. Psychometric methods. 1954.

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Counter-
ing adversarial images using input transformations. ICLR, pages 1-12, 2018.

Mark Haakman, Luis Cruz, Hennie Huijgens, and Arie van Deursen. Ai lifecycle
models need to be revised. an exploratory study in fintech. arXiv:2010.02716, 2020.

Sofie Haesaert, Petter Nilsson, Cristian Ioan Vasile, Rohan Thakker, Ali-akbar Agha-
mohammadi, Aaron D. Ames, and Richard M. Murray. Temporal logic control of
POMDPs via label-based stochastic simulation relations. In ADHS, volume 51(16),
pages 271-276. Elsevier, 2018.

Neil B Harrison and Paris Avgeriou. How do architecture patterns and tactics
interact? a model and annotation. Journal of Systems and Software, 83(10):1735-1758,
2010.

Matthew Hausknecht and Peter Stone. Deep recurrent g-learning for partially
observable MDPs. arXiv:1507.06527, 2015.

Milos Hauskrecht. Value-function approximations for partially observable Markov
decision processes. JAIR, 13:33-94, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, pages 770-778. IEEE, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness
to common corruptions and perturbations. ICLR, pages 1-16, 2019.

David Herron. Principled machine learning: Practices and tools for efficient collabo-
ration. https://dev.to/robogeek/principled-machine-learning-4eho, 2019. [Online;
accessed 22-03-2021].

Sibylle Hess, Wouter Duivesteijn, and Decebal Mocanu. Softmax-based classification
is k-means clustering: Formal proof, consequences for adversarial attacks, and
improvement through centroid based tailoring. arXiv:2001.01987, 2020.

High-Level Expert Group on Al Ethics guidelines for trustworthy Al https://ec.
europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai, 2019.
[Online; accessed 22-03-2021].

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735-1780, 1997.

[108] Joeri Hofmans, Peter Theuns, Sven Baekelandt, Olivier Mairesse, Niels Schillewaert,

and Walentina Cools. Bias and changes in perceived intensity of verbal qualifiers
effected by scale orientation. Survey Research Methods, 1(2):97-108, 2007.

https://dev.to/robogeek/principled-machine-learning-4eho
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

REFERENCES 137

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Angela Horneman, Andrew Mellinger, and Ipek Ozkaya. Ai engineering: 11 founda-
tional practices. Technical report, Carnegie Mellon University Pittsburgh, 2020.

Siw Elisabeth Hove and Bente Anda. Experiences from conducting semi-structured
interviews in empirical software engineering research. In International Software
Metrics Symposium, pages 10-20. IEEE, 2005.

Weiwei Hu and Ying Tan. Generating adversarial malware examples for black-box
attacks based on gan. arXiv:1702.05983, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In CVPR, pages 4700-4708. IEEE, 2017.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification
of deep neural networks. In CAV (1), volume 10426 of LNCS, pages 3-29. Springer,
2017.

Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube, Kaoutar
El Maghraoui, Anupama Murthi, and Punleuk Oum. Modelops: Cloud-based lifecycle
management for reliable and trusted ai. In 2019 IEEE International Conference on
Cloud Engineering (IC2E), pages 113-120. IEEE, 2019.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial
attacks with limited queries and information. ICML, pages 2137-2146, 2018.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,
and Aleksander Madry. Adversarial examples are not bugs, they are features. In
NeurlIPS, pages 125-136, 2019.

Fuyuki Ishikawa and Nobukazu Yoshioka. How do engineers perceive difficulties in
engineering of machine-learning systems?: questionnaire survey. In Proceedings of
the Joint 7th International Workshop on Conducting Empirical Studies in Industry and
6th International Workshop on Software Engineering Research and Industrial Practice,
pages 2-9. IEEE, 2019.

ISO. Systems and software engineering — systems and software quality requirements
and evaluation. Technical report, Technical Report. ISO/IEC 25010, 2011.

[119] Jorn-Henrik Jacobsen, Jens Behrmann, Nicholas Carlini, and Nicolas Florian Tramer.

[120]

[121]

Exploiting excessive invariance caused by norm-bounded adversarial robustness.
ICLR, pages 140-155, 2019.

Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Ben-
gio. The one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation. In IEEE CVPR Workshops, pages 11-19, 2017.

Charles Jin and Martin Rinard. Manifold regularization for adversarial robustness.
arXiv:2003.04286, 2020.

138

BiBLIOGRAPHY

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Jason Jo and Yoshua Bengio. Measuring the tendency of CNNs to learn surface
statistical regularities. arXiv:1711.11561, 2017.

Anna Jobin, Marcello Ienca, and Effy Vayena. The global landscape of ai ethics
guidelines. Nature Machine Intelligence, 1(9):389-399, 2019.

Per John. Software development best practices in a deep learning environment. https:
//towardsdatascience.com/software-development-best-practices-in-a-deep-\
learning-environment-a1769e9859b1, 2019. [Online; accessed 22-03-2021].

Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore Winterer,
Joost-Pieter Katoen, and Bernd Becker. Finite-state controllers of POMDPs via
parameter synthesis. In UAL 2018.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Artif. Intell., 101(1):99-134, 1998.

Davinder Kaur, Suleyman Uslu, and Arjan Durresi. Requirements for trustwor-
thy artificial intelligence—a review. In International Conference on Network-Based
Information Systems, pages 105-115. Springer, 2020.

Rick Kazman, S Jeromy Carriére, and Steven G Woods. Toward a discipline of
scenario-based architectural engineering. Annals of Software Engineering, 9(1-2):
5-33, 2000.

Michael J Kearns, Yishay Mansour, and Andrew Y Ng. Approximate planning in
large POMDPs via reusable trajectories. In NeurIPS, pages 1001-1007, 2000.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision? In NeurlIPS, pages 5574-5584, 2017.

Foutse Khomh, Bram Adams, Jinghui Cheng, Marios Fokaefs, and Giuliano Antoniol.
Software engineering for machine-learning applications: The road ahead. IEEE
Software, 35(5):81-84, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
ICLR, 2015.

Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic
literature reviews in software engineering. 2007.

Barbara A Kitchenham. Systematic review in software engineering: where we are
and where we should be going. In International Workshop on Evidential Assessment
of Software Technologies, pages 1-2, 2012.

Barbara A Kitchenham and Shari L Pfleeger. Personal opinion surveys. In Guide to
advanced empirical software engineering, pages 63-92. Springer, 2008.

Barbara A Kitchenham and Shari Lawrence Pfleeger. Principles of survey research
part 2: designing a survey. ACM SIGSOFT Software Engineering Notes, 27(1):18-20,
2002.

https://towardsdatascience.com/software-development-best-practices-in-a-deep- \ learning-environment-a1769e9859b1
https://towardsdatascience.com/software-development-best-practices-in-a-deep- \ learning-environment-a1769e9859b1
https://towardsdatascience.com/software-development-best-practices-in-a-deep- \ learning-environment-a1769e9859b1

REFERENCES 139

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]
[150]

[151]

[152]

Aleksander Kolcz and Choon Hui Teo. Feature weighting for improved classifier
robustness. In CEAS’09: Sixth Conference on Email and Anti-spam, 2009.

Bettina Konighofer, Roderick Bloem, Sebastian Junges, Nils Jansen, and Alex Serban.
Safe reinforcement learning using probabilistic shields. In International Conference
on Concurrency Theory: 31st CONCUR 2020: Vienna, Austria (Virtual Conference).
Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020.

Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and Joseph
Keshet. Adversarial examples on discrete sequences for beating whole-binary mal-
ware detection. arXiv:1802.04528, 2018.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. 2009.

Philippe Kruchten. What do software architects really do? Journal of Systems and
Software, 81(12):2413-2416, 2008.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at
scale. arXiv:1611.01236, 2016.

Hiroshi Kuwajima, Hirotoshi Yasuoka, and Toshihiro Nakae. Engineering problems
in machine learning systems. Machine Learning, 109(5):1103-1126, 2020.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification
of probabilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585-591.
Springer, 2011.

Hugo Larochelle, Yoshua Bengio, Jérome Louradour, and Pascal Lamblin. Exploring
strategies for training deep neural networks. JMLR, 10(Jan), 2009.

James Le. 10 best practices for deep learning. https://nanonets.com/blog/
10-best-practices-deep-learning/, 2019. [Online; accessed 22-03-2021].

Hyeungill Lee, Sungyeob Han, and Jungwoo Lee. Generative adversarial trainer:
Defense to adversarial perturbations with gan. arXiv:1705.03387, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. JMLR, 17(1):1334-1373, 2016.

Ke Li and Jitendra Malik. Learning to optimize. arXiv:1606.01885, 2016.
Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv:1703.00441, 2017.

Li Erran Li, Eric Chen, Jeremy Hermann, Pusheng Zhang, and Luming Wang. Scaling
machine learning as a service. In International Conference on Predictive Applications
and APIs, pages 14-29, 2017.

Shasha Li, Ajaya Neupane, Sujoy Paul, Chengyu Song, Srikanth V. Krishnamurthy,
Amit K. Roy Chowdhury, and Ananthram Swami. Adversarial perturbations against
real-time video classification systems. arXiv:1807.00458, 2018.

https://nanonets.com/blog/10-best-practices-deep-learning/
https://nanonets.com/blog/10-best-practices-deep-learning/

140

BiBLIOGRAPHY

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and James Mac-
Glashan. Environment-independent task specifications via GLTL. arXiv preprint
1704.04341, 2017.

Hanyan Liu, Samuel Eksmo, Johan Risberg, and Regina Hebig. Emerging and chang-
ing tasks in the development process for machine learning systems. In International
Conference on Software and System Processes, pages 125-134, 2020.

Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and Alec
Jacobson. Beyond pixel norm-balls: Parametric adversaries using an analytically
differentiable renderer. ICLR, 2018.

Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor CM Leung. A survey
on security threats and defensive techniques of machine learning: A data driven
view. IEEE Access, 6:12103-12117, 2018.

Daniel Lowd and Christopher Meek. Adversarial learning. In KDD, pages 641-647.
ACM, 2005.

Jiajun Lu, Theerasit Issaranon, and David A. Forsyth. Safetynet: Detecting and
rejecting adversarial examples robustly. In ICCV, pages 446-454. IEEE, 2017.

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala
Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local
explanations to global understanding with explainable ai for trees. Nature machine
intelligence, 2(1):2522-5839, 2020.

Lucy Ellen Lwakatare, Aiswarya Raj, Jan Bosch, Helena Holmstrom Olsson, and Ivica
Crnkovic. A taxonomy of software engineering challenges for machine learning
systems: An empirical investigation. In International Conference on Agile Software
Development, pages 227-243. Springer, 2019.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and infinite-horizon partially observable Markov decision problems. In
AAAI pages 541-548, 1999.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. ICLR,
2018.

Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. A classification frame-
work of uncertainty in architecture-based self-adaptive systems with multiple quality
requirements. In Managing Trade-Offs in Adaptable Software Architectures, pages
45-77. Elsevier, 2017.

Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray.
Metric learning for adversarial robustness. In NeurIPS, pages 480-491, 2019.

REFERENCES 141

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

David Maplesden, Ewan Tempero, John Hosking, and John C Grundy. Performance
analysis for object-oriented software: A systematic mapping. IEEE Transactions on
Software Engineering, 41(7):691-710, 2015.

ISO May. Systems and software engineering—architecture description. Technical
report, Technical Report. ISO/IEC/IEEE 42010, 2011.

Richard McElreath. Statistical rethinking: A Bayesian course with examples in R and
Stan. CRC press, 2020.

Gary McGraw, Richie Bonett, Harold Figueroa, and Victor Shepardson. Security
engineering for machine learning. Computer, 52(8):54-57, 2019.

Gary McGraw, Harold Figueroa, Victor Shepardson, and Richie Bonett. An archi-
tectural risk analysis of ml systems: Toward more secure ml. Berryville Institute of
Machine Learning, Clarke County, VA., 23, 2020.

Indika Meedeniya, Aldeida Aleti, and Lars Grunske. Architecture-driven reliability
optimization with uncertain model parameters. Journal of Systems and Software, 85
(10):2340-2355, 2012.

V.M. Megler. Managing machine learning projects. https://d1.awsstatic.com/
whitepapers/aws-managing-ml-projects.pdf, 2019. [Online; accessed 22-03-2021].

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial
examples. In ACM CCS, pages 135-147. ACM, 2017.

Pradeep Menon. Demystifying data lake architecture. https://www.
datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture, 2020.
[Online; accessed 22-03-2021].

Pascal Mettes, Elise van der Pol, and Cees Snoek. Hyperspherical prototype networks.
In NeurlPS, pages 1487-1497, 20109.

[175] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On

[176]

[177]

[178]

[179]

detecting adversarial perturbations. ICLR, 2017.

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling. Learning
finite-state controllers for partially observable environments. In UAL pages 427-436,
1999.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In NeurIPS, pages
3111-3119, 2013.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpre-
tation for provably robust neural networks. ICML, pages 35783586, 2018.

Tom M. Mitchell et al. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):
870-877, 1997.

https://d1.awsstatic.com/whitepapers/aws-managing-ml-projects.pdf
https://d1.awsstatic.com/whitepapers/aws-managing-ml-projects.pdf
https://www.datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture
https://www.datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture

142

BiBLIOGRAPHY

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii.
Distributional smoothing with virtual adversarial training. arXiv:1507.00677, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. In CVPR, pages 1765-1773. IEEE, 2017.

Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen,
and Ling Shao. Adversarial defense by restricting the hidden space of deep neural
networks. In ICCV, pages 3385-3394, 2019.

Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversarial
perturbations on deep neural networks. In CVPR Workshops, volume 2, 2017.

Elizamary Nascimento, Anh Nguyen-Duc, Ingrid Sundbg, and Tayana Conte. Soft-
ware engineering for artificial intelligence and machine learning software: A sys-
tematic literature review. arXiv:2011.03751, 2020.

National Science and Technology Council (US). Select Committee on Artificial Intel-
ligence. The national artificial intelligence research and development strategic plan:
2019 update. https://www.nitrd.gov/news/National-Al-RD-Strategy-2019.aspx, 2019.
[Online; accessed 22-03-2021].

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In CVPR, pages 427-436.
IEEE, 2015.

Phuoc Nguyen and Dat Tran. Repulsive-svdd classification. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 277-288. Springer, 2015.

Yasuharu Nishi, Satoshi Masuda, Hideto Ogawa, and Keiji Uetsuki. A test architec-
ture for machine learning product. In International Conference on Software Testing,
Verification and Validation Workshops, pages 273-278. IEEE, 2018.

Gethin Norman, David Parker, and Xueyi Zou. Verification and control of partially
observable probabilistic systems. Real-Time Systems, 53(3):354-402, 2017.

Linda Northrop, Ipek Ozkaya, George Fairbanks, and Michael Keeling. Designing
the software systems of the future. ACM SIGSOFT Software Engineering Notes, 43(4):
28-30, 2019.

Lawrence A Palinkas, Sarah M Horwitz, Carla A Green, et al. Purposeful sampling for
qualitative data collection and analysis in mixed method implementation research.
Administration and policy in mental health and mental health services research, 42(5):
533-544, 2015.

Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu. Rethinking
softmax cross-entropy loss for adversarial robustness. ICLR, 2019.

https://www.nitrd.gov/news/National-AI-RD-Strategy-2019.aspx

REFERENCES 143

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

Tianyu Pang, Kun Xu, and Jun Zhu. Mixup inference: Better exploiting mixup to
defend adversarial attacks. ICLR, 2019.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of Operations Research, 12(3):441-450, 1987.

Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confi-
dent, interpretable and robust deep learning. arXiv:1803.04765, 2018.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman,
Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, et al. Technical
report on the cleverhans v2. 1.0 adversarial examples library. arXiv:1610.00768, 2016.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial samples.
arXiv:1605.07277, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
ASIACCS, pages 506-519. ACM, 2017.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P. Wellman. Sok:
Security and privacy in machine learning. In EuroS&P, pages 399-414. IEEE, 2018.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for
deep reinforcement learning. In ICLR, 2018.

Razvan Pascanu, Caglar Giil¢cehre, Kyunghyun Cho, and Yoshua Bengio. How to
construct deep recurrent neural networks. ICLR, 2014.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier, 2014.

Diego Perez-Palacin and Raffaela Mirandola. Uncertainties in the modeling of
self-adaptive systems: A taxonomy and an example of availability evaluation. In
ACMY/SPEC International Conference on Performance Engineering, pages 3-14, 2014.

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In IJCAL pages 1025-1032, 2003.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviére, Alina
Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving
reproducibility in machine learning research (a report from the NeurIPS 2019 repro-
ducibility program). arXiv:2003.12206, 2020.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE Computer
Society, 1977. doi: 10.1109/SFCS.1977.32.

Neoklis Polyzotis, Martin Zinkevich, Sudip Roy, Eric Breck, and Steven Whang. Data
validation for machine learning. Machine Learning and Systems, 1:334-347, 2019.

144

BiBLIOGRAPHY

[209]

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative
adversarial perturbations. In CVPR, pages 4422-4431. IEEE, 2018.

[210] Jennifer Prendki. The curse of big data labeling and three ways to

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

solve it https://aws.amazon.com/blogs/apn/the-curse-of-big-data-\
labeling-and-three-ways-to-solve-it/, 2018. [Online; accessed 22-03-2021].

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdoménech Badia, Oriol
Vinyals, Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic
control. In ICML, volume 70 of Proc. of Machine Learning Research, pages 2827-2836.
PMLR, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. arXiv:2103.00020,
2021.

Md Saidur Rahman, Emilio Rivera, Foutse Khomh, Yann-Gaél Guéhéneuc, and Bernd
Lehnert. Machine learning software engineering in practice: An industrial case
study. arXiv:1906.07154, 2019.

Adnan Siraj Rakin, Zhezhi He, Boqing Gong, and Deliang Fan. Blind pre-processing:
A robust defense method against adversarial examples. arXiv:1802.01549, 2018.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.
ICLR, 2017.

Lars Reimann and Guinter Kniesel-Wiinsche. Achieving guidance in applied machine
learning through software engineering techniques. In International Conference on
Art, Science, and Engineering of Programming, pages 7-12, 2020.

Leslie Rice, Eric Wong, and] Zico Kolter. Overfitting in adversarially robust deep
learning. ICML, pages 8093-8104, 2020.

Gordon Rios. Patterns (and anti-patterns) for developing machine learning systems.
https://www.usenix.org/legacy/events/sysml08/tech/rios_talk.pdfl, 2019. [Online;
accessed 22-03-2021].

Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection
for machine learning: a big data-ai integration perspective. IEEE Transactions on
Knowledge and Data Engineering, 2019.

Bernd Rohrmann. Verbal qualifiers for rating scales: Sociolinguistic considerations
and psychometric data. University of Melbourne, Australia, 2007.

Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-
box end-to-end attack against rnns and other api calls based malware classifiers.
arXiv:1707.05970, 2017.

https://aws.amazon.com/blogs/apn/the-curse-of-big-data- \ labeling-and-three-ways-to-solve-it/
https://aws.amazon.com/blogs/apn/the-curse-of-big-data- \ labeling-and-three-ways-to-solve-it/
https://www.usenix.org/legacy/events/sysml08/tech/rios_talk.pdfl

REFERENCES 145

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

Roshanak Roshandel, Nenad Medvidovic, and Leana Golubchik. A bayesian model for
predicting reliability of software systems at the architectural level. In International
Conference on the Quality of Software Architectures, pages 108—126. Springer, 2007.

Alkis Polyzotis Martin A. Zinkevich Steven Whang Sudip Roy.
Data management challenges in production machine learning.
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/
45a9dcf23dbdfa24dbced358f825636c58518afa.pdf, 2017. [Online; accessed
22-03-2021].

Benjamin IP. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph, Shing-hon
Lau, Satish Rao, Nina Taft, and JD. Tygar. Antidote: understanding and defending
against poisoning of anomaly detectors. In SIGCOMM, pages 1-14. ACM, 2009.

Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J. Fleet. Adversarial manipula-
tion of deep representations. arXiv:1511.05122, 2015.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry.
Do adversarially robust imagenet models transfer better? NeurIPS, 33, 2020.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy
Lillicrap. Meta-learning with memory-augmented neural networks. In ICML, pages
1842-1850, 2016.

Adam Santoro, Ryan Faulkner, David Raposo, Jack W. Rae, Mike Chrzanowski,
Theophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy P.
Lillicrap. Relational recurrent neural networks. In NeurIPS, pages 7310-7321, 2018.

Carlton Sapp. Preparing and architecting for machine learning. https://www.gartner.
com, 2017. [Online; accessed 22-03-2021].

Danilo Sato, Arif Wider, and Christoph Windheuser. Continuous delivery for ma-
chine learning. https://martinfowler.com/articles/cd4ml.html, 2019. [Online; ac-
cessed 22-03-2021].

Leonard J Savage. The foundations of statistics. Courier Corporation, 1972.

Max Scheerer, Jonas Klamroth, Ralf Reussner, and Bernhard Beckert. Towards classes
of architectural dependability assurance for machine-learning-based systems. In
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pages 31-37, 2020.

PB Schiilkop, Chris Burgest, and Vladimir Vapnik. Extracting support data for a
given task. In Proceedings, First International Conference on Knowledge Discovery &
Data Mining. AAAI Press, pages 252-257, 1995.

[234] Jirgen Schmidhuber. A neural network that embeds its own meta-levels. In ICNN,

pages 407-412. IEEE, 1993.

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45a9dcf23dbdfa24dbced358f825636c58518afa.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45a9dcf23dbdfa24dbced358f825636c58518afa.pdf
https://www.gartner.com
https://www.gartner.com
https://martinfowler.com/articles/cd4ml.html

146

BiBLIOGRAPHY

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander
Madry. Adversarially robust generalization requires more data. NeurIPS, 2018.

David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison.
Hidden technical debt in machine learning systems. In NeurIPS, pages 2503-2511,
2015.

Bruno Sena, Ana Paula Allian, and Elisa Yumi Nakagawa. Characterizing big data
software architectures: a systematic mapping study. In Proceedings of the 11th
Brazilian Symposium on Software Components, Architectures, and Reuse, pages 1-10,
2017.

Bruno Sena, Lina Garcés, Ana Paula Allian, and Elisa Yumi Nakagawa. Investigating
the applicability of architectural patterns in big data systems. In Conference on
Pattern Languages of Programs, pages 1-15, 2018.

Alex Serban and Joost Visser. Adapting software architectures to machine learning
challenges. In IEEE International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 2022.

Alex Serban, Erik Poll, and Joost Visser. Deep repulsive prototypes for adversarial
robustness. arXiv:1903.08428, 2019.

Alex Serban, Erik Poll, and Joost Visser. A standard driven software architecture
for fully autonomous vehicles. Journal of Automotive Software Engineering, 1:20-33,
2020.

Alex Serban, Erik Poll, and Joost Visser. Adversarial examples on object recognition:
a comprehensive survey. ACM CSUR, 53(3):1-38, 2020.

Alex Serban, Erik Poll, and Joost Visser. Learning to learn from mistakes: Robust
optimization for adversarial noise. In International Conference on Artificial Neural
Networks, pages 467-478. Springer, 2020.

Alex Serban, Erik Poll, and Joost Visser. Towards using probabilistic models to design
software systems with inherent uncertainty. In European Conference on Software
Architecture, pages 89-97. Springer, 2020.

Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. Adoption and effects
of software engineering best practices in machine learning. ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1-12,
2020.

Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. Adoption and Effects
of Software Engineering Best Practices in Machine Learning - Supplementary Material.
Zenodo, Jul 2020. doi: 10.5281/zenodo.3946453.

REFERENCES 147

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

Alex Serban, Koen van der Blom, Holger Hoos, and Joost Visser. Practices for
engineering trustworthy machine learning applications. In IEEE Workshop on Al
Engineering WAIN’21@ICSE’21. IEEE, 2021.

Alexandru Constantin Serban. Designing safety critical software systems to manage
inherent uncertainty. In IEEE International Conference on Software Architectue (ICSA),
pages 246-249. IEEE, 2019.

Alexandru Constantin Serban and Erik Poll. Adversarial examples - a complete
characterisation of the phenomenon. arXiv:1810.01185, 2018.

Alexandru Constantin Serban, Erik Poll, and Joost Visser. A security analysis of the
etsi its vehicular communications. In International Conference on Computer Safety,
Reliability, and Security, pages 365-373. Springer, 2018.

Alexandru Constantin Serban, Erik Poll, and Joost Visser. A standard driven software
architecture for fully autonomous vehicles. In 2018 IEEE International Conference on
Software Architecture Companion (ICSA-C), pages 120-127. IEEE, 2018.

Alexandru Constantin Serban, Erik Poll, and Joost Visser. Tactical safety reasoning.
a case for autonomous vehicles. In IEEE 87th Vehicular Technology Conference (VIC
Spring), pages 1-5. IEEE, 2018.

Roman Seyffarth. Machine learning: Moving from experiments to production. https:
//blog.codecentric.de/en/2019/03/machine-learning-experiments-production/, 2019.
[Online; accessed 22-03-2021].

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for
free! NeurIPS, 32, 2019.

Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration,
delivery and deployment: a systematic review on approaches, tools, challenges and
practices. IEEE Access, 5:3909-3943, 2017.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recognition. In SIGSAC,
pages 1528-1540. ACM, 2016.

David Silver and Joel Veness. Monte-carlo planning in large POMDPs. In NeurIPS,
pages 2164-2172, 2010.

Leslie N Smith. Cyclical learning rates for training neural networks. In IEEE WACYV,
pages 464-472. IEEE, 2017.

Leslie N Smith. A useful taxonomy for adversarial robustness of neural networks.
arXiv:1910.10679, 2019.

https://blog.codecentric.de/en/2019/03/machine-learning-experiments-production/
https://blog.codecentric.de/en/2019/03/machine-learning-experiments-production/

148

BiBLIOGRAPHY

[261]

Trey Smith and Reid Simmons. Heuristic search value iteration for POMDPs. In UAL
pages 520-527, 2004.

[262] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot

[263]

[264]

learning. In NeurlPS, pages 4077-4087, 2017.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman.
PixelDefend: Leveraging generative models to understand and defend against adver-
sarial examples. ICLR, 2018.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is
robustness the cost of accuracy?-a comprehensive study on the robustness of 18
deep image classification models. In ECCV, pages 644-661, 2018.

[265] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5):
828-841, 2019.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation.
In NeurlPS, pages 1057-1063, 2000.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv:1312.6199, 2013.

Nisha Talagala. Operational machine learning. https://www.kdnuggets.com/2018/
04/operational-machine-learning-successful-mlops.htmls, 2018. [Online; accessed
22-03-2021].

Antony Tang, Ann Nicholson, Yan Jin, and Jun Han. Using bayesian belief networks
for change impact analysis in architecture design. Journal of Systems and Software,
80(1):127-148, 2007.

Marvin Teichmann, Michael Weber, Marius Zoellner, Roberto Cipolla, and Raquel
Urtasun. Multinet: Real-time joint semantic reasoning for autonomous driving. In
2018 IEEE Intelligent Vehicles Symposium (IV), pages 1013-1020. IEEE, 2018.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. The MIT
Press, 2005.

Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance
cameras: adversarial patches to attack person detection. CVPR Workshops, 2019.

Luis Torgo, Rita P Ribeiro, Bernhard Pfahringer, and Paula Branco. Smote for
regression. In Portuguese conference on artificial intelligence, pages 378-389. Springer,
2013.

Florian Trameér, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses.
arXiv:1705.07204, 2017.

https://www.kdnuggets.com/2018/04/operational-machine-learning-successful-mlops.html
https://www.kdnuggets.com/2018/04/operational-machine-learning-successful-mlops.html

REFERENCES 149

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On
adaptive attacks to adversarial example defenses. arXiv:2002.08347, 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. ICLR, 2018.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. ICLR, 2019.

Leslie G. Valiant. A theory of the learnable. In ACM Symp. on Theory of Computing.
ACM, 1984.

Tom van der Weide, Dimitris Papadopoulos, Oleg Smirnov, Michal Zielinski, and Tim
van Kasteren. Versioning for end-to-end machine learning pipelines. In Proceedings
of the 1st Workshop on Data Management for End-to-End Machine Learning, pages
1-9, 2017.

Nikos Vlassis, Michael L. Littman, and David Barber. On the computational complex-
ity of stochastic controller optimization in POMDPs. ACM Trans. on Computation
Theory, 4(4):12:1-12:8, 2012.

Erwin Walraven and Matthijs Spaan. Accelerated vector pruning for optimal POMDP
solvers. In AAAI pages 3672-3678, 2017.

Zhiyuan Wan, Xin Xia, David Lo, and Gail C Murphy. How does machine learning
change software development practices? IEEE Transactions on Software Engineering,
2019.

Heng Wang, Bin Wang, Bingbing Liu, Xiaoli Meng, and Guanghong Yang. Pedes-
trian recognition and tracking using 3d lidar for autonomous vehicle. Robotics and
Autonomous Systems, 88:71-78, 2017.

Jigang Wang, Predrag Neskovic, and Leon N Cooper. Pattern classification via single
spheres. In International Conference on Discovery Science, pages 241-252. Springer,
2005.

Yue Wang, Swarat Chaudhuri, and Lydia E. Kavraki. Bounded policy synthesis for
pomdps with safe-reachability objectives. In AAMAS, pages 238-246. Int’]l Foundation
for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2018.

Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaél Guéhéneuc.
Studying software engineering patterns for designing machine learning systems. In
10th International Workshop on Empirical Software Engineering in Practice (IWESEP),
pages 49-495. IEEE, 2019.

Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaél Guéhéneuc. Ma-
chine learning architecture and design patterns. http://www.washi.cs.waseda.ac.jp/
wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf, 2019. [Online;
accessed 22-03-2021].

http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf
http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf

150

BiBLIOGRAPHY

[288]

[289]

[290]

[291]

[292]

[293]

[294]

[295]

[296]

[297]

[298]

[299]

[300]

[301]

[302]

Xingxing Weli, Siyuan Liang, Xiaochun Cao, and Jun Zhu. Transferable adversarial
attacks for image and video object detection. arXiv:1811.12641, 2018.

Danny Weyns. Software engineering of self-adaptive systems. In Handbook of
Software Engineering, pages 399-443. Springer, 2019.

Danny Weyns, Nelly Bencomo, Radu Calinescu, Javier Camara, Carlo Ghezzi, Vin-
cenzo Grassi, Lars Grunske, Paola Inverardi, Jean-Marc Jezequel, Sam Malek, et al.
Perpetual assurances for self-adaptive systems. In Software Engineering for Self-
Adaptive Systems III. Assurances, pages 31-63. Springer, 2017.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez
Colmenarejo, Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned
optimizers that scale and generalize. In ICML, pages 3751-3760, 2017.

Daan Wierstra, Alexander Forster, Jan Peters, and Jirgen Schmidhuber. Solving
deep memory POMDPs with recurrent policy gradients. In ICANN, pages 697-706.
Springer, 2007.

Ralf Wimmer, Nils Jansen, Erika Abraham, Joost-Pieter Katoen, and Bernd Becker.
Minimal counterexamples for linear-time probabilistic verification. Theoretical
Computer Science, 549:61-100, 2014.

Ridiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process model
for data mining. In Proceedings of the 4th international conference on the practical
applications of knowledge discovery and data mining, pages 29-39. Springer, 2000.

David H Wolpert and William G Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67-82, 1997.

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the
convex outer adversarial polytope. ICML, pages 5286—5295, 2018.

Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples
via projected sinkhorn iterations. arXiv:1902.07906, 2019.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adver-
sarial training. ICLR, 2020.

Eoin Woods. Operational: The forgotten architectural view. IEEE Software, 33(3):
20-23, 2016.

Eoin Woods. Software architecture in a changing world. IEEE Software, 33(6):94-97,
2016.

Carole-Jean Wu, David Brooks, Kevin Chen, et al. Machine learning at Facebook:
Understanding inference at the edge. In International Symposium on High Performance
Computer Architecture, pages 331-344. IEEE, 2019.

Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V Le. Smooth
adversarial training. arXiv preprint arXiv:2006.14536, 2020.

REFERENCES 151

[303]

[304]

[305]

[306]

[307]

[308]

[309]

Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-
learning. arXiv:1806.03316, 2018.

Haruki Yokoyama. Machine learning system architectural pattern for improving
operational stability. In International Conference on Software Architecture Companion
(ICSA-C), pages 267-274. IEEE, 2019.

A Steven Younger, Sepp Hochreiter, and Peter R Conwell. Meta-learning with
backpropagation. In IJCNN, volume 3. IEEE, 2001.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only
propagate once: Accelerating adversarial training via maximal principle. NeurIPS,
2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and
Michael I Jordan. Theoretically principled trade-off between robustness and accuracy.
ICML, pages 7472-7482, 2019.

Hongyu Zhang and Stan Jarzabek. A bayesian network approach to rational ar-
chitectural design. International Journal of Software Engineering and Knowledge
Engineering, 15(04):695-717, 2005.

Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit S Dhillon, and
Cho-Jui Hsieh. The limitations of adversarial training and the blind-spot attack.
ICLR, 2019.

[310] Ji Zhang and Sanjiv Singh. LOAM: LIDAR odometry and mapping in real-time. In

[311]

[312]

[313]

[314]

Robotics: Science and Systems, 2014.

Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learning testing: Survey,
landscapes and horizons. IEEE Transactions on Software Engineering, 2020.

Xufan Zhang, Yilin Yang, Yang Feng, and Zhenyu Chen. Software engineering
practice in the development of deep learning applications. arXiv:1910.03156, 2019.

Martin Zinkevich. Rules of machine learning: Best practices for ML engineering.
https://developers.google.com/machine-learning/guides/rules-of-ml, 2019. [Online;
accessed 22-03-2021].

Martin Zinkevich. Rules of machine learning: Best practices for ML engineering.
https://developers.google.com/machine-learning/guides/rules-of-ml/, 2020. [Online;
accessed 22-03-2021].

https://developers.google.com/machine-learning/guides/rules-of-ml
https://developers.google.com/machine-learning/guides/rules-of-ml/

