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Summary

Following the recent surge in adoption of machine learning, the negative impact that well-
intended but ill-considered development of these technologies can have on organisations,
users or society is now widely recognised. To address these issues, researchers, policy
makers and other stakeholders have advanced methods and guidelines for the development
of ethical, lawful and robust machine learning.

Robustness is the ability of a system to cope with errors and erroneous inputs during
execution and is considered one of the most important challenges to large scale deployment
of machine learning technologies for which technical solutions can be developed. In this
thesis we tackle several challenges related to the design, development and deployment of
robust autonomous systems. We regard autonomous systems as software systems capable to
perceive the environment they operate it, reason about it and plan future actions – where
both perception and planning are implemented using machine learning algorithms. While
we focus on a particular class of machine learning algorithms, called deep learning, many
of the practices and methods proposed generalise to the broader �eld of machine learning.

Since trying to achieve robustness has broad implications along each stage of the
software development life cycle for autonomous systems, we propose a holistic approach
to achieve robustness that incorporates (i) a system wide, macro perspective and (ii) an
algorithmic, micro perspective.

In the �rst part of the thesis we discuss the (i) macro perspective through the lens of
software engineering for autonomous systems. We tackle robustness challenges at all stages
of the development life cycle, although we focus on software architecture, which is one
of the �rst stages of the life cycle. We introduce and validate a catalogue of architectural
tactics that can be used to satisfy quality attributes of systems with machine learning
components and a catalogue of engineering best practices for their development. Moreover,
we introduce a software architecture evaluation method for systems with deep learning
components that focuses on their inherent uncertainty.

In the second part of the thesis we discuss the (ii) micro, algorithmic perspective. We
focus on developing robust computer vision algorithms against intentional perturbations
called adversarial examples and on developing formally veri�able deep learning based
planning algorithms. We introduce two methods that decrease or completely remove the
need to add adversarial examples to the training process, which can decrease training time
for robust computer vision algorithms by a factor of seven. Moreover, we present a method
to reduce the complexity of deep learning based planning algorithms, which makes formal
veri�cation of these algorithms possible.
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1
Introduction

Following decades of large scale data collection from software systems, the world is
increasingly relying on machine learning models to extract insights from data and predict
future events. Together with the proliferation of software systems across all levels of
our society, which enables the collection and integration of larger amounts of data, the
in�uence of machine learning models on human lives and our society is expected to increase
substantially. Machine learning is an application of arti�cial intelligence which builds
technical models of data to help computers learn new tasks without instructions.

Daily, we already rely on autonomous decisions made by machine learning models to
curate our e-mails and news, to guide our shopping or to choose which movies to watch.
And, unfortunately, we can already observe (unintentional) harm caused by improper
development of these technologies, such as the perpetuation of social bias in digital products
or the creation of �lter bubbles.

Yet, we can expect larger unintentional harm once decisions made by machine learning
models become mission- and safety-critical, as is the case for self-driving cars or automatic
diagnostic systems. To prevent autonomous decisions from causing harm to human lives,
society, or the environment, machine learning models (and the systems they are part of)
have to be robust against a wide set of technical and societal factors.

The challenges associated with the development of robust systems that incorporate
machine learning models are well acknowledged in research and by policy makers or
advisers. For example, the European Commission published a set of guidelines for the
development of trustworthy arti�cial intelligence systems in Europe [106].

The guidelines make technical and societal robustness one of the three pillars for trust-
worthiness, along with ethical and lawful development. From these pillars, robustness is
considered the main challenge for which technical solutions can be developed. Nonetheless,
while the challenges associated with robustness are well acknowledged, the solutions fall
short. For example, after more than a decade of research in adversarial examples – a known
threat to robustness of machine learning models – all defences against adversarial examples
have been breached and no technical solution exists to decisively overcome this threat.

In this thesis, we propose to approach the challenges stemming from the design, devel-
opment and deployment of robust autonomous systems holistically, by tackling them both
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at a (macro) system level and by zooming in on speci�c (micro) algorithmic challenges. We
regard autonomous systems as software systems capable to perceive the environment they
operate in, reason about it and plan future actions - where both perception and planning
are based on machine learning models (as for instance in autonomous vehicles). While we
focus on a class of machine learning algorithms, called deep learning, many of the practices
and methods that we propose generalise to the broader �eld of machine learning.

We believe a holistic approach is needed to achieve robustness and tackle its broad
implications along each stage of the development life cycle: from system, data and algorithm
design, to operation and governance.

1.1 Small and large worlds

When describing statistical inference, Savage [231] used a metaphorical distinction between
small and large worlds. Making a decision in the large world, such as predicting the
outcomes of an action, entails that every relevant information describing the state of the
world is known. This is rarely the case in real life, since the complexity of the world hardly
ever reveals itself in complete detail. Instead, when faced with decisions we are bound to
only use a fraction of the potentially relevant information, equivalent to a smaller world.

The large world is a complete and highly detailed description of the information relevant
to a decision, while the small world is a less detailed or incomplete version of the large
world. For example, when Christopher Columbus set sail west towards the East Indies,
he only had access to a part of the information relevant for his trip: he knew that Earth
is spherical. He believed that the planet is smaller than it is in reality, which led to his
decision to set sail west, instead of east. Columbus made a decision based on a small world,
which turned out to be wrong in the large world, but favorable for his voyage [167].

Machine learning models can be de�ned using the same approach: a model is built
based on a small world with the aim of deploying it in the large world. The small world is
always an incomplete representation of the large world, which often includes favorable
assumptions. Since in the large world there may be events not modeled in the small world,
we expect these models to make mistakes once deployed.

Together with the availability of large data sets we are witnessing a prevalence of
machine learning models deployed in the large world. These models allow inductive
inference in applications where deductive inference falls short. For example, the models
are used to identify objects in streams of videos, classify them, or translate speech to text.
More broadly, the models seek solutions to problems for which writing speci�cations or
�nding analytical solutions is currently beyond reach.

The increasing reliance on machine learning has been powered by innovations and
popularisation of machine learning models that allow a better representation of the small
world and avoid favourable assumptions. In particular, attention has focused on deep
learning models, which are very good at representing small worlds from raw data with
minimal assumptions about the structure of the worlds. Nonetheless, the popularity of
deep learning does not entail that other machine learning models are not relevant. It rather
acted as a catalyst and attracted general attention for all classes of machine learning models.
While in this thesis we focus more on deep learning, many practices and methods proposed
generalise to the broader �eld of machine learning.
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1.2 Research challenges

The design, development and deployment of robust autonomous systems with deep learning
components raises several technical and organisational challenges. In particular, regarding
(i) how deep learning components can be integrated in a robust way in larger systems and
(ii) how robust deep learning models can be developed.

To integrate deep learning components in larger systems, engineering principles that
can ensure functional and non-functional requirements, such as robustness, reliability or
availability must be applied or new principles tailored to deep learning must be developed.
A complication here is that deep learning models are considered opaque and di�cult to
interpret. For example, the expressiveness of deep learning models to represent small worlds
is given by their large number of parameters. For instance, a basic image classi�cation
algorithm has an order of 109 parameters [102]. This large number of parameters makes
reasoning about the model’s decisions and functional (or non-functional) requirements
di�cult (in most cases practically impossible). It also hinders the adoption of traditional
methods for proving the correctness of algorithms, such as formal veri�cation.

Moreover, because the performance of deep learning components is strongly connected
with the data sets describing the world, the development of software with deep learning
components requires organisations to adopt a di�erent development process from traditional
software. For example, the evolving nature of the large world and the data driven behaviour
of deep learning components requires teams to adopt faster, experimental, data collection
and development iterations. Also, the incapacity to represent the large world based on the
data collected (the small world) requires teams to adopt a thorough strategy for monitoring
deployed models and for managing incidents. Likewise, the inherent uncertainty of deep
learning models together with their probabilistic behaviour requires teams to adopt new
strategies for software design and new tactics to satisfy non functional requirements such
as robustness, reliability, or redundancy. Therefore, the �rst challenge we identify is How
to develop robust systems with deep learning components?

A challenge that follows naturally is How to develop robust deep learning models?,
i.e., how to develop more robust components of a system. It is generally accepted that more
data describing the world allows training better deep learning models. However, to model
complex tasks reliable (such as image classi�cation), larger data collections than those
available are needed. In fact, theoretical results suggest the size of the data sets needed to
reliable model complex tasks is currently beyond reach [256]. Therefore, deep learning
models rely on the favorable assumption that the data from the large world are in close
resemblance to the data from the small world.

Nevertheless, when faced with a complex and evolving large world, in which the
distribution of test data shifts naturally over time, deep learningmodels exhibit low robustness.
This lack of robustness manifests when the test data are slightly perturbed and severely
threatens adoption of deep learning in contexts where decisions may have a negative
impact on human lives, or on the environment [248]. For example, adding small intentional
perturbations to input data – called adversarial examples – can easily induce undesired
behaviours. This lack of robustness can be exploited by malicious actors in security sensitive
contexts [242].
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1.3 Research plan

The challenges mentioned above motivate a holistic approach to achieving robustness
for autonomous systems. As previously mentioned, we regard autonomous systems as
software systems capable to perceive the environment they operate in, reason about it and
plan future actions. Both perception and planning are tasks where deep learning models
excel over other machine learning models. Furthermore, recent initiatives show that
deep learning models can be used to combine perception and planning in one model and
outperform methods where the two tasks are solved separately [148]. This type of design
decisions, where some functionality can be implemented as one or many components,
further motivates the holistic approach to robustness because it involves both the system
aspect, where the components and their integration are discussed, and the algorithmic
aspect, where speci�c algorithms are chosen for development.

Autonomous systems also consist of multiple traditional software components, with
which deep learning components have to be integrated. In most cases, these systems have
stringent safety requirements. For example, in the context of i-CAVE1 – the research
project in which this PhD thesis was carried out – the goal was to evolve vehicles into
autonomous systems by deploying computer vision and planning algorithms. We started
our journey with explicit investigations into autonomous vehicles, but soon realised that
the challenges faced in this use case generalise to the broader �eld of autonomous systems.

In light of the challenges mentioned above, we ask the question How do we design,
develop and deploy robust autonomous systems with deep learning components? As mentioned
above, we approach this questions at two levels: a system level that tackles robustness from
a software engineering angle, and an algorithmic level that tackles robustness from an
algorithmic angle. In the �rst part of the thesis we look at software engineering challenges
for building robust autonomous systems and ways to overcome them. Our work spans
all stages of the software development life cycle for autonomous systems, although we
maintain a focus on the stage where the software architecture of a system is de�ned. In
the second part of the thesis we look at methods to design robust deep learning models for
computer vision and planning. In particular, we discuss robustness challenges for computer
vision algorithms against intentional perturbations, also called adversarial examples and the
challenge caused by the inability to formally verify deep learning based planning algorithms.

1.3.1 Part I – Designing robust systems

We begin by studying the challenges that arise when the software architecture of a system
is being de�ned. Software architecture is a step in the software development life-cycle that
consists of designing, documenting, evaluating and evolving software architectures [166].
At design time, decisions about the structure of the system, the communication between
components and the functional and non-functional requirements are made [237]. Moreover,
the software architecture includes decisions about running, maintaining and updating a
system in a production environment [299]. Since software architecture is one of the �rst
stages in the software development life-cycle, where trade-o�s between quality attributes
of a system are decided, it is a natural step to begin with.
1https://i-cave.nl
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Recurring solutions to issues in software architecture are abstracted to general and
reusable solutions called architectural patterns or styles. Lower level decisions with respect
to quality attributes of a system are also called architectural tactics [17]. Tactics focus strictly
on quality attributes and capture knowledge about the relationship between architectural
decisions and their outcomes in terms of improving a quality attribute of a system. In
this sense, tactics are focused on smaller issues than patterns and are more dependent to
context. For example, a tactic would address issues such as performance by deciding the
number of units of concurrency in a component, while a pattern would de�ne the higher
level decisions about components and connectors and decide on how di�erent instances of
the same component can run in parallel.

In Chapter 2, we address the question How can software systems be (re-)architected
to enable robust integration of deep learning components? This is one of the �rst steps
for integrating deep learning components in software systems and for deploying them
in the large world. To answer the question, we conducted a mixed-methods empirical
study consisting of (i) a systematic literature review to identify the challenges and their
solutions in software architecture for deep learning, (ii) semi-structured interviews with
practitioners to qualitatively complement the initial �ndings, and (iii) a global survey to
quantitatively validate the set of challenges and their solutions. This resulted in twenty
challenges and solutions for (re-)architecting systems with deep learning components. The
results indicate, for example, that traditional software architecture challenges (e.g., com-
ponent coupling) also play an important role when using deep learning components, but
there are also important challenges speci�c only to deep learning (e.g., the need for contin-
uously retraining). Moreover, the results indicate that architectural decision drivers which
should be emphasised by deep learning, such as privacy, play a marginal role compared to
traditional decision drivers, such as scalability or interoperability. Using the survey, we
were able to establish a stronger link between the solutions and software quality attributes,
which enabled us to provide twenty architectural tactics used to satisfy individual quality
requirements of systems with deep learning components. Altogether, the results from
this chapter can be interpreted as a �rst empirical framework that supports the process of
(re-)architecting software systems with deep learning components.

In Chapter 3, we argue that deep learning components add a new dimension to tradi-
tional software architecture design. This dimension captures the inability to verify that
deep learning components satisfy their intended functionality and are able to cope with
stochastic events coming from the operational environment [244]. Thus, it translates to
uncertainty regarding the functionality of deep learning components in the large world,
which contrasts with traditional, deterministic, software.

Although researchers in software architecture have developed methods to tackle un-
certainty at design time [71, 170] or at run-time [70], these methods focused primar-
ily on tackling uncertainty related to the parameters used to model a software system,
its context or to the instrumentation [70, 71, 170] (e.g., the uncertainty regarding hard-
ware performance [72]). However, deep learning components add a new source of un-
certainty, which was only brie�y explored previously – uncertainty due to “automated
learning" [81, 163, 290].

Motivated by this gap, we address the question How to compare software architectures
with deep learning components? To answer this question, we introduce a method to evaluate
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architecture alternatives for software using both traditional and deep learning components.
The method supports reasoning over how architectural patterns can mitigate uncertainty
and enables comparison of di�erent architectures combining deep learning and traditional
software components. While domain-agnostic and suitable for any system where uncer-
tainty plays a central role, we validate our approach using as example a perception system
for autonomous driving. We show that design patterns used in safety-critical systems [13]
can be used to decrease the uncertainty of a system with deep learning components and
lead to more robust autonomous systems.

In Chapter 4, we address the question How do teams design, develop and deploy software
with deep learning components? To answer this question, we ran a multi-vocal literature
review and compiled from the selected literature a catalogue of software engineering best
practices for deep learning applications. The practices and their perceived e�ects were
validated through a large survey with practitioners around the world. The results of the
survey show that the practices can be used in any context, independent of the data type or
of the algorithms used. Moreover, the results show that adoption of best practices increases
with team size and with team experience. The list of practices and the analysis of responses
provides a quantitative basis for quality assessment and improvement for teams developing
software with deep learning components.

1.3.2 Part II – Designing robust components

In the second part of the thesis, we zoom in on algorithmic robustness for perception and
planning. We focus on computer vision and planning because they play an important role
in autonomy. In particular, we are concerned with robustness of computer vision algo-
rithms against small, intentional, perturbations also called adversarial examples. Achieving
robustness against these perturbations requires to complement the training data set with
perturbed samples (adversarial training); a procedure which negatively impacts the training
time and the number of samples. In this context, we address the question How can we
reduce the impact of adversarial training on robust computer vision algorithms?

We begin in Chapter 5 with a brief introduction to adversarial examples and discuss
their implications to robustness and security of deep learning models.

Following up, in Chapter 6, we introduce a method to partition the output space of
classi�ers into class prototypes with large separation and train deep learning models to
preserve the separation. The optimisation procedure to obtain the prototypes increases the
distance between their centres based on a metric de�ned in the attack model. Therefore,
we call the prototypes repulsive prototypes. We show empirically that models trained with
repulsive prototypes are almost as robust as adversarially trained models, without the
need to generate perturbed data for training. Moreover, models trained with repulsive
prototypes are more resilient to large perturbations than adversarially trained algorithms.

Next, in Chapter 7, we introduce a method to train robust classi�ers with small training
data sets and transfer the knowledge learned about robustness between di�erent models.
Towards this goal, we train a meta-optimiser which learns to robustly optimise a model
using perturbed samples and use the meta optimiser to transfer the knowledge learned
to new models. Thus, the method eliminates the need of adversarial training once the
meta-optimiser is trained. We show empirically that the meta-optimiser improves robust-
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ness consistently across di�erent architectures and data sets, suggesting it is possible to
automatically patch robustness vulnerabilities.

In Chapter 8, we investigate the robustness of deep learning based planning algorithms,
where formal veri�cation can not be applied directly because the planning algorithms are
too complex. In this context, we answer the question Can we reduce the complexity of deep
learning based planning algorithms and allow formal veri�cation? In particular, we study the
problem of strategy synthesis for partially observable Markov decision processes, where
the strategy is synthesised by a deep learning model. To determine if the strategies adhere
to (probabilistic) temporal logic constraints is computationally intractable and theoretically
hard. In order to overcome this limitation, we introduce a method that combines techniques
from deep learning and formal veri�cation. The strategy is learned using a recurrent neural
network and restricted to represent a �nite memory strategy, which can be implemented
on a speci�c partially observable Markov decision process. For the resulting �nite Markov
chain, formal veri�cation techniques to be used in order to provide guarantees against
temporal logic speci�cations.

The thesis ends with a discussion and conclusions in Chapter 9.

1.4 Research methodology

In the �rst part of the thesis we apply various methods from empirical software engineering.
In particular, we used four methods from this �eld: systematic literature reviews, interviews,
surveys and case studies [68].

Systematic literature reviews are widely used in empirical software engineering and
provide a structured process to identify, evaluate, and interpret the information available
regarding a research topic [68, 133, 134]. They consist of an analytical review of the available
literature, from which common themes can be distilled. Since software engineering is a
practitioner-driven process, we combined literature reviews of academic and non academic
literature [82].

Interviews are widely used to collect qualitative data about a topic and to add depth to
quantitative observations. We used interviews both in an exploratory manner, to uncover
research challenges and solutions adopted by practitioners and in a con�rmatory manner,
as a way to validate research outcomes [110].

Surveys are used to identify characteristics of software engineering practitioners,
such as the solutions they adopt for various challenges. It is generally recommended to
compare survey results with other empirical methods, in order to avoid bias stemming
from the survey respondents [55, 135]. In this thesis, we combined outcomes of surveys
with systematic literature reviews and interviews, an approach that is characterised as
mixed-methods research.

Case studies are used in an exploratory manner, as initial investigations of some
phenomena in order to derive theories, or in a con�rmatory manner, to test hypotheses or
existing theories [68]. In this thesis, we used case studies in a con�rmatory manner, to test
the applicability of the proposed methods.

In the second part of the thesis we applied quantitative evaluation methods speci�c to
machine learning, i.e., we evaluated our algorithms on widely adopted benchmarks for the
problems studied [45].
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Table 1.1: Research overview, where the chapters in parentheses indirectly support the research questions.

Research Challenge Research Question Part Chapters

How to develop robust
systems with deep
learning components?

How can software systems be (re-)architected
to enable robust integration of deep learning
components

I 2, (4)

How to compare software architectures with
deep learning components?

I 3, (2)

How do teams design, develop and deploy soft-
ware with deep learning components?

I 4, (2, 8)

How to develop robust
deep learning models?

How can we reduce the impact of adversarial
training on robust computer vision algorithms?

II 6, 7, (5)

Can we reduce the complexity of deep learn-
ing based planning algorithms and allow formal
veri�cation?

II 8

1.5 Research overview

A mapping between the three challenges introduced in Section 1.2, the research questions
from Section 1.3 and the structure of the thesis is presented in Table 1.1. We note that the
chapters in parentheses address the main research questions by either providing background
information (as is the case with Chapter 5) or by providing di�erent perspectives to the
research question, but not fully answering it (as is the case with Chapter 4 for the �rst
research question).

1.5.1 Publications supporting the chapters

All chapters have been published, or are under review, in peer reviewed journals and
conferences. Therefore, each chapter is self-contained and can be read independently. Only
Chapter 5 is a short summary of a previous publication, presenting only the details that
are relevant to this thesis. Below, we present a mapping between the thesis chapters and
the corresponding publications. Unless otherwise speci�ed, the author of the thesis is also
the main contributor to the publications.

• Part I – Designing robust systems

– Chapter 2 has been published as Adapting Software Architectures to Machine
Learning Challenges, by Alex Serban and Joost Visser, at the IEEE International
Conference on Software Analysis, Evolution and Reengineering, 2022 [239].

– Chapter 3 has been published as Towards Using Probabilistic Models to Design
Software Systems with Inherent Uncertainty, by Alex Serban, Erik Poll, and
Joost Visser, at the European Conference on Software Architecture (ECSA),
2020 [244].
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– Chapter 4 has been published as Adoption and E�ects of Software Engineering
Best Practices in Machine Learning, by Alex Serban, Koen van der Blom, Holger
Hoos, and Joost Visser, at the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2020 [245].

• Part II – Designing robust components

– Chapter 5 is a short summary of a paper published as Adversarial Examples
on Object Recognition: A Comprehensive Survey, by Alex Serban, Erik Poll, and
Joost Visser, at ACM Computing Surveys (CSUR), 2020 [242].

– Chapter 6 is under review as Deep Repulsive Prototypes for Adversarial Robust-
ness, by Alex Serban, Erik Poll, and Joost Visser, 2020 [240].

– Chapter 7 has been published as Learning to Learn from Mistakes: Robust
optimisation for Adversarial Noise at the International Conference on Arti�-
cial Neural Networks (ICANN), by Alex Serban, Erik Poll, and Joost Visser,
2020 [243].

– Chapter 8 has been published as Counterexample-Guided Strategy Improvement
for POMDPs Using Recurrent Neural Networks, by Steven Carr, Nils Jansen, Ralf
Wimmer, Alex Serban, Bernd Becker, and Ufuk Topcu at the International Joint
Conference on Arti�cial Intelligence (IJCAI), 2019 [46].
For Chapter 8, the author of the thesis was responsible with the development
of the recurrent neural network used to learn a strategy for planning.

1.5.2 Publications not used in the thesis

As previously mentioned, we started our journey with explicit investigations into au-
tonomous vehicles. Therefore, some publications which were not included in this thesis
tackle various topics related to robustness of autonomous vehicles (such as developing
software architectures for robust autonomous vehicles [241, 251, 252], or investigating the
security of the communication between connected vehicles [250]). In the list below we
present these publications together with other publications [138, 247–249] to which the
author of this thesis contributed:

• Automotive speci�c publications:

– A Standard Driven Software Architecture for Fully Autonomous Vehicles, by
Alex Serban, Erik Poll, and Joost Visser, in Journal of Automotive Software
Engineering, 2020 [241].

– A Security Analysis of the ETSI ITS Vehicular Communications, by Alex Serban,
Erik Poll, and Joost Visser, at the Workshop on Safety, Security and Privacy in
Automotive Systems from the International Conference on Computer Safety,
Reliability, and Security (SafeComp), 2018 [250].

– Tactical Safety Reasoning. A Case for Autonomous Vehicles, by Alex Serban, Erik
Poll, and Joost Visser, at IEEE 87th Vehicular Technology Conference (VTC
Spring), 2018 [252].
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– A Standard Driven Software Architecture for Fully Autonomous Vehicles (best
paper award) at the IEEE Workshop of Automotive Software Architecture
(WASA) from the International Conference on Software Architecture (ICSA),
2018 [251].

• Other publications:

– Practices for Engineering Trustworthy Machine Learning Applications, by Alex
Serban, Koen van der Blom, Holger Hoos, and Joost Visser, at IEEE Workshop
on AI Engineering (WAIN’21) part of the International Conference on Software
Engineering (ICSE), 2021 [247].

– Safe Reinforcement Learning Using Probabilistic Shields, by Nils Jansen, Bettina
Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem, at International
Conference on Concurrency Theory (CONCUR), 2020 [138].

– Designing Safety Critical Software Systems to Manage Inherent Uncertainty, by
Alex Serban, at IEEE International Conference on Software Architecture (ICSA),
2019 [248].

– Adversarial Examples - A Complete Characterisation of the Phenomenon, by
Alex Serban, Erik Poll, and Joost Visser, available as preprint arXiv:1810.01185,
2018 [249].

1.6 Context in machine learning or artificial in-
telligence

We focus on deep learning models because, for the most part, the algorithms used for
autonomous systems (and vehicles, relevant to the i-CAVE project) are based on deep
learning. However, the practices and methods in the �rst part of the thesis generalise to the
broader �eld of machine learning. When performing the studies in Part I of the thesis, we
made no distinction between machine and deep learning. The only distinction made was
with the broader �eld of arti�cial intelligence, which is less clearly delineated and involves
many more concerns that do not have strictly technical solutions (such as ethics or law).

1.7 Data management

The data collected in the chapters and the code used to produce the results presented in
this thesis are listed below.

• Part I

– Chapter 2 – An Empirical Study of Software Architecture for Machine Learning
- Supplementary Materials, h�ps://doi.org/10.5281/zenodo.4564113 [2].

– Chapter 3 – Towards Using Probabilistic Models to Design Software Systems
with Inherent Uncertainty - Supplementary Materials, h�ps://doi.org/10.5281/
zenodo.4700095 [1].

https://doi.org/10.5281/zenodo.4564113
https://doi.org/10.5281/zenodo.4700095
https://doi.org/10.5281/zenodo.4700095
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– Chapter 4 – Towards Using Probabilistic Models to Design Software Systems
with Inherent Uncertainty - Supplementary Materials, h�ps://doi.org/10.5281/
zenodo.4700095 [246]

• Part II

– Chapter 6 – Deep Repulsive Prototypes for Adversarial Robustness - Code, h�ps:
//github.com/NullConvergence/repulsive-proto.

– Chapter 7 – Learning to Learn Adversarial - Code, h�ps://github.com/NullConvergence/
Learning2LearnAdv.

The materials from the �rst part of the thesis are disseminated through the h�ps:
//se-ml.github.io website, and through the Awesome Software Engineering for Machine
Learning reading list h�ps://github.com/SE-ML/awesome-seml.

Chapter 5 is also supported by a tutorial presented at WIFS 2019, and available at
h�ps://github.com/NullConvergence/tutorial_adversarialml.

https://doi.org/10.5281/zenodo.4700095
https://doi.org/10.5281/zenodo.4700095
https://github.com/NullConvergence/repulsive-proto
https://github.com/NullConvergence/repulsive-proto
https://github.com/NullConvergence/Learning2LearnAdv
https://github.com/NullConvergence/Learning2LearnAdv
https://se-ml.github.io
https://se-ml.github.io
https://github.com/SE-ML/awesome-seml
https://github.com/NullConvergence/tutorial_adversarialml
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2
Adapting Software

Architectures to Machine
Learning Challenges

Speci�c developmental and operational characteristics of machine learning (ML)
components, as well as their inherent uncertainty, demand robust engineering
principles are used to ensure their quality. In this chapter, we aim to determine
how software systems can be (re-)architected to enable robust integration of ML
components. Towards this goal, we conducted a mixed-methods empirical study
consisting of (i) a systematic literature review to identify the challenges and their
solutions in software architecture for ML, (ii) semi-structured interviews with
practitioners to qualitatively complement the initial �ndings, and (iii) a survey to
quantitatively validate the challenges and their solutions. In total, we compiled
and validated twenty challenges and solutions for (re-)architecting systems with
ML components. Our results indicate, for example, that traditional software
architecture challenges (e.g., component coupling) also play an important role
when using ML components; along new ML speci�c challenges (e.g., the need for
continuous retraining). Moreover, the results indicate that ML heightened decision
drivers, such as privacy, play a marginal role compared to traditional decision
drivers, such as scalability or interoperability. Using the survey, we were able to
establish a link between architectural solutions and software quality attributes;
which enabled us to provide twenty architectural tactics used for satisfying
individual quality requirements of systems with ML components. Altogether, the
results can be interpreted as an empirical framework that supports the process of
(re-)architecting software systems with ML components.

This chapter has been published as q A. Serban, J. Visser, Adapting Software Architectures to Machine Learning
Challenges, IEEE International Conference on Software Analysis, Evolution and Reengineering, 2022 [239].
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2.1 Introduction

Software architecture (SA) plays an important role in data intensive systems, such as
big data and analytics platforms. However, until recently, the focus has been on the
architectural decisions related to handling and storing large amounts of data, and on
decisions that mitigate performance demands of analytics platforms [26, 237].

The interest to develop software with machine learning (ML) components shifts the
focus to decisions regarding the operational requirements of serving, monitoring, retraining
and redeploying models [236]. These decisions align with proposals to emphasise the
operational aspect of SA [299]. Moreover, the inherent uncertainty of ML components
demands a stronger emphasis on the uncertainty aspect of SA; where the focus is on
assessing the impact of uncertainty, and on the decisions made for its mitigation [70, 244].

Although a signi�cant body of literature studied the relevance of SA for big data and
analytics platforms [16, 237], there is little empirical research on the role of SA in systems
with ML components [160, 282]. In this chapter, we aim to determine how software systems
can be (re-)architected to enable robust integration of ML components.

Towards this goal, we conducted a mixed-methods empirical study consisting of three
stages. First, we performed a systematic literature review (SLR) to identify the challenges
faced in (re-)architecting systems with ML components, and the solutions proposed to
meet them. We analysed 42 relevant articles, from which we compiled an initial set of
18 challenges and solutions. Second, we performed 10 semi-structured interviews with
practitioners from 10 organisations – ranging from start-ups to large companies. The
interviews were used to complement the initial set of challenges (and solutions), and to
assess the impact of each challenge on SA. In total, 2 new challenges were discovered
in the interviews, as well as 46 new solutions. Third, we ran a survey with 47 software
architects in order to quantitatively validate and complement the challenges and solutions.
The survey also established a link between challenges, solutions, and software quality
attributes, allowing the solutions to be restated as architectural tactics.

Overall, our main contributions are as follows. First, we summarised academic and grey
literature on the topic of SA for ML in a catalogue of SA challenges and related solutions.
This information can guide practitioners to (re-)architect software with ML components,
or as a gateway to relevant literature. Second, we validated and complemented the initial
�ndings by engaging with practitioners. We found out that, although the initial challenges
had solutions in the literature, the solution were considered incomplete by practitioners.
Third, we linked the architectural solutions to software quality attributes from the ISO/IEC
25010 standard [118], which allowed to restate them as architectural tactics. Last, we
assessed the impact of each challenge on SA, which allowed us to contrast traditional SA
concerns with emergent ML related concerns.

This chapter is organised as follows. First, we introduce background information and
related work (Section 2.2). Next, we discuss the study design (Section 2.3), and the results
(Section 2.4). We end with a discussion (Section 2.5) and conclusions (Section 2.6).

2.2 Background and related work

Software engineering (SE) for ML is receiving increasing attention [185]. The related
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literature covers a broad range of topics; from SE challenges raised by the adoption of ML
components [160], to practices [245], guidelines [312], or design patterns [287]. Moreover,
we consider the related �eld of SA for big data and analytics platforms [237]. Therefore,
we structure the presentation in three steps: �rst we introduce SE challenges for ML (with
a focus on SA), followed by solutions that meet the challenges, and by a discussion on SA
for big data and analytics, in the context of ML.

Arpteg et al. [14] introduced twelve SE challenges for ML, classi�ed in three cate-
gories: development, deployment and organisational. From these, the challenges related
to monitoring and logging ML components, and to e�ort estimation for development and
maintenance, were also identi�ed in our SLR. Since Arpteg et al. [14] do not introduce
solutions, the second and third stages of our study can be used to complement theirs.

Similarly, Ishikawa and Yoshioka [117], as well as Wan et al. [282], studied how ML
impacts the traditional software development life-cycle. Both studies are based on surveys,
and have the bulk of responses from Asia. Notwithstanding this regional bias, they con-
cluded that testing and evaluating the quality of ML components is particularly di�cult.
Distinct conclusions are drawn with respect to SA. While Wan et al. [282] acknowledged
SA for ML as di�cult, Ishikawa and Yoshioka [117] concluded that existing SA methods
apply equally to software with ML components, although the tool support is immature. We
analysed the SA challenges raised by ML with �ner granularity, and found out that while
some challenges apply equally to software with or without ML components, ML speci�c
challenges (and solutions) also arise.

To classify the SE challenges for ML, Lwakatare et al. [160] introduced a taxonomy,
from which the challenges related to scalability, and to serving requirements, were also
identi�ed in our study.

An early publication that outlined SA challenges and solutions for ML was the work
of Sculley et al. [236]. The authors used the framework of technical debt to explore risk
factors for ML components. Particularly, they argued that ML components are subject to
all maintenance issues speci�c to software components, as well as to new issues speci�c
only to ML. Moreover, they introduced a set of anti-patterns and practices used to avoid
technical debt. Compared to Sculley et al. [236], the challenges (and solutions) introduced
in this paper are broader, and consider more quality attributes. Nonetheless, there is an
overlap between the studies.

Breck et al. [36] and Zhang et al. [311] studied the topic of testing for ML components,
and introduced testing and monitoring practices for di�erent stages of the ML develop-
ment life-cycle. While these practices are relevant to SE for ML, we are interested in the
architectural decisions for testing ML components. Therefore, we focus on higher-level
decisions, such as using automated tests.

Amershi et al. [8] conducted an internal study at Microsoft, aimed at collecting SE
challenges and practices for ML. They reported on a broad range of challenges and practices
used at di�erent stages of the ML development life cycle. In particular, modularity and
component reuse in software with ML components are challenges closely related to SA,
also tackled in this study.

Serban et al. [245] and Zhang et al. [312] introduced two sets of SE practices for ML and
deep learning, respectively. While some practices are considered in SA – e.g., the adoption
of continuous integration – the broad selection of practices does not allow a focus on SA
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(as in our study). Therefore, the challenges (and solutions) introduced here can be used to
complement theirs.

Nascimento et al. [185] introduced a SLR on the topic of SE for ML that analysed all
articles up to 2019. The authors observed that SA is not yet a popular topic. However,
their taxonomy classi�es software quality and infrastructure concerns separately from
architecture. We argue that such concerns are discussed extensively during SA, and should
be considered together when evaluating the popularity.

Washizaki et al. [286] studied SA patterns and anti-patterns for ML, extracted from
white and grey literature. Their proposal was followed by a larger study, where the initial
set of patterns and anti-patterns was extended [287]. Their work is close to the �rst stage
of our study (SLR), where we identi�ed a set of challenges and solutions in SA for ML.
We build upon it by enlarging the number of challenges and solutions, and by extensively
validating our �ndings in the second and third stages of the study. Moreover, although the
challenges presented by Washizaki et al. [286] are recurrent, we found out the solutions
are not. Therefore, we are cautious in using the taxonomy of design patterns. Instead, we
focus on smaller building blocks called tactics; which bridge architecture decisions with
quality attributes, and form the basis of design patterns [22, 99].

The challenges raised by big data systems regarding continuous expansion of data
volumes and the adoption of new technologies have been well studied, and several reference
architectures have been proposed – e.g., [16, 237, 238]. However, the proposals emphasise
the data aspect of SA, i.e., how to collect and manage various sources of data and satisfy
performance demands of analytics platforms. Therefore, although data visualisation and
ML components are present in the reference architectures, these do not record decisions
taken for development, integration, serving and maintenance of ML components. In this
chapter, we focus on the latter, where the data aspect plays an important role, but it is not
the main decision driver.

2.3 Study design

Our study was organised in 3 stages, and consisted of a mixed-methods approach with a se-
quential exploratory strategy [68]. In the �rst stage, we ran a SLR to identify the challenges
faced when (re-) architecting systems with ML components, and the solutions proposed to
meet them. The second stage of the study consisted of semi-structured interviews, meant
to complement and partially validate the data extracted in the �rst stage. In the third stage,
we ran a survey to gather quantitative data, augment and generalise the �ndings from
the �rst two stages. Data triangulation from multiple sources is known to increase the
reliability of the results [68].

Systematic Literature Review. SLRs are widely used in empirical SE research, and
provide a structured process to identify, evaluate, and interpret the information available
regarding a research topic [68, 133, 134]. SLRs consist of three parts, namely de�ning a
research protocol, conducting a review and reporting the results. We followed the guidelines
from Kitchenham and Charters [133], and de�ned a research protocol as follows.
Research questions. We aimed to gather evidence about the challenges faced when (re-)
architecting software systems with ML components. Moreover, we looked for solutions
that meet the challenges and synthesise practices, tactics or patterns. Towards this goal, we
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Table 2.1: Research questions for the SLR.

ID Research Question Motivation
RQ1 Which are the challenges reported

in (re-)architecting software sys-
tems with ML components?

Understand the technical and or-
ganisational challenges, but also
the requirements posed by adop-
tion of ML components.

RQ2 What solutions, tactics or patterns
have been reported to successfully
meet these challenges?

Understand and identify solutions,
tactics, or patterns for SA with ML
components.

formulated a set of research questions, summarised with their motivation in Table 2.1. The
questions facilitated the identi�cation of challenges in the area of SA with ML components,
and enabled the creation of an initial body of knowledge with solutions.
Search strategy. To get a broad set of studies, we used multiple information sources. First,
we used automatic queries to retrieve studies from several digital libraries, namely IEEE
Xplore, ACM Digital Library (ACM DL), Scopus, and ScienceDirect. Shahin et al. [255]
observed that SpringerLink uses a di�erent query mechanism than the others, and that
Scopus indexes most articles from SpringerLink. Therefore, in order to avoid inconsisten-
cies in data retrieval, we relied on Scopus. Second, motivated by the �ndings of Serban
et al. [245] – which noticed that most literature on the topic of SE for ML consists of so
called grey literature – we performed manual search in Google and Google Scholar, where
the �rst 5 pages of results were inspected. Last, we complemented the data set through a
snowball strategy [40], following references of relevant articles.

To de�ne the search query, we followed the guidelines from [133], and composed a
string with synonyms of the words “software architecture", “machine learning", “challenges",
and “solutions". After piloting several queries to validate the inclusion of previously known
articles, we decided to use two distinct queries. The �rst query retrieved challenges in
SA for ML, and the second query retrieved solutions. The search string for the �rst query
was: “((“software architecture" OR “software engineering" OR “systems engineering")
AND (“machine learning" OR “deep learning" OR “arti�cial intelligence" OR “AI") AND
(“challenge" OR “problem" OR “issue"))", where the emphasised string was replaced in the
second query with: AND (“solution" OR “practice" OR “guideline" OR “tactic" OR “pattern" OR
“architecture pattern" OR “design pattern"). Using the word “software" next to architecture
or engineering helped to avoid articles from the general �eld of engineering (e.g., electrical
engineering) or architecture. Moreover, we observed empirically that including both
“pattern" and “design pattern" makes the query more e�ective.
Exclusion and inclusion criteria. Since the initial queries returned over 10 000 results,
we limited the answers to the �rst 500 articles, for each data source and query. This reduced
the number of articles to 1 000 per source, which corresponds to recommendations and
previous studies [165, 255]. Washizaki et al. [286] and Nascimento et al. [185] showed that
the majority of articles on the topic of SE for ML were published after 2016. Therefore, we
also restricted our search to articles published after 2016. Next, we automatically �ltered
for duplicates and for records that contained the words “proceedings" or “workshop" in the
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Table 2.2: Document selection for each information source.

Source Retrieved Automatic
Filtering

Manual
Inspection Used

ACM DL 1000 647 21 7
IEEE Xplore 1000 521 22 9
ScienceDirect 1000 513 2 0
Scopus 1000 732 2 0
Google Scholar 100 100 7 3
Google 100 100 12 10
Snowball - - 16 13
Total 4200 2613 82 42

title. Moreover, we excluded all opinionated articles; coming from companies or authors
which could be traced back to companies that provide tools or services for SA/SE for ML.
Thus, some bias regarding solutions driven by tools was avoided. Since ML for SE receives
increasing interest, we carefully curated and removed all articles on this topic. Moreover,
we removed tool demonstration articles, and those not written in English. In the �nal
selection, we included all studies or grey literature articles that presented challenges or
solutions based either on empirical studies or on experience (e.g., studies with empirical
validation or organisation blogs describing their processes).
Study selection. After retrieving the initial set of 4 200 documents, we applied the selection
criteria as follows. In the �rst phase we applied the automatic �lters, which reduced the set
to 2 613 articles. For these articles, we manually inspected the titles and the keywords, and
selected 66 articles to be completely assessed. These were read completely and critically
analysed, which reduced their number to 29 relevant articles. From their references, 16 new
articles were read, from which 13 were used in the �nal selection. The distribution
of articles and their sources for each stage of the review is presented in Table 2.2. We
delegate the complete list of articles, their sources, and a demographic characterisation
to the supplementary materials. We observe that although ACM DL and IEEE Xplore
retrieved the bulk of articles for complete assessment, the grey literature search and
snowballing strategies were more e�ective for the �nal selection. Moreover, we observe
that the distribution of articles per date, (supplementary materials) resembles the one
from [185, 286] – i.e., the number of articles is increasing year by year. By analysing the
distribution of articles based on the venue type (supplementary materials), we observe that
the majority of academic articles were published in conferences, and not in journals. We
conjecture that: (i) SA for ML is a emerging �eld, and the publications did not reached the
maturity needed for journal publication, and (ii) journals have longer review cycles, and
publications may be in review.
Data extraction and synthesis. From all articles, we extracted the information based
on various data items (see supplementary materials). We classi�ed the information in: (i)
demographics and context, (ii) SA for ML challenges (RQ1), (iii) SA for ML solutions and
tactics (RQ2), (iv) data types used. To analyse the demographics data we used descriptive
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Table 2.3: Interview participants pro�les.

ID Position Experience Research
P1 Solutions Architect 3-5 years No
P2 System Architect 3-5 years Yes
P3 Software Architect 6-9 years Yes
P4 Tech. Lead 3-5 years Yes
P5 Software Architect 6-9 years Yes
P6 Software Architect 3-5 years No
P7 Director of Engineering 6-9 years No
P8 Senior Solutions Architect 3-5 years No
P9 Head of Engineering 3-5 years No
P10 CTO 0-2 years Yes

Table 2.4: Interview organisation pro�les, where the acronym “Trans.” stands for Transportation.

ID Org. Pro�le Org. Size Org. ML Ex-
perience

Team
Size

Deployment
Interval

P1 Tech. (Internet) 10 000+ 6-9 years 6-9 0-1 week
P2 Non Tech. (Trans.) 10 000+ 3-5 years 6-9 1-2 weeks
P3 Tech. (Automation) 10 000+ 3-5 years 10-15 3-4 weeks
P4 Tech. (AI/ML) 0-50 0-2 years 10-15 0-1 week
P5 Non Tech. (Medical) 10 000+ 3-5 years 6-9 3-4 weeks
P6 Tech. (Automation) 1000-5000 3-5 years 10-15 1-2 weeks
P7 Tech. (AI/ML) 51-200 3-5 years 10-15 1-2 weeks
P8 Tech. (AI/ML) 51-200 3-5 years 6-9 3-4 weeks
P9 Tech. (Space) 51-200 0-2 years 10-15 1-2 weeks
P10 Tech. (Robotics) 0-50 1-2 years 16-20 3-4 weeks

statistics. To extract the data for (ii) and (iii), we used qualitative analysis methods. In
particular, we used thematic analysis [35], which de�nes a process based on the following
5 steps: (1) familiarity with data – the articles were examined to form initial ideas, (2)
initial code generation – the initial list of challenges and solutions was extracted, (3) theme
search – common elements between the challenges and the solutions, respectively, were
identi�ed, (4) theme review – challenges and solutions were compared, and common items
were merged or dropped, (5) de�nition and naming – each challenge and solution was
de�ned and named. The results from the demographics analysis were presented above, and
the ones from the thematic analysis are introduced in Section 2.4.1.

Interviews. To complement the results from the SLR, we conducted 10 interviews with
participants from 10 organisations.
Protocol. The interview protocol was designed following the guidelines from Hove and
Anda [110], and consisted of 31 questions designed to support a natural conversation
between the participants. All interviews were conducted online, through video calls
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(8 interviews) or e-mail (2 interviews). To enable participants to become familiar with
the interview objectives [110], we shared a short version of the interview three days in
advance.

The interviews were structured in 5 sections. First, we described the research goals and
background. Second, we asked participants to share information about their background
and demographics. Third, we asked participants to select a project where they played the
role mentioned in the second section, and describe the constraints and challenges faced in
SA for ML. This part enabled a discussion about the challenges faced (and the solutions
adopted), and was meant to complement the data obtained previously. Next, we asked
participants to comment on each of the challenges from the SLR, evaluate their impact on
SA, and propose solutions. Last, we asked participants to provide open-ended comments.
We continued to re�ne the questions, and after the �rst three interviews the questions
remained stable. Two questions were merged due to redundancy, and one was modi�ed in
order to be more descriptive.
Participants. The interview participants were recruited using purposeful sampling [192].
We contacted participants with experience in (re-) architecting systems with ML compo-
nents, or involved in architectural decisions (e.g., had the role of architect, or a leading
position in engineering), and who are working (or worked) for companies using ML. To
identify the participants, we used our personal network of contacts. Moreover, we compiled
a list of organisations that use ML from outlets such as Forbes or MIT Technology Review.
Later, we traced back candidates from the organisations (holding positions linked to SA)
through LinkedIn, and contacted them. The list of participants and the data regarding
their background is presented in Table 2.3, while the data regarding their organisations are
presented in Table 2.4. We observe that the participants’ background is diverse, ranging
from software and system architects to engineering leaders and CTOs. Moreover, the
participants’ and organisations’ experience is diverse – ranging from start-ups to large
organisations with vast experience in ML. Since the organisations had di�erent pro�les,
we classi�ed them into (i) Technology (Tech.) – focus on developing technology products,
and (ii) Non-Tech. – do not focus on technology products, but use ML for their processes.
We also note that many participants had experience in research, being directly involved
or in close collaborations with research groups. We hypothesise that the research driven
process for ML contributes to this result.
Data analysis. The interviews were processed using thematic analysis, a technique which
consists of the �ve steps recommended by Cruzes and Dyba [60]: (i) data extraction – the
interviews were transcribed, read, and key points were extracted, (ii) data coding – the
initial SA challenges and tactics, as well as the impact of each challenge on SA (e.g., low or
high impact) were de�ned, (iii) code to themes translation – for each transcript the initial
codes were combined into potential themes (e.g., automated testing), (iv) high-order theme
modelling – the themes were compared and merged, or dropped if the evidence was not
su�cient (e.g., automated testing was merged in CI), (v) synthesis assessment – arguments
for the extracted data were established, for example in terms of credibility (if the core
themes were supported by the evidence) or con�rmability (if there was consensus among
the authors on the coded data).

Survey. To generalise the �ndings with a large sample size and augment the solutions,
we ran an online survey. The survey was developed using the guidelines from Kitchenham
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and P�eeger [135] and Ciolkowski et al. [55]. We designed a cross-sectional observational
study asking participants at the moment of taking the survey which solutions they adopt,
for each challenge. Moreover, we asked participants about their background in order to
assign them to groups; making the study a concurrent control study in which participants
are not randomly assigned to groups.
Questionnaire. The questionnaire consisted of �ve sections. In (i) the preliminaries we
asked participants about their background (5 questions), to select a recent project where
they played a role in SA for ML, and to provide information regarding the challenges
faced, the project constraints, and the data types used (3 questions). Next, we asked
participants to (ii) select or propose new solutions for the challenges identi�ed previously
(20 questions). Since multiple solutions involved instrumentation, monitoring or alerts,
we added a question regarding the architectural decisions for designing these modules
(1 question). Afterwards, we asked participants to (iii) select the architectural style (if
any) adopted in their project (1 question), and to (iv) link the solutions to software quality
attributes (1 question). The questionnaire ended with a section where (v) participants could
provide open ended feedback (1 question).

The answers allowed multiple choices, with the solutions extracted from the SLR
and from the interviews. Besides, we provided an open answer called ’Others’, where
participants could propose new solutions. The quality attributes used in the fourth section
were extracted from the ISO/IEC 25010 standard [118], which is widely regarded as mature.
However, we found the “Installability" and “Replaceabiliy" attributes out-dated, and replaced
them with “Deployability"; which better re�ects deployment and roll-back.
Survey Pilot. Before distributing the survey, we invited four candidates to assess the
survey in our presence, and suggest improvements. The participants did not consider any
question redundant. Using their feedback, we added three new answers to the questions,
rephrased four other answers, and two questions.
Distribution. To distribute the survey, we used a snowballing strategy. At �rst, we reached
out to our network of contacts, asked them to �ll in the survey and forward it to potential
candidates. Second, we expanded the list of contacts from interview recruitment. In total,
we sent 286 e-mails or private messages to potential participants. Third, we advertised the
survey through open channels used by practitioners, i.e., Reddit and LinkedIn.
Data Analysis. We processed the standard answers using descriptive statistics, and the
open-ended answers using thematic analysis. Moreover, we analysed the association
between the adoption of solutions using the Phi coe�cient.

2.4 Results

We present the results from the three stages of the study as follows: (i) the results from
the SLR are presented in Section 2.4.1, (ii) the results from the interviews are presented in
Section 2.4.2, and (iii) the results from the survey are presented in Section 2.4.3.

2.4.1 Results from the SLR

From the SLR, we identi�ed an initial set of 18 challenges, introduced in Table 2.6. We note
that the SLR data have numerical references. To classify the practices, we used a custom
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taxonomy because the taxonomy for ML is di�erent than that for traditional software
development [8]. Moreover, ML taxonomies are divergent [245]. For example, Amershi
et al. [8] present a nine-stage taxonomy for the ML process, while Sato et al. [230] use only
six stages. These taxonomies have roots in the CRISP-DM model [294]. However, recent
studies show these models are not �t for all contexts [97]. Since existing taxonomies are
divergent, we constructed a taxonomy compatible with previous work, but with a SA focus.

The taxonomy was used to classify the challenges (and solutions) in: (i) Requirements
(Reqs.) – requirements elicitation for ML components, mapped to model requirements and
business understanding [8, 294], (ii) Data – data collection, preparation and validation,
mapped to data taxonomies [8, 245, 294], (iii) Design – the system’s structure, SA decisions
and trade-o�s, mapped to training and coding taxonomies [8, 245], (iv) Testing – testing and
validation of software with ML components, mapped on the evaluation taxonomies [8, 294],
and (v) Operational (Ops.) – deployment, monitoring and evolution, mapped to deployment
taxonomies [8, 248, 294].

RQ1. Answering RQ1 from Table 2.1, we identi�ed 18 challenges through the SLR,
classi�ed in �ve categories. The Reqs. challenges focus on the inability to understand a
project and estimate the e�ort upfront. Moreover, the opaque nature of ML components, for
which functional requirements are di�cult to de�ne, and which have regulatory restrictions,
emerged as challenging.

The Data challenges relate to data preparation and data quality assessment. This
result contrasts previous concerns from big data and analytics platforms [237], where the
focus was on data storage and accessibility. Nonetheless, this result corresponds with the
expectation that ML components are evolved from big data platforms, extend and overcome
the challenges met there.

The largest category of challenges, Design, includes both traditional SA challenges,
such as managing component coupling, and new ML speci�c challenges, such as manag-
ing inherent uncertainty, or designing for development automation (AutoML). We also
notice a challenge regarding the integration of ML components with traditional software
components (7), which �nds it di�cult to distinguish failures between the two.

In contrast to Design, the Testing challenges are ML speci�c. Here, the focus is on model
testing – which goes beyond programming bugs – and on validation for production – which
does not rely on new features or bug �xes, but on measurements that must meet multiple
criteria, e.g., accuracy or robustness.

In the Ops. category, the challenges relate to deployment, maintenance, and resource
usage between training and testing. We note that maintenance of ML components is based
on retraining and deploying models trained with new data, which erodes the boundaries
between maintenance and evolution.

RQ2. Answering RQ2 from Table 2.1, through the SLR we found distinct solutions
to each challenge in Table 2.6. The complete list of solutions extracted from the SLR is
delegated to the supplementary materials, while Table 2.7 presents the solutions from all
stages of the study. We note that, in total, 54% of solutions came from the SLR, while the
rest came from later stages of the study. Although the SLR accounts for the majority of
solutions, the percentage is just over 50%, and suggests that many solutions were considered
incomplete by interview paticipants.
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2.4.2 Results from the interviews

The interviews were meant to qualitatively assess and complement the SLR data. As
mentioned in Section 2.3, the interviews had speci�c questions to discover new challenges,
to evaluate the impact of each challenges on SA, and to propose new solutions.

Two new challenges were added after the interviews, and several others were reinforced.
The �rst new challenge, (19), relates to tracing back serving decisions to ML models and
data, and to the ability to accurately reproduce past experiments. This challenge brings
together two concepts – traceability and reproducibility – both known to raise issues in
ML [206]. Only one interview participant mentioned this challenge can have a signi�cant
impact on SA. Nonetheless, we included it, in spite of the fact that we did not have
convincing evidence, and sought validation with the survey.

The second challenge, (20), relates to managing multi disciplinary teams, which use
heterogeneous technology stacks (e.g., ML frameworks, infrastructure scripts). Since this
challenge does not �t any previous class, we de�ned a new class – Organisation (Org.) –
which gathers organisation wide concerns that fall in the attributes of software architects.
This class aligns with the view that software architects shall consult and bridge multiple
teams, which solve problems beyond SA [141]. The challenge was mentioned by one
participant, part of a large organisation with well established teams, who work at di�erent
levels of the technology stack. Therefore, the solution was to form multi-disciplinary teams
which can work close together, and adopt standard ways of working. No participant from
small organisations raised this challenge, which begs the question if small organisations
are more agile, and can overcome it. The answer was sought with the survey.

We also asked participants about the most important architectural decision drivers,
and about the data types used. The results are illustrated in the supplementary materials.
We note that “Scalability", “Hardware" constraints, and “Data" concerns were mentioned as
main decision drivers, followed by “Interpretability". Together with the data type used, we
could also identify the main decision drivers for speci�c data types. Here, we note that
participants using Images & Videos or Time Series found “Scalability" and “Hardware"
constraints as the main decision driver. Moreover, participants using Simulations were
also driven by “Hardware" constraints. We also observed a new decision driver – called
“Generalisation" – which describes the ability of a ML component to maintain training
performance in production. This driver is related to challenge (10) (Table 2.6), and the
solution suggested by participants was to use n-versioning; i.e., multiple versions of ML
components (some of which may be more trustworthy).

While evaluating the challenges extracted from the SLR, we asked participants to assess
their impact on SA. The results are illustrated in Figure 2.1, and use an ordinal scale with
three possible options: low, medium, or high impact. Challenge (3) could not be evaluated
because the participants did not report regulatory restrictions. We believe this result is
due to the fact that ML regulations are still in draft phase, and not yet enforceable [123].
Within the challenges with the highest impact, we observe one traditional challenges that
is strengthened by ML (component coupling (8)), and multiple ML speci�c challenges. For
example, opaqueness of ML components (11), or training-serving resource management (18).
The highest impact on SA comes from the need to continuously retrain ML components
(16), while the lowest impact comes from automation of ML tasks (13). Here, participants
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Figure 2.1: The impact of the challenges from Table 4.8 on SA, as assessed by interview participants.

reported that the information needed for this task is available from other sources.
Besides the challenges, the interviews allowed us to complement the initial set of solu-

tions. We delegate the complete thematic analysis of the interviews to the supplementary
materials, and mention that 46 % new solutions came from the interviews. Participants
provided new solutions for all challenges besides challenges (2) and (3). While the solutions
for (2) were regarded as complete, (3) was disregarded because participants did not reported
regulatory constraints.

During the thematic analysis, we combined several solutions by bridging ML and SE
terminology, while striving for conciseness. Here, we describe resulting themes which may
be ambiguous due to name compression. Using the same type of interfaces for business
logic and ML components, for all ML components, or within all projects in an organisation,
was modelled as the use of “standard interfaces". Participants reported multiple techniques
to standardise the interfaces, e.g., REST APIs, gRPC, or more general contracts for service
oriented architectures. While the techniques are project speci�c, the architectural decision
to unify the interfaces is singular.

Moreover, using multiple versions of a ML model – also called ensembles of models in
ML – is similar to n-version programming. Therefore, we grouped these solutions in the
“n-versioning" theme.

The separation of concerns and encapsulation of code was modelled as one theme:
“design separate modules/services". Here, participants reported that the code was either
developed as separate modules, or as independent services. The development implied
encapsulation for reuse.

Furthermore, we de�ned the use of one middleware for all components in training and
serving as “use one middleware", and the development of dashboards in “visualisations". A
detailed description of the themes is provided in the supplementary materials.

2.4.3 Results from the survey

In total, we received 52 answers, from which we �ltered out (using the preliminary ques-
tions) respondents who did not play a role in SA for ML. Moreover, we �ltered out
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Figure 2.2: Distribution of survey respondents by demographics

respondents who spent less than two minutes ful�lling the survey, and respondents who
answered less than 50 % of the preliminaries, or less than 50% of the technical questions.
This process ensured only thoughtful answers were used in the analysis, and entailed
47 complete answers.

Demographics. First, we grouped respondents by demographics. The complete analy-
sis is delegated to the supplementary materials. We note that the majority of respondents
(57%) work for Tech. organisations, and have between 3-5 (40%) or 1-2 (28%) years of experi-
ence. These results align with related work [117, 245], and are in line with expectations that
Tech. companies are early adopters of ML technologies. Other groups are also represented,
i.e., Non Tech. (28%), Governmental Org. (9%) and Research labs (6%). Similarly, beginners
which just started (13%) and very experienced respondents, with 6-9 years of experience
(19 %), are represented.

We also grouped respondents by regions into Europe (53%), North America (34%)
and Asia (13%). Here, we observe a slight over-representation of Europe, and under-
representation of Asia. The possible bias stemming from the grouping by regions will be
discussed in Section 2.5.

As in the interviews, we asked respondents about their team size, data types used, and
deployment intervals. This data is illustrated in Figure 2.2, where the height of the bars
represents the percentage of respondents, and the height of the connections represents
the percentage of respondent who fall in the target class. We observe that the majority of
respondents belong to teams between 6-9 (43%) or 10-15 (34%) members. In particular, the
majority of Tech. and Non Tech. teams have between 6-9 members, while the majority of
Research teams are larger, between 10-15 members.

Regarding data types, we observe that, with the exception of Audio and Graphs, the data
types have similar distributions. Moreover, the majority of respondents using Tabular data
deploy new versions between 1-2 weeks, while respondents using Images, Videos, Audio
or Text between 3-4 weeks. We conjecture that this result relates to the ML techniques
suitable to each data type, i.e., Images, Videos, Audio or Text models are based on deep
learning, require longer training times and the collection of larger data sets. In contrast,
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(b) Architectural styles.

Figure 2.3: Characterisation of survey results using (a) SA decision drivers, and (b) architectural styles.

Tabular data can be processed with more traditional ML techniques (e.g., Random forest).
These techniques require smaller data sets and training time.

Overall, the demographics indicate that our survey data is diverse, and resembles data
from interviews and related work [117, 245].

Decision drivers. Second, we asked respondents about the most important decision
drivers in their projects. This data is illustrated in Figure 2.3a. We observe that “Scalability"
and “Hardware" are consistent with the interviews, and occupy leading positions. To better
understand the data challenges, we divided them into "Low data quality" and "Scarcity of
data". Taken together, data related concerns are consistent with the interviews. Separately,
they were considered equally important, but none of them ranks high.

We also note that “Performance", “Interpretability", and “Interoperability" rank higher
for survey respondents, while “Privacy" and “Security" rank very low. This result is cause of
concern, since documents from policy makers and advisory bodies suggest these topics are
paramount for trustworthy development of ML [106]. We conjecture that, although a large
body of academic literature on security of ML exists, it is still limited in its applicability. For
example, all defences against adversarial examples – a known threat for ML components –
have been breached [45]. The data also indicates that respondents prioritise operational
attributes, such as scalability or performance, and tend to neglect security and privacy.

Solutions to challenges in Table 2.6. Third, using the survey results we �ltered out
and ranked the solutions from previous stages of the study. In particular, we considered
the solutions that were selected less than 5% of the time as not relevant, and �ltered them
out. Moreover, we used the number of times the solutions were selected by respondents to
rank them. The ranking is re�ected in Table 2.7 by the order in which the solutions are
presented. A more comprehensive analysis of the answers and an elaborate description of
the solutions is provided in the supplementary materials.

For all challenges, respondents could also suggest new solutions, or provide comments
using the "Other" �eld. In total, we received 3 suggestions and open comments. We analysed



2.4 Results

2

29

the results using thematic analysis, and found out that all suggestions were variations of
the solutions provided, or comments suggesting some solutions do not apply. For example,
one respondent mentioned that, due to tight performance constraints, it was not possible
to apply n-versioning. The comment suggests that, given exceptional constraints, some
solutions do not apply. This result is expected, since the �rst two stages of the study strove
for generalisation; and outliers may exist. Nonetheless, the lack of novel suggestions for
solutions brings evidence that the �rst two stages of the study entailed comprehensive
solutions to all challenges.

We also note that some solutions are recurrent, and can be applied to multiple challenges.
For example, the use of standard interfaces for ML components and business logic, or the
use of interpretable models. These results are unsurprising, since architectural decisions
may impact multiple elements of a system.

As mentioned previously, an extra question was added for decisions regarding in-
strumentation, monitoring and alerts. The solutions were inspired by interviews; where
participants reported the development of independent logging, alert or visualisation mod-
ules. We delegate the survey answers to the supplementary materials, and note that the
majority of respondents reported the development of independent modules/services for
instrumentation and monitoring. Moreover, respondents reported on separating logging
concerns between training and serving, and on the development of independent modules
to aggregate and visualise logs. Only a small percentage of participants reported the use of
external tools for instrumentation.

Associations between solutions. Fourth, we analysed the associations between the
adopted solutions. For this analysis, we modeled the adoption of solutions as dichotomous
variables, and analysed the Phi coe�cient. For two binary variables, the Phi coe�cient can
be estimated using the Pearson correlation coe�cient [95]. To determine the statistical
signi�cance of the observed associations, we performed Chi-Square tests with a signi�cance
level of 0.05. We found multiple signi�cant medium to strong associations (� > 0.4), of
which we report an illustrative selection. More results are provided in the supplementary
materials, together with an analysis of the Jaccard similarity entailing analogous results.

For example, designing separate modules/services for data quality assessment (5) is
associated with the the design of independent modules/services in component coupling
(7) (� = 0.43). Moreover, the use of one communication middleware to reduce coupling
(7) is associated with standardisation and reuse of model interfaces between training and
serving (6) (� = 0.51). Design of independent modules/services in component coupling
(7) is also associated with CI/CD in maintenance of ML component (16) (� = 0.54). These
results indicate the solutions may be complementary, and suggest their joint adoption can
be interdependent and incremental.

Similarly, model tests (15) are associated with data tests (15) (� = 0.63), and integration
tests (15) are associated with test automation (15) (� = 0.88). However, ML tests (e.g., data
tests) are not associated with traditional software tests (e.g., unit tests), or with test automa-
tion. These results indicate a separation between ML and SE concerns exists. Moreover,
they indicate that mature teams jointly adopt test practices, as also noticed in [36].

Architectural styles for ML. Next, respondents were asked to select the architectural
styles employed in their projects. The results are illustrated in Figure 2.3b, and indicate
that the majority of respondents used the event-driven style. Nonetheless, the di�erence
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Table 2.5: Solutions mapping to ISO/IEC 25010 model.

Characteristics Sub-characteristics Solutions

Func. Suitability Func. Completeness 1, 2, 3
Compliance 3

Performance ef-
�ciency

Capacity 2, 11

Compatibility Co-existence 7, 8
Interoperability 6, 12

Usability User Error Protection 19, 20

Reliability Availability 10, 16, 18
Fault Tolerance 9, 10

Security Accountability 19

Maintainability

Modularity 4, 5, 7, 8, 12
Reusability 4, 5, 6, 8
Analysability 11, 17
Modi�ability 4, 5
Testability 5, 7, 9, 10, 11, 14, 15

Portability
Adaptability (including Scalability) 13, 16, 18
Deployability (including Installability
and Replaceability)

12, 16, 17, 18

between event-driven, lambda, and micro-service/SOA architecture styles is not large.
Although we did not �nd signi�cant associations between the architectural styles, the
lambda architecture can be used concomitantly with other architectural styles. We also
searched in literature for evidence to support the architectural styles, but did not �nd any
study on this topic. Therefore, we abstain from drawing a �rm conclusion regarding the
most suited architectural style for software with ML components (if any), and propose to
gather more data on this topic in future research.

Quality a�ributes. Last, respondents were asked to link the solutions to software
quality attributes (characteristics) from ISO/IEC 25010 [118], which enabled to restate
them as architecture tactics [22]. Tactics are architectural building blocks from which
design patterns can be created, and represent architectural decisions that improve indi-
vidual quality attributes [22, 99]. Therefore, the results of this analysis provide direct
guidance for practitioners who aim to improve speci�c quality attributes of systems with
ML components.

Since the solutions do not presume a ranked order, we considered all solutions equally
important. The �nal results are presented in Table 2.5. We note that “Scalability" and
“Interoperability" – considered important decision drivers (Figure 2.3a) – are addressed by
multiple solutions. Similarly, “Maintainability", considered to have the biggest impact on SA
by interview participants (Figure 2.1), is addressed by the largest number of solutions. We
also observe that some quality attributes from the standard (e.g., Operability or Maturity)
are not addressed by any solution, and note this result does not imply that missing quality
attributes are not challenging. Instead, some quality attributes may not be applicable, or
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require adaptation to accommodate ML components, as previously suggested by Kuwajima
et al. [143]. We plan to investigate this conjecture in future research.

We also mention that “Compliance" sub-characteristics are not present in the quality
standard because compliance is considered part of the overall system requirements. There-
fore, “Compliance" spans all characteristics in Table 2.5. To avoid confusion, we represent
“Compliance" as a sub-characteristic of “Functional Suitability".

2.5 Discussion

We comment on multiple aspects left open in the paper. First, regarding the challenges
discovered from interviews, we analysed the percentage of survey respondents who did
not have a strategy to tackle them. We found out that 23% of respondents had no strategy
for challenge (19), and 22% of respondents had no strategy for challenge (20). These results
show that more than 75% of respondents tackled these challenges, and bring evidence
that both challenges are relevant, in spite of the fact that they were mentioned in one
interview each. Moreover, the answers for challenge (20) have similar distributions for
teams consisting of 6-9 and 10-15 members, suggesting the challenge is not motivated by
team size. Similar analyses for smaller team sizes are planned for future research, as the
data collected until now can not entail robust conclusions.

Second, both in the interviews and in the survey, the architectural decision drivers
for trustworthy ML [106] – i.e., “Robustness", “Security", “Privacy" – were not considered
important by respondents. McGraw et al. [169] argue that, from a security engineering
perspective, the SA of systems with ML components is an important �rst step. However, our
survey results show a di�erent perspective. Besides the concerns stemming from neglecting
these decision drivers, the result may indicate that decisions regarding trustworthy ML can
be made after the SA of a system is de�ned. We plan to investigate this in future research.

Third, the solutions presented in Table 2.7 do not take into account functional dependen-
cies, or presume a functional ranking. Nonetheless, the results from the association analysis
(Section 2.4.3) indicate the solutions may be complementary, and their joint adoption inter-
dependent or incremental. Similarly, by analysing the associations between solutions and
architectural decision drivers, we found out that multiple solutions are associated with
decision drivers. We expect that results from this type of analyses will provide step-wise
guidance to practitioners searching for tactics to address individual drivers, and plan to
develop such analyses in future research, once more data is collected.

We also noticed that some solutions have low adoption. For example, self-adaptation
for managing inherent uncertainty (9) was used by less than 5% of respondents. While
this result may seem surprising, according to Mahdavi-Hezavehi et al. [163] the number
of self-adaptation techniques for “automated learning”, i.e., ML components, is small. We
conjecture that a small number of solutions are not applied because they are not �t, or still
prototypes in academia, and plan to investigate them in future research.

Last, when mapping the solution to software quality attributes, we used the mature and
authoritative ISO/IEC 25010 standard [118]. At the moment, no similar model exists for ML
components, although policy makers indicate such models are under development [123].
The results from our study indicate that, with the exception of “Interpretability", ML speci�c
quality attributes are not considered important SA decision drivers. We expect this to
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change once mature quality models for ML are available, and propose to extend our analysis
to cover them in future research.

Threats to validity. We identi�ed three potential threats to validity, corresponding
to the three stages of the study. First, the SLR can be a�ected by missing or exclusion of
relevant papers. To mitigate this threat, we used multiple digital libraries for information
retrieval. Additionally, we complemented the results with grey literature (manual search),
and through snowballing. The researchers’ bias in the data extraction was prevented using
a data extraction form, which allowed consistency in data analysis, and through discussions
between authors with di�erent backgrounds.

Second, the data from interviews may be subject to bias. To limit this bias, we analysed
the participants’ pro�les and ensured they have relevant experience for the study. We
recruited participants with diverse backgrounds and experience, working for organisa-
tions with distinct sizes and experience in ML. We also used two strategies to alleviate
memory bias, i.e., we shared a short version of the interviews before the meeting, and
asked participants to share their experience from a recent project in the preliminaries.
Moreover, we assured participants of data con�dentiality and anonymisation, in order to
limit participants from answering the questions in a manner that would better position
them, or the organisation they are part of.

Third, to limit the survey bias we included additional �elds besides the answers from
SLR or interviews (e.g., Other �elds for all challenges). We also advertised the survey to
diverse groups, in order to limit selection bias. Nonetheless, as shown in Section 2.4.3,
some groups of respondents are under-represented, and may introduce selection bias. This
bias can be removed by gathering more data, as we plan to do in the future. Last, to avoid
researchers’ bias, we used data triangulation from multiple sources.

2.6 Conclusions and future research

We studied how systems can be (re-)architected to enable robust adoption of ML compo-
nents. We ran a mixed-methods empirical study consisting of: (i) a SLR which revealed
42 relevant articles, from which we complied 18 SA challenges (and solutions) for ML, (ii)
10 semi-structured interviews which revealed 2 new challenges and 46 new solutions, and
(iii) a survey with 47 architects to quantitatively validate the solutions.

We reported on the impact of each challenge on SA, and the main SA decision drivers
for ML. We found out, for example, that ML heighten decision drivers, such as privacy, are
considered marginally important when compared to traditional decision drivers, such as
scalability or interoperability. Moreover, we established a link between solutions and quality
attributes from the ISO/IEC 25010 standard, which allowed us to provide practitioners with
twenty architectural tactics for systems with ML components.

For future research, we plan to further increase the number of respondents of the
survey, in order to perform more robust analyses. For example, we plan to create a stronger
link between tactics and decision drivers using association analysis. Moreover, we plan to
perform in depth analyses of the architectural styles suitable for ML. We also plan to add
depth to the interpretation of our �ndings through validation interviews, and expand the
quality attributes from ISO/IEC 25010 with ML speci�c quality attributes.
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Table 2.6: List of SA challenges for ML.

Nr. Category Challenges References
1 Reqs. At design time the information available is insu�cient

to understand the customers or the projects.
[28, 51, 117, 154,
160, 282]

2 Reqs. ML components lack functional requirements. [28, 51, 63, 117,
160, 282]

3 Reqs. ML projects have regulatory restrictions and may be
subject to audits.

[79, 127, 186, 245]

4 Data Data preparation may result in a jungle of scrapes, joins,
and sampling steps, often with intermediate outputs.

[63, 151, 236]

5 Data Data quality is hard to test, and may have unexpected
consequences.

[63, 151, 168, 208,
312]

6 Design Separate concerns between training, testing, and serv-
ing, but reuse code between them.

[8, 301, 314]

7 Design Distinguish failures between ML components and other
business logic.

[213, 304]

8 Design ML components are highly coupled, and errors can have
cascading e�ects.

[109, 191, 282]

9 Design ML components bring inherent uncertainty to a system. [12, 109, 191, 244,
248]

10 Design ML components can fail silently. These failures can be
hard to detect, isolate and solve.

[33, 248, 300]

11 Design ML components are intrinsically opaque, and deduc-
tive reasoning from the architecture artifacts, code or
metadata is not e�ective.

[109, 191, 232,
314]

12 Design Avoid unstructured components which link frame-
works or APIs (e.g., glue code).

[236]

13 Design Automation and understanding of ML tasks is di�cult
(AutoML).

[151, 218, 245,
282, 301]

14 Testing ML testing goes beyond programming bugs to issues
that arise from model, data errors, or uncertainty.

[8, 14, 189, 216,
312]

15 Testing Validation of ML components for production is di�cult. [230]
16 Ops. ML components require continuous maintenance, re-

training and evolution.
[25, 154, 191, 230,
282, 286, 312]

17 Ops. Manage the dependencies and consumers of ML appli-
cations.

[23, 73, 109, 236,
304]

18 Ops. Balance latency, throughput, and fault-tolerance,
needed for training and serving.

[47, 151, 173, 287,
301]

19 Ops. Trace back decisions to models, data and reproduce
past results.

P10

20 Org. ML applications use heterogeneous technology stacks
which require diverse backgrounds and skills.

P1
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Table 2.7: List of solutions.

Nr. Solutions
1 Run simulations to gather data. Use past experience. Measure and document

uncertainty sources.
2 Use metrics as functional requirements. Include understandability and explain-

ability of the outputs.
3 Analyse regulatory constraints up-front. Adopt an AI code of conduct. Design

audit trails.
4 Design separate modules/services for data collection and data preparation. Inte-

grate external tools.
5 Design separate modules/services for data quality assessment. Integrate external

tools.
6 Standardise model interfaces. Use one middleware. Reuse virtualisation, infras-

tructure and test scripts.
7 Separate business logic from ML components. Standardise interfaces and use

one middleware between them.
8 Design independent modules/services for ML and data. Standardise interfaces

and use one middleware. Relax coupling heuristics between ML and data.
9 Use n-versioning. Design and monitor uncertainty metrics. Employ interpretable

models/human intervention.
10 Use metric monitoring and alerts to detect failures. Use n-versioning. Employ

interpretable models.
11 Instrument the system to the fullest extent. Use n-versioning. Employ inter-

pretable models. Design log modules to aggregate/visualise metrics.
12 Wrap components in APIs/modules/services. Use standard interfaces and one

middleware. Use virtualisation.
13 Version con�guration �les. Design the log and versioning systems to support

AutoML data retrieval.
14 Design model and data tests. Use CI/CD. Use integration and unit tests. Use data

ownership for test modules.
15 Use metrics and CI/CD for validation. Use alerts, visualisations, human inter-

vention. Design release processes.
16 Design for automatic continuous retraining. Use CI/CD. Use automatic rollback.

Use infrastructure-as-code. Adopt standard release processes.
17 Encapsulate ML components in identi�able modules/services. Use authentication

and access control. Log consumers of ML components.
18 Design for batch processing (training) and stream processing (serving),

i.e., lambda architecture. Physically isolate the workloads. Use virtualisation.
19 Design for traceability and reproducibility; log pointers to versioned artifacts,

version con�gurations, models and data.
20 Form multi-disciplinary teams. Adopt an AI code of conduct. De�ne processes

for decision-making. Raise awareness about ML risks within the team.
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3
Towards Using

Probabilistic Models to
Design Software Systems

with Inherent Uncertainty

The adoption of ML components in software systems raises new engineering
challenges. In particular, the inherent uncertainty regarding functional suitabil-
ity and the operation environment makes architecture evaluation and trade-o�
analysis di�cult. In this chapter, we propose a software architecture evaluation
method called Modeling Uncertainty During Design (MUDD) that explicitly mod-
els the uncertainty associated to ML components and evaluates how it propagates
through a system. The method is based on Bayesian networks, which enable both
qualitative and quantitative assessments of software architectures. In particu-
lar, the method supports reasoning over how architectural patterns can mitigate
uncertainty and enables comparison of di�erent architectures focused on the
interplay between ML and classical software components. While domain-agnostic
and suitable for any system where uncertainty plays a central role, we validate
our approach using as example a perception system for autonomous driving. For
this system, we empirically demonstrate that a component-based design is over
10% more resilient to uncertainty than an end-to-end design. Moreover, we bring
empirical evidence that architecture design patterns can help to signi�cantly
decrease the uncertainty associated to ML components.

This chapter has been published as q A. Serban, E. Poll, J. Visser, Towards Using Probabilistic Models to Design
Software with Inherent Uncertainty, European Conference on Software Architecture, 2020 [244].
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3.1 Introduction

With the emergent adoption of ML components in software systems, there is an increased
need to tackle and reduce their inherent uncertainty. Particularly when developing safety-
critical systems – e.g., autonomous vehicles – where new developments in ML and especially
deep learning (DL) are used to a great extent.

For a long time, researchers in software architecture have developed methods to tackle
uncertainty at design [71, 170] or at run-time [70]. Previous work focused primarily on
tackling uncertainty related to the parameters used to model a software system, its context
or to the instrumentation [70, 71, 170]. ML (and particularly DL) components add a new
type of uncertainty that was only brie�y explored previously. This uncertainty comes from
the incapacity to verify that these components satisfy their intended functionality, and that
they are able to cope with stochastic events coming from the operational environment.

In this chapter, we introduce a method to evaluate architecture design alternatives
for software using both traditional and ML components. The proposal, called Modeling
Uncertainty During Design (MUDD), is based on two guiding principles. First, the threats
due to inherent uncertainty of ML components are evaluated both locally (for the speci�c
components) and tracked as they propagate and in�uence other components in the system.
Second, the prior information about uncertainty of ML components that is used at design
time is considered incomplete and subject to continuous change.

For modeling a software system using ML components we use probabilistic graphical
models – in particular Bayesian networks (BNs) – which allow to express beliefs about
variables (satisfying the second principle) and evaluate their in�uence on other connected
variables (satisfying the �rst principle). The method only requires to annotate existing
software architectures with design elements that express the inherent uncertainty of ML
components. The formalism of BNs can then be used to obtain quantitative results for
comparing architecture alternatives. We demonstrate our method using a visual perception
system for autonomous driving, illustrated in Figure 3.1. The system is based on three
components which can only be implemented using DL algorithms.

This chapter is organized as follows. In Section 3.2 we discuss background information
and related work. Section 3.3 presents sources of uncertainty and BNs. Section 3.4 intro-
duces MUDD and the running example. In Section 3.5 we develop a qualitative assessment
of software architectures, followed by a quantitative assessment in Section 3.6, exhibiting
MUDD. Section 3.7 uses the same method to assess the impact of using architectural design
patterns to reduce uncertainty. A discussion and concluding remarks follow in Section 3.8.

3.2 Background and related work

We discuss three related research directions: (1) the use of uncertainty at design time
for comparing architectural design alternatives, (2) the use of uncertainty at run-time for
self-adaptation, and (3) the use of BNs in software architecture and reliability engineering.

At design time, the uncertainty in the parameters used to model a software system has
been taken into account for evaluating the reliability of software architectures using robust
optimisation [170], for comparing software architectures when the impact of architectural
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(a) Object Detection (OD) (b) Depth Estimation (DE) (c) Semantic Segmentation (SS)

Figure 3.1: Visual perception system for autonomous driving.

decisions can not be quanti�ed, using fuzzy methods [71] and for evaluating trade-o�s
speci�c to desired quality attributes such as performance, using sensitivity analysis [72].

The �rst two methods aim to achieve similar goals with ours, although they seem
unsuitable for software using ML components. In the �rst case [170], the failure rate of
ML components can not be evaluated as for traditional software components because
in many scenarios these components will appear to behave as intended, although their
outcomes will be erroneous or very uncertain [248]. Moreover, we are not concerned
with deployment, as in [170], but with architectural design styles or patterns that can
reduce the uncertainty stemming from de�ning software components and their interaction.
Regarding [71], in this paper we take a bottom-up approach, assessing the uncertainty of
each components and their impact on the architecture, instead of a top-down approach
where the impact of architecture decisions is quanti�ed at architecture level. We found it
di�cult to assess the impact of uncertainty on software architectures without �rst assessing
the uncertainty of the components. Moreover, the uncertainty of ML components can not
be precisely measured and it is subject to change (principle 2 from Section 3.1). Therefore,
evaluating how the uncertainty of each component propagates in a system enables �ne-
grained reasoning about the sources of uncertainty that have a signi�cant impact on the
architecture, ways to remove them and the suitability of architectural patterns in doing so.

The evaluation of other quality attributes under uncertainty, such as performance [72]
is complementary to the method introduced here and it is an interesting path to explore
for future work.

Various sources of uncertainty [70] can be mitigated at run-time, of at design time,
through self-adaptation. Self-adaptive systems collect data during operations and recon�g-
ure or adjust their behavior in order to mitigate uncertainty [289]. Software architecture
plays an important role in self-adaptation because an architectural model can be used
at run-time to reason about self-adaptation. Although multiple uncertainty sources are
used in self-adaptation, particularly relevant to us is the uncertainty related to “automated
learning” [81, 290]. However, not many publications address this problem [163]. In this
paper we tackle the problem at design time, and not at run-time, although some methods
intended to work at run-time can be paired with the method introduced in this paper. We
consider this an interesting direction to pursue in the future.

BNs have been previously used in software architecture as a support tool for design
decisions – to quantify the impact of decisions on systems quality [308] or to measure
the impact of changes [269]. Moreover, BNs have been extensively used in reliability
engineering, to predict software reliability from architecture artifacts [222] or for fault
detection [57]. In all cases, the model is based on the system’s possible execution path, the
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control �ow graph or on the architectural structure of the system. While the execution paths
are not available for ML components due to their opaque nature and lack of internal states,
focusing on design level artifacts is related to the method introduced in this paper [222].

3.3 Uncertainty sources and Bayesian Networks

Perez-Palacin and Mirandola [204] and Esfahani and Malek [70] discuss multiple sources of
uncertainty to be considered in the context of self-adaptation. Although many uncertainty
sources are valid at design time, we are particularly interested in the uncertainty related to
“automated learning” [81, 163, 290], i.e., the inherent uncertainty related to ML components.

In particular, we are interested in the uncertainty related to properties of ML compo-
nents that are impossible to fully verify before deployment, i.e., (1) the ability of a ML
component to always satisfy its intended functionality and (2) to cope with stochastic
events in the operational environment. According to [204] these sources of uncertainty
can be classi�ed by nature in:

• epistemic uncertainty (EU) - captures our ignorance of the correct model that generates
the data. If the training data for a ML component does not accurately represent
the data generation distribution, the model will have high epistemic uncertainty.
This uncertainty can be removed given enough training data. However, the bounds
for the data set size needed to learn complex tasks, e.g., object recognition, are not
achievable in practice.

• stochastic uncertainty (SU) - captures the response of a ML component to stochastic
noise in the operational environment (e.g., noise in the observations). This uncer-
tainty can not be removed with more training data.

We propose to use these two sources of uncertainty as architectural design elements,
in order to evaluate design alternatives for systems using ML components. For modeling a
software system we use the structure and formalism of BNs because they allow to express
beliefs (or incomplete prior information) about a variable and evaluate its in�uence on
other connected variables. Brie�y, BNs are directed, acyclic graphs, that model a set of
variables and their conditional dependencies. This model o�ers both a quantitative and a
qualitative method to reason about a set of variables. The former, qualitative, analysis uses
the topological structure of the BN where variables are represented as nodes of a graph
and the dependencies between them as directed edges.

The latter, quantitative, analysis consists of specifying the conditional probability
distributions (or tables in the discrete case) between dependent variables in the graph.
Since a BN contains all assumptions about a model (the graphical structure, the conditional
probabilities and other parameters), it has no hidden assumptions about inference rules. The
network’s structure de�nes a joint probability model where the rules of probability calculus
enable conclusions based on observations. Probabilistic inference computes posterior
probabilities for unobserved variables given observations of other variables in the model.
For a formal introduction to BNs, we refer the reader to Pearl[203].
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3.4 Modeling Uncertainty During Design

MUDD is a method to assess architecture design alternatives for software systems using
both ML and classical components. In particular, the method focuses on reasoning about
architectural design styles and patterns that can reduce the uncertainty stemming from
de�ning software components and their interaction. MUDD evaluates the impact of un-
certainty in a bottom-up manner, starting locally, as it impacts speci�c ML components,
and tracked globally, as it in�uences other components in the system. This method al-
lows �ne-grained reasoning about design alternatives, where the changes between design
alternatives can be evaluated at multiple levels.

Notably, MUDD supports reasoning over which design alternatives are less sensitive to
uncertainty, and how design patterns can help mitigate it. Moreover, the method allows to
evaluate hypothetical scenarios, in which the data about uncertainty used at design time is
considered incomplete.

From a methodological perspective, MUDD only requires to annotate existing software
architectures with the sources of uncertainty speci�c to ML components. Afterwards, the
topology of the BN is used as a model for quantitative assessments and the formalism of
BNs is used for quantitative assessments.

We emphasize that MUDD uses the two sources of uncertainty introduced in Section 3.3
because they are application and context independent, i.e., they are valid and can be extracted
from any ML model. The methods used to measure them can be di�erent, depending on
the ML algorithm employed. Therefore, they are parameters rather than �xed elements of
MUDD. Nonetheless, MUDD is not limited to these two types of uncertainty. In fact, any
type of uncertainty, application or context speci�c can be used without any modi�cation.

Throughout the paper we use an example from autonomous driving, inspired by [27,
34, 251] – the design of a perception system for scene understanding. The system performs
the following three tasks:

• Object detection (also called object localization) aims to identify the location of all
objects in an input image, and classify them according to prede�ned classes. The
output of object detection is an image with several boxes surrounding the objects,
their labels and con�dence scores for the classi�cation.

• Semantic segmentation classi�es each pixel of an input image to prede�ned classes,
such as pedestrians or vehicles.

• Depth estimation (or understanding the geometry of the scene) is relevant to deter-
mine the position of other obstacles or the road surface.

All functions are illustrated in Figure 3.1. The outcome of the perception system is used
in planning the next driving maneuvers of a vehicle. The functionality for all components
is implemented using deep neural networks because no speci�cation can be written for it,
and other ML algorithms do not perform as good. We are interested to evaluate software
architecture design alternatives and select the one which is the least sensitive to uncertainty.

In Figure 3.2a and Figure 3.2b we present two architecture candidates inspired from [251]
and [27]. The relevant functional components are illustrated using circles, while the input
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Figure 3.2: Functional architectures for a scene understanding system in autonomous vehicles.
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Figure 3.3: Uncertainty representation for the two architectures in Figure 3.2, where EU stands for epistemic
uncertainty and SU for stochastic uncertainty.

coming from the camera is depicted with a rectangle. The latter will not be considered a
node in the BN (therefore its shape).

The �rst �gure illustrates the end-to-end paradigm, where all components of the system
are jointly trained to form a representation relevant to planning. This corresponds to a pipe-
and-�lters implementation, recommended in [251] and adopted in [34]. The components
are separated because they are trained using di�erent objective functions and are subject
to distinct drawbacks (also called multi-task learning in the ML literature). However, they
all share a base network for feature extraction and have independent layers to decode the
features for each task. An alternative architecture is presented in the Figure 3.2b, where
the system is organized into distinct ML components and integrated during planning,
corresponding to a component-based architecture from [27].

We have chosen these architectural styles as the only alternatives we could �nd in
literature. However, MUDD is not limited to any architectural style.

For reasoning about uncertainties, we propose to annotate the the two architectures with
the sources of uncertainty speci�c to each component. Since the architectures represent
a directed graph, we only need to add and connect explicit nodes from the uncertainty
sources to the components they in�uence.
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Figure 3.3 departs from the functional view presented in Figure 3.2 by illustrating
the uncertainty sources discussed in Section 3.3, for each component. In the �rst case,
Figure 3.3a, one base encoder is used for all tasks. Therefore, only one node representing
epistemic uncertainty (EU) in�uences all components.

Arguably, the internal representation of the encoder might hold di�erent representa-
tions for each task, and be subject to distinct epistemic uncertainties. However, the internal
representation is entangled and speci�c attributes corresponding to each task can not be
easily extracted.

Di�erent sources of stochastic uncertainty (SU) can impact the three tasks because
one random event in the operational environment can in�uence segmentation, but not
detection or depth estimation (and vice versa). Therefore, for each component there is a
di�erent variable for stochastic uncertainty. In the second scenario from Figure 3.3b, since
the components process raw data from camera independently. Therefore, they are subject
to distinct epistemic and stochastic uncertainties. We note that these decisions are not
application and context speci�c. All ML components have these types of uncertainty.

The annotated architectures from Figure 3.3 represent the topology of a BN and can be
used for qualitative analysis. For quantitative results, the topology needs to be enriched
with probability data.

3.5 �alitative architecture evaluation

Qualitatively, the annotated functional architectures from Figure 3.3 allow high level
reasoning about threats to the intended functionality coming from inherent uncertainty.
Nonetheless, the analysis is not limited to possible faults from uncertainty. Other quality
properties, e.g., availability, can be assessed similarly.

In order to evaluate design alternatives qualitatively, architects can apply well known
evaluation methods such as questioning techniques, scenarios or check-lists [66]. We
develop an example of scenario-based analysis; a technique systematized in [128]. Scenarios
analyze a use case or a change in a system. The change can describe how one or more
components perform an activity, the impact of adding another component to perform the
same (or another) activity, the impact of adding a connection between existing components
or any composition of these factors. Describing the changes that are needed for a scenario
is a qualitative method of architecture evaluation [66].

We analyze the scenario where high stochastic uncertainty in depth estimation leads
to unsafe planning. From Figure 3.3, we can see that in the end-to-end architecture depth
estimation is linked to semantic segmentation. Stochastic uncertainty can not be removed
using more training data, as indicated in Section 3.3. Therefore, the alternatives are to use
a di�erent training objective or a di�erent ML model altogether. However, since the scene
understanding system is trained end-to-end, the new objective (or new model) can impact
the internal representation of both segmentation and localization, which might increase
their epistemic uncertainty, and ultimately lead to unsafe planning.

In the component-based architecture, depth estimation is only linked to planning.
Therefore, high stochastic uncertainty in depth estimation can be treated in isolation, by
either deploying a new DL component or using heterogeneous implementations to increase
its con�dence. If the model is replaced, it will have no impact on the other components in
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the system. In this case, the change requires less e�ort than in the end-to-end architecture
because changing the depth estimation component does not require to change or re-train
other components.

We also analyze the use of LIDAR – as suggested in [27, 251] – to increase con�dence in
depth estimation and adopt the n-version programming pattern for safety critical systems
to integrate it. The change consists in adding a new LIDAR component and a voting mech-
anism between the DL depth estimation component and the new LIDAR component [13].
An illustration is provided in Figure 3.5 and a more thorough discussion follows in Sec-
tion 3.7. For both architectures, the output of the DL depth estimation components can be
interpreted independently. Therefore, deploying the new components speci�c to LIDAR
will have the same impact for both architectures. From the perspective of this change,
both design alternatives are equivalent. However, the component-based architecture has a
�exibility advantage when changing individual components.

During qualitative evaluation, it is important that di�erent stakeholders and roles
responsible for parts of the system participate. Such stakeholders may be algorithm
developers, system and safety engineers or software architects. We can see that by explicitly
modeling of uncertainty at design time, a broader community of practitioners can participate
in design decisions, even though the domain knowledge needed to understand the inner
workings of ML algorithms is not wide-spread. In the following section, we show how the
same model enriched with quantitative measurements can be used to assess the impact of
uncertainty on both individual components and on the system.

3.6 �antitative architecture evaluation

As shown in Section 3.4, the enhanced functional architecture of a system has the topological
structure of a BN. The probabilities needed to populate the network can be de�ned by
experts or inferred through simulations – e.g., to estimate the e�ect of epistemic uncertainty
on a ML model, we can use a test data set which was not used when training the model.

The random variables in the BN can take continuous or discrete values. In the former
case, the system designer chooses an a priori distribution for each variable, before seeing
any data, and updates its parameters once new observations are available. In the latter case,
the variables take discrete values and are described by their probability mass functions.

For simplicity, we choose to model all variables through probability mass functions
with two discrete values: low or high uncertainty. When the uncertainty is low, the system
is likely to satisfy its intended functionality, and vice versa. Deciding if the uncertainty
values are discrete or continuous is application and context speci�c. If the uncertainty in
the ML components used in a system can be modeled as a probability distribution, and
if the parameters of the distribution can be estimated well, a continuous approach may
be better suited. Nonetheless, interpreting the parameters of a distribution requires more
knowledge, and may complicate the architectural decision process.

Given the two proposed values for uncertainty, we are interested to evaluate the
in�uence of di�erent nodes in the network on planning, and obtain quantitative results
for the qualitative evaluation. Both the probabilities and the thresholds can be decided by
domain experts, or by simulation.
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For the running example, we use a test data set (not used for training) to extract the
uncertainty estimates from DL components, by averaging over samples in this data set.
The thresholds between low and high represent the lowest uncertainty estimate from the
incorrectly classi�ed examples in the testing data set. The probability that a component has
high (epistemic or stochastic) uncertainty will be the total number of test examples which
have uncertainty higher than the threshold over the total number of testing examples.
Note that the correctly classi�ed examples with high uncertainty will contribute to the
probability that a component has high uncertainty. This choice is deliberate, because the
system we study is safety-critical, and uncertain decisions should be avoided.

The conditional probabilities – i.e., the in�uence of components to the connected
components – can be evaluated in a similar manner. They represent the probabilities that
a component has high uncertainty, given the uncertainty values of the parent variables.
For example, P (OD =H|EP =H, SU =H) is the probability that the object detector is highly
uncertain when the model has high epistemic and high stochastic uncertainty. We use the
same method and data set as before, but average the results when the parent variables have
the same value. The thresholds are also chosen as before.

All experiments are carried out using the CityScape data set [58]. For the end-to-
end architecture presented in Figure 3.2a, we train a variant of MultiNet [270] using an
encoder based on the DenseNet [112] architecture, pre-trained on the ImageNet data set
(as in [120]) with a dropout probability of p = 0.2. We use di�erent loss functions in a multi-
task learning setting for object detection, depth estimation and semantic segmentation.
Epistemic uncertainty is approximated by casting a Bernoulli distribution over the model’s
weights and sample it at evaluation time using the dropout layers in the base encoder.
The mean of the dropout samples is used for prediction and the variance to output the
uncertainty for each class [4]. Stochastic uncertainty is extracted from the �nal layer of each
task, as described in [130]. The geometry of the scene is interpreted using depth estimations
from the base encoder, as in [69], while object detection and semantic segmentation have
the same loss functions as in [270]. For the component-based architecture presented
in Figure 3.2b, we use one independent encoder and decoder for each task. Training is
performed by minimising the task speci�c loss function used in the multi-task setting
described above. The implementation of DL components was done in Pytorch1 and the
BNs in Pomegranate2. The uncertainty estimates are presented in Table 3.1 for the system
in Figure 3.2a and Table 3.2 for the system in Figure 3.2b.

The heuristics applied to populate the tables represent the prior knowledge we embed
in the network. Depending on the context, software designers may choose to embed more
domain knowledge, or rely on expert opinion. For example, in the context of autonomous
driving we may choose to augment the testing set with common perturbations, speci�c to
di�erent seasons, driving conditions, or even malicious perturbations [103].

Given the probability tables, we can use the inference rules of BNs to answer questions
about the proposed architectures. Coming back to the example presented in Section 3.5,
we wish to get quantitative evidence about the impact of high stochastic uncertainty in
depth estimation on planning. Setting depth estimation stochastic uncertainty to "High"
(SUDE = H), we can compute the �nal impact on planning as follows. Let � (x) represent

1https://pytorch.org/
2https://github.com/jmschrei/pomegranate
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Table 3.1: Independent and conditional probabilities for the end-to-end architecture in Figure 3.3a. The acronyms
used are OD – object detection, DE – depth estimation, SS – semantic segmentation, EU – epistemic uncertainty
and SU – stochastic uncertainty. The uncertainty values are L - low and H - high.

P (⋅) EU SUOD SUDE SUSS
H 0.18 0.16 0.11 0.19

P (Planning SS)
0.1 L
0.9 H

P (OD EU SUOD)
0.0 L L
0.64 L H
0.61 H L

1 H H

P (DE EU SUDE OD)
0.0 L L L
0.13 L L H
0.76 L H L
0.85 L H H
0.43 H L L
0.78 H L H
0.9 H H L
1 H H H

P (SS EU SUSS DE)
0.0 L L L
0.28 L L H
0.64 L H L
0.72 L H H
0.66 H L L
0.58 H L H
0.61 H H L

1 H H H

the parent variables of node x (the nodes that have a directed edge to it). The probability
that planning will have high uncertainty is:

P (Planning = H) = P (SS| � (SS)) ⋅P (DE| � (DE)) ⋅P (OD| � (OD)) ⋅
P (SUSS ) ⋅P (SUDE = H) ⋅P (SUOD) ⋅P (EU ),

for the end-to-end architecture, and:

P (Planning = H) = P (SS| � (SS)) ⋅P (DE| � (DE)) ⋅P (OD| � (OD)) ⋅
P (SUSS ) ⋅P (SUDE = H) ⋅P (SUOD) ⋅P (EUSS ) ⋅P (EUDE) ⋅P (EUOD),

for the component-based architecture, where the acronyms are as in Table 3.1.
Running the computation, we observe that the probability of uncertain planning is

approximately 10% lower for the component-based architecture (Figure 3.2b) than for the
end-to-end architecture. Moreover, through the same model we can analyze how high
stochastic uncertainty in depth estimation impacts planning within the minimum and
maximum bounds. We plot the probability that planning is uncertain given that depth
estimation stochastic uncertainty is high, by varying P (DE = H|SU = H, ⋅ ) in Tables 3.1
and 3.2 between [0,1] with a step size of 0.01. The results are illustrated in Figure 3.4a.

The plot represents the in�uence of high stochastic uncertainty on depth estimation and
the way it propagates on planning. We observe that in the component-based architecture,
stochastic uncertainty in depth estimation has a lower impact on planning than in the
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Table 3.2: Independent and conditional probabilities for the component-based architecture in Figure 3.3b. The
acronyms are de�ned in Table’s 3.1 caption.

P (⋅) EUOD SUOD EUDE SUDE EUSS SUSS
H 0.14 0.16 0.31 0.44 0.17 0.19

P (OD EUOD SUOD)
0.0 L L
0.57 L H
0.41 H L
1.0 H H

P (DE EUDE SUDE)
0.0 L L
0.51 L H
0.47 H L

1 H H

P (SS EUSS SUSS )
0.0 L L
0.11 L H
0.42 H L
1.0 H H

P (Planning SS DE OD)
0.0 L L L
0.34 L L H
0.34 L H L
0.66 L H H
0.34 H L L
0.66 H L H
0.66 H H L

1 H H H

end-to-end architecture, for values up to ∼ 0.7, after which the end-to-end architecture
is more resilient to uncertainty. Depending on the operational environment, a software
architect can choose the design that better �ts the expected conditions. For example, if an
autonomous vehicle operates in limited domains – e.g., inside a warehouse – where the
probability of encountering stochastic events is low, the component-based architecture for
the scene understanding system is more appropriate.

Using the same model, we can evaluate the in�uence of multiple sources of uncer-
tainty on planning. We use the realistic assumption that the CityScape data set does not
approximate all driving scenarios and thus may introduce high epistemic uncertainties.
Therefore, we evaluate the in�uence of all epistemic uncertainty sources on planning
in the scenario described above, where we assume high stochastic uncertainty in depth
estimation. We use the same method as above to evaluate the probability that planning
will have high uncertainty while we vary all epistemic uncertainty nodes simultaneously
with the stochastic uncertainty in depth estimation. The uncertainties vary between [0,1],
with a step size of 0.01. The results are plotted in Figure 3.4b.

As in the previous case, the end-to-end architecture is more resilient to high uncer-
tainties, for all the components mentioned above. Moreover, the threshold where the
end-to-end architecture becomes more resilient than the component-based architecture is
lower. Nonetheless, the impact on planning remains high for values near the threshold,
where both architectures behave similarly. With a 50% chance to plan actions that may lead
to unintended outcomes, the system may not be usable. However, epistemic uncertainty
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(a) In�uence of high stochastic uncertainty in depth
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(b) In�uence of high stochastic uncertainty for
depth estimation and all epistemic uncertainties
on planning.

Figure 3.4: Quantitative evaluation of uncertainty in software architecture.

can be removed using more training data, so the scenario in which epistemic uncertainty
is low is more realistic. In this case, the component-based architecture is more resilient to
uncertainty than the end-to-end architecture. This result implies that the component-based
architecture is less likely to lead to unintended outcomes.

In the following section, we use the same method to assess the impact of using archi-
tectural patterns to remove uncertainty.

3.7 Using architectural patterns to mitigate un-
certainty

Following the results from Section 3.6 and the changes suggested in Section 3.5, we evaluate
the impact of using architectural design patterns that can decrease stochastic uncertainty in
depth estimation. In particular, we explore the use of LIDAR – as suggested in [27, 251] – to
complement computer vision for depth estimation. LIDAR is known to be more reliable
than camera sensors and is explored by many autonomous vehicle manufacturers.

As discussed in Section 3.5, the output of depth estimation is independent for both
architectures. Therefore, the impact of adding a new component is the same for both
designs. Moreover, since the system we study is safety critical, the integration of LIDAR
can be done using architectural patterns for safety critical systems [13]. In particular, we
evaluate the use of the n-versioning programming pattern because it does not require any
acceptance test. The development of acceptance tests for DL components is out of the
scope of this thesis.

The proposed changes are illustrated in Figure 3.5. The Voter component in Figure 3.5a
is added next to depth estimation, although all inference tasks for the DL components are
performed at the same time. Before the depth estimation outcome is sent to planning, the
outcome from the DL component is checked against the outcome from LIDAR. Similarly,
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Figure 3.5: Functional architectures when using the n-version programming pattern to reduce stochastic uncer-
tainty for depth estimation.

in the architecture from Figure 3.5b, the Voter component is added after depth estimation
because all DL components are independent.

The probability tables have to be adjusted as follows. Because LIDAR has high accuracy,
its uncertainty only depends on the distance we want to perform analysis for [283]. Since
we do not have access to a LIDAR component, we use a proxy from literature [310] for its
uncertainty values. The probability that the voter will be uncertain is a weighted average
between the LIDAR and the number of times depth estimation has low error rate and low
uncertainty (according to the thresholds introduced in the previous section), where the
LIDAR component’s contribution is of 90%. The �nal values are 0.09 in the �rst case, and
0.1 in the second case. The formalism of BNs allows prior information to be incomplete.
Therefore this approximation is su�cient to perform the same computations as in the
previous section and evaluate the design alternatives.

The results are presented in Figure 3.6a for the end to end architecture, and Figure 3.6b
for the component based architecture. We can see that, in both cases, the component based
architecture is signi�cantly more resilient to uncertainty, even for high values of epistemic
uncertainty (Figure 3.6b). A striking di�erence between the two designs is that the end
to end architecture has a slight exponential curve for high levels of uncertainty, while
the component based architecture has a linear and slightly logarithmic curve for high
uncertainty, which shows the former increases faster.

When comparing the results before and after applying the n-version programming
pattern (Figure 3.6 vs Figure 3.4), we observe that applying the pattern is successful in
decreasing the uncertainty in�uence on planning. In particular for the component based
architecture, where the decrease is more signi�cant than for the end to end architecture.
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Figure 3.6: Quantitative evaluation of uncertainty in software architecture design using the n-version programming
pattern.

3.8 Conclusions and future research

We introduce Modeling Uncertainty During Design (MUDD), a method to evaluate and
compare architecture design alternatives for software systems that use ML components.
In particular, we propose to explicitly model the inherent uncertainty speci�c to ML
components at design time and evaluate how it propagates and in�uences other components
in a system. The proposed information needed to quantify the uncertainty for each ML
component is well studied both in the software architecture and in the ML literature. For
modeling systems with both traditional and ML components, we use Bayesian networks
(BNs), which allow to evaluate software architectures both qualitatively and quantitatively.

We validate MUDD using as example a perception system for autonomous vehicles.
The system consists of 3 components which can only be implemented with deep learning
algorithms. We bring empirical evidence that a component-based architecture is signi�-
cantly more resilient to uncertainty than an end-to-end design. Moreover, we show that
software architecture design patterns can be successfully used to decrease the uncertainty
of a system using ML components. Nonetheless, the system studied can not be used to
exhibit all strengths and possible scenarios in which MUDD can be used.

BNs are directed graphs and do not allow loops. Therefore, two components that
exchange data between themselves can not be modeled with this method. For future
research we propose to explore modeling alternatives that can overcome this limitation.
Hybrid models, such as Markov random �elds or factor graphs use both directed and
un-directed edges and are promising alternatives.

The evaluation presented in Section 3.7 also suggests new research directions: it is
interesting to validate which architectural patterns are more suitable to reduce uncertainty
for ML components, and in which contexts. Following this research direction may lead
to new architectural models and patterns that better support the integration between
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traditional and ML software components.
Moreover, there are many common elements between tackling uncertainty at design

time and at run-time. Several links and an integration between the two is compelling
to explore in future research. For example, the models introduced in this paper can be
integrated with run-time models in order to evaluate the uncertainty of decision pipelines
using real-time data.
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4
Adoption and Effects of

Engineering Best Practices
in Machine Learning

In this chapter we aim to empirically determine the state of the art in how teams
develop, deploy and maintain software with ML components. Towards this goal,
we mined both academic and grey literature, and identi�ed 29 engineering best
practices for ML applications. We conducted a survey among 313 practitioners to
determine the degree of adoption for these practices, and to validate their perceived
e�ects. Using the survey responses, we quanti�ed practice adoption, di�erentiated
along demographic characteristics, such as geography or team size. We also tested
correlations and investigated linear and non-linear relationships between practices
and their perceived e�ects. Our �ndings indicate, for example, that larger teams
tend to adopt more practices, and that traditional software engineering practices
tend to have lower adoption than ML speci�c practices. The statistical models can
also predict perceived e�ects such as agility, software quality and traceability,
from the degree of adoption for speci�c sets of practices. Combining practice
adoption rates with practice importance, as revealed by statistical models, we
identify practices that are important but have low adoption, as well as practices
that are widely adopted but are less important for the e�ects we studied. Overall,
the survey and the response analysis provide a quantitative basis for assessment
and step-wise improvement of practice adoption by ML teams.

This chapter has been published as q A. Serban, K. van der Blom, H. Hoos, J. Visser, Adoption and E�ects of Software
Engineering Best Practices in Machine Learning, Empirical Software Engineering and Measurement, 2020 [245].
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4.1 Introduction

The adoption of ML components in production-ready applications demands strong engi-
neering methods to ensure robust development, deployment and maintenance. While a
wide body of academic literature acknowledges these challenges [14, 117, 131, 160, 282],
there is little academic literature to guide practitioners. In fact, a large part of the lit-
erature concerning engineering practices for ML applications can be classi�ed as grey
literature [82] and consists of blog articles, presentation slides or white papers.

In this chapter, we aim to determine the state of the art in how teams develop, deploy
and maintain software solutions that involve ML components. Towards this goal, we have
�rst distilled a set of 29 engineering best practices from the academic and grey literature.
These practices can be classi�ed as traditional practices, which apply to any software
application, modi�ed practices, which were adapted from traditional practices to suit the
needs of ML applications, and completely new practices, designed for ML applications.

In order to validate the adoption and relevance of the practices we ran a survey among
ML practitioners, with a focus on teams developing software with ML components. The
survey was designed to measure the adoption of practices and also to assess the e�ects
of adopting speci�c sets of practices. We obtained 313 valid responses, and analysed 29
practices and their in�uence on 4 e�ects.

The main contributions of this chapter are as follows. Firstly, we summarise academic
and grey literature in a collection of best practices. This body of information can be
used by practitioners to improve their development process and serves as a gateway to
literature on this topic. Secondly, we determine the state of the art by measuring the
adoption of the practices. These results are used to rank the practices by adoption level
and can serve to assess the popularity of particular practices. Thirdly, we investigate
the relationship between groups of practices and their intended e�ects, through di�erent
lenses – by training a linear regression model to check if the intended e�ect is dependent
on the practices and by training more sophisticated regression models, using a variety of
ML approaches to predict the e�ects from the practices. Lastly, we investigate the adoption
of practices based on the data type being processed and based on the practice categories
introduced above (traditional, modi�ed, new).

Our results suggest that the practices apply universally to any ML application, and
are largely independent of the type of data considered. Moreover, we found a strong
dependency between groups of practices and their intended e�ect. Using the contribution
of each practice to the desired e�ect (extracted from our predictive models) and their
adoption rate, we outline a method for prioritising practice improvements tailored for
achieving speci�c e�ects, such as increased traceability or software quality. While our
study is restricted to ML, rather than the broader and less clearly delineated �eld of arti�cial
intelligence (AI), many of our �ndings may have wider applications, as we will brie�y
discuss in Section 4.8.

This chapter is organised as follows. We �rst discuss background and related work
(Section 4.2). Next, we describe the process and results of mining practices from literature
(Section 4.3). A description of the design of our study (Section 4.4) is followed by a
presentation of the survey results regarding the adoption of practices (Section 4.5) and a
deeper analysis of the relationship between the practices and their e�ects (Section 4.6).
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Finally, we discuss interpretation and limitations of our �ndings (Section 4.7) and close
with general conclusions and remarks on future work (Section 4.8).

4.2 Background and related work

Engineering challenges posed by ML. As ML components are developed and deployed,
several engineering challenges speci�c to the ML software development life-cycle emerge [14,
117, 131, 160, 282]. Arpteg et al. [14] identi�ed a set of 12 challenges that target develop-
ment, deployment and organisational issues. In particular, managing and versioning data
during development, monitoring and logging data for deployed models and estimating the
e�ort needed to develop ML components present striking di�erences with the development
of traditional software components.

Similarly, Ishikawa and Yoshioka [117] as well as Wan et al. [282] have studied how
software engineers perceive the challenges related to ML and how ML changes the tra-
ditional software development life-cycle. Both studies ran user surveys with a majority
of respondents from Asia. We could not �nd a similar study without this regional bias.
Nonetheless, both publications concluded that testing and ensuring the quality of ML
components is particularly di�cult, because a test oracle is missing, the components often
behave nondeterministically, and test coverage is hard to de�ne. To classify the challenges
raised by ML components, Lwakatare et al. introduced a comprehensive taxonomy [160].

White and grey literature analysis. In search for ways to meet the challenges
presented earlier, we mined the literature and collected SE best practices for ML. We
observed that the majority of literature on this topic consists of so called grey literature [82] –
i.e., blog articles, presentation slides or white papers from commercial companies – while
there is relatively little academic literature. Garousi et al. [82] showed that, if used properly,
grey literature can bene�t SE research, providing valuable additional information. However,
this literature must be used with care, because it does not contain strong empirical evidence
to support its claims [83]. We decided to included the grey literature in our literature search,
using the process described by Garousi et al. [82], because: (1) coverage of the subject by
academic literature is rather incomplete, (2) contextual information is important for the
subject of study – i.e., practitioners may have di�erent opinions than scientists on what
quali�es as best practices – and (3) grey literature may corroborate scienti�c outcomes
with practical experience.

Related work. We focus on peer-reviewed related work that proposes, collects or
validates engineering best practices for ML. One of the initial publications on this topic is
the work of Sculley et al. [236], which used the framework of technical debt to explore risk
factors for ML components. In particular, they argued that ML components have a stronger
propensity to incur technical debt, because they have all maintenance problems speci�c to
traditional software as well as a set of additional issues speci�c to ML. They also presented
a set of anti-patterns and practices aimed at avoiding technical debt in systems using ML
components. Compared to [236], we introduce a broader set of practices, applicable to more
e�ects than technical debt. Nonetheless, some of their engineering speci�c suggestions are
included in our catalogue of practices.

Breck et al. [36] introduced 28 tests and monitoring practices that target di�erent
stages of the development process for ML. They also proposed a list of bene�ts resulting
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from implementing the tests and developed a model to score test practice adoption, aimed
at measuring technical debt. Again, the practices dedicated to SE from [36] have been
included in our catalogue. On the same topic, Zhang et al. introduced a survey on testing
techniques for ML components [311], which – in contrast to the broader approach taken
in [36] – only targets testing ML models.

To identify challenges faced by small companies in developing ML applications, de Souza Nasci-
mento et al. ran interviews with 7 developers [63]. Afterwards, they proposed and validated
a set of checklists to help developers overcome the challenges faced. Although the valida-
tion session is not thorough (it only included a focus group with 2 participants), some of
the items in the checklists qualify as best practice candidates. Some practices are included
in our catalogue and our survey further con�rms their relevance and adoption.

Washizaki et al. [286] studied and classi�ed software architecture design patterns and
anti-patterns for ML, extracted from white and grey literature. Many of these patterns are
application and context speci�c, i.e., they depend on the architectural style or on the type of
data used. The patterns are of a general character and the ones similar to recommendations
we found in literature were included in our catalogue of practices.

Amershi et al. conducted a study internally at Microsoft, aimed at collecting challenges
and best practices for SE used by various teams in the organisation [8]. They reported on a
broad range of challenges and practices used at di�erent stages of the software development
life cycle. Using the experience of the respondents and the set of challenges, they built a
maturity model to assess each team. However, the set of challenges and reported practices
are broad and often not actionable. Moreover, they represent the opinions of team members
from Microsoft, where typically more resources are dedicated to ensuring adoption of best
practices than within smaller companies. In our work, we aim to bridge this gap by running
a survey with practitioners with various backgrounds and by presenting a set of actionable,
�ne-grained best practices.

4.3 Mining practices from literature

Document Search. In addition to the publications discussed in Section 4.2, we searched
the academic and grey literature on the topic of SE best practices for ML applications. We
used both Google and Google Scholar, for which we compiled a common set of queries.
The keywords used for querying suggest di�erent steps in the development cycle, e.g., de-
velopment, deployment, operations, etc. For each query, we also developed two variants,
by (1) replacing the term ‘machine learning’ with ‘deep learning’ whenever possible, and
(2) removing stop words and composing a Boolean AND query from the remaining key
words. As an example of the second variant, consider the query “software engineering”
AND “machine learning”, stemming from the query “software engineering for machine
learning”. All queries were submitted to Google and Google Scholar, and the �rst 5 result
pages were manually inspected.

A total of 64 queries, including variants, were used, and 43 of the resulting articles
were selected for initial inspection. In order to avoid search engine personalisation, all
queries were sent from a public network, with an extension that removes browser cookies.

Document classi�cation. Based on criteria formulated in [82], such as authoritative-
ness of the outlet, as well as objectivity of the style and content, we excluded low-quality
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Table 4.1: Successful search queries. The table shows the base queries, for which any variant (described in text)
led to a valid source and at least one practice.

Query Documents
software engineering for machine learning [8]
data labeling best practices [6, 56, 210, 219]
machine learning engineering practices [37, 230, 313]
software development machine learning [124]
machine learning production [223, 253]
machine learning production practices [5, 24, 146, 171]
machine learning deployment [65]
machine learning deployment practices [229]
machine learning pipelines practices [114]
machine learning operations [268]
machine learning versioning [279]
machine learning versioning practices [104]

documents and classi�ed the remaining documents as either academic literature or grey
literature. Moreover, we �ltered for duplicates, because chunks of information were some-
times reused in grey literature.

After classifying and �ltering the results, we identi�ed 21 relevant documents, includ-
ing scienti�c articles, white papers, blogs and presentation slides, that – along with the
publications introduced in Section 4.2 – were used to mine SE best practices for ML. Other
relevant sources were selected through a snowball strategy, by following references and
pointers from the initial articles.

Table 4.1 lists the successful search terms (without variants), from which at least one
document passed the �nal selection. Whenever the queries had common results, we only
considered relevant the �rst query. The second column shows the documents selected from
the base queries and their variants.

Extracting a common taxonomy for the practices. Many of the selected documents
provide, or implicitly presume, a grouping of practices based on development activities
speci�c to ML. For example, Amershi et al. [8] present a nine-stage ML pipeline. Alterna-
tively, Sato et al. [230] partition similar activities into six pipeline stages. All processes
have roots in early models for data mining, such as CRISP-DM [294]. While no single
partitioning of ML activities emerged as most authoritative, we were able to reconstruct a
broad taxonomy that is compatible with all partitionings found in the literature. We will
use this categorisation to group ML development practices and to structure our survey and
subsequent discussion of our �ndings:

• Data - Practices that come before training, including collecting and preparing data
for training ML models.

• Training - Practices related to planning, developing and running training experi-
ments.
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• Deployment - Practices related to preparing a model for deployment, deploying,
monitoring and maintaining an ML model in production.

• Coding - Practices for writing, testing, and deploying code.

• Team - Practices related to communication and alignment in a software development
team.

• Governance - Practices that relate to ensuring responsible use of ML, including
accountability regarding privacy, transparency, and usage of human, �nancial, or
energy resources.

Compiling a catalogue of practices. From the selected documents we compiled an
initial set of practices using the following methodology. First, we identi�ed all practices,
tests or recommendations that had similar goals. In some articles, the recommendations
only suggest the �nal goal – e.g., ensure that trained ML models can be traced back to
the data and training scripts used – without providing details on the steps needed to
achieve it. In other publications, the recommendations provided detailed steps used to
achieve the goals – e.g., use versioning for data, models, con�gurations and training
scripts [171, 253, 279]. In this example, traceability is an outcome of correctly versioning
all artefacts used in training. Whenever we encountered similar scenarios, we selected or
abstracted actionable practices and added the high-level goals to a special group, which we
call “E�ects” and describe in Table 4.6.

Next, we assessed the resulting practices and selected those speci�cally related to
engineering or to the organisation of engineering processes. This initial selection gave us
23 practices, which naturally fall into 4 out of the 6 classes introduced above. While this
set of practices re�ected the ML development process, it lacked practices from traditional
SE. Given that practitioners with a strong background in ML might be unaware of the
developments in SE, in a third stage, we complemented the initial set of practices with 6
practices from traditional SE – three of a strictly technical nature, falling into the “Coding”
class, and three relating to social aspects, falling into the “Team” class. We selected these
practices because we consider them challenging, yet essential in software development.

The resulting 29 practices are listed in Table 4.8 and the e�ects in Table 4.6. The practices
are available to practitioners in a more elaborate format in an online catalogue1, consisting
of detailed descriptions and concise statements of intent, motivation, related practices,
references and an indication of di�culty. A curated reading list with these references,
further relevant literature as well as a selection of supporting tools is maintained online2.

4.4 Study design

We validated the set of practices with both researchers and practitioners through a survey.
For this, we designed a descriptive questionnaire asking respondents if the team they are
part of adopts, in their ML projects, the practices we identi�ed earlier. Before distributing

1h�ps://se-ml.github.io/practices/
2h�ps://github.com/SE-ML/awesome-seml

https://se-ml.github.io/practices/
https://github.com/SE-ML/awesome-seml
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the survey, we interviewed �ve practitioners with diverse backgrounds, in order to check
if any information from the survey was redundant or whether any practices were missing.

Questionnaire. In designing the questionnaire used in our survey, we followed the
recommendations of Kitchenham et al. [136] and Ciolkowski et al. [55]. We designed a
cross-sectional observational study [136], i.e., participants were asked at the moment of
�lling the questionnaire if they adopted the recommended practices. Several preliminary
questions were designed to speci�cally assign participants to groups. This renders the
study a concurrent control study, in which participants are not randomly grouped [136].

The target audience were teams of practitioners using ML components in a project.
Speci�c preliminary questions were added to allow �ltering between teams that build and
deploy ML applications, use ML and do not build an application or do not use ML at all.
We consider that a signi�cant amount of engineering is also needed in research (where
ML may be used without building deployed applications), especially in running large-scale
deep learning experiments, and would like to verify which practices are relevant in this
context. Team pro�le (e.g., tech company, governmental organisation), team size (e.g., 1
person, 6-9 persons), team experience (e.g.„ most of us have 1-2 years of experience), and
the types of data used (e.g., tabular data, images) were also included in the preliminaries.
In total, the preliminaries contained 5 questions that were later used to group participants
and �lter out noise.

Then, 31 questions followed, with standard answers, mapped onto the practices from
Table 4.8. In two cases, multiple questions map onto the same practice; for example,
continuous integration is achieved by automating the build process and running it at each
commit. In the questionnaire, we asked two questions, one for each action, although the
answer was compiled to one practice.

We used standard answers, on a Likert scale with four possible answers, in order
to avoid the middle null-point strategy of answering [108]. The labels were chosen in
order to re�ect the degree of adoption, rather than the level of agreement [220]. This
allowed the practices to be expressed impartially – e.g., “our software build process is
fully automated” – and the answers to express degrees of adoption – e.g., “not at all” or
“completely” – instead of degrees of agreement such as “agree” or “strongly agree”. This
strategy eliminated confusing questions and answers, which may lead to an extreme null-
point bias [108]. Whenever the answer scale did not match the full range of answers, we
added speci�c answers which helped to avoid noisy results; for example, in the questions
about data labelling, we added the answer “we do not use data labels”, which accounts for
unsupervised learning scenarios.

The questionnaire ended with a section on the perceived e�ects of adopting the practices.
This enabled us to test the hypothesis that adopting a group of practices helps to achieve
an e�ect. The four questions on perceived e�ects are shown in Table 4.6.

Although the questionnaire has 45 questions, we employ optimisation techniques, such
as automatically moving to the next question once an answer is selected, to reduce the
time required for completing our questionnaire to 7 minutes on average.

Pilot interviews. Before distributing the survey broadly, we invited �ve practitioners
with distinct backgrounds – ranging from tech startups to large tech companies – to an
interview. We asked them to answer a set of questions regarding the challenges they face
and the most important engineering practices they adopt. All interviewees were also asked
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Table 4.2: Pro�les of the pilot interview subjects.

Id Company Pro�le Team Size Experience
P1 Tech Startup 5-6 ppl. 1-2 years
P2 Tech company 10-15 ppl. >5 years
P3 Research lab 5-6 ppl. 2-5 years
P4 Tech Startup 10-15 ppl. 2-5 years
P5 Non-tech company 6-9 ppl. 1-2 years

to �ll out and comment on the questionnaire. Since the survey is focused on teams, in
Table 4.2 we present the team and company pro�les for each interviewee; all interviewees
use ML for a project. Moreover, P4 is part of a team that builds platforms to support the
ML process and uses distinct ML projects to test the platforms.

The biggest challenges faced by the interviewees were: ensuring data quality and data
documentation (P5), data versioning and freshness (P2), scalability (P1, P4) and communica-
tion with other departments inside the company (P5). For each challenge mentioned, there
is at least one practice addressing it in Table 4.8. The most important engineering practices
mentioned were: using version control for data and models (P1, P4), continuous deployment
(P2, P5) and model maintenance (P2). Several practices to address these challenges were
already listed in Table 4.8.

After completing the questionnaire, all interviewees agreed with the relevance of all
the practices we listed and did not consider any of them redundant. The interviewees
suggested that some questions needed additional allowable answers, to cover the range
of possible responses and to avoid bias. For example, for a question about the labelling
process, we added “we do not use labels” to avoid forcing users of unsupervised learning
to resort to “not at all”.

We used the feedback from the interviews to re�ne the questionnaire, adding answers
to four questions and rewording others.

Distribution. After the pilot interviews, our survey was distributed using a snowball
strategy. Initially, we reached out to our network of contacts and to the authors of the
publications used to extract the practices, asking them to distribute the survey through their
networks. Moreover, we openly advertised the survey through channels commonly used
by practitioners, such as Twitter, Medium, HackerNoon, Dev.to and the Meetup groups for
ML in several cities.

4.5 Findings on practice adoption

In total, we obtained 350 valid responses to our survey, after �ltering out incomplete
answers or respondents that spent too little time to have given serious answers (under 2
minutes). From this initial set, we discarded 12 answers from respondents who were not
part of a team using ML. Moreover, we applied �ne-grained �ltering, using the percentage
of questions that were answered in the prerequisites (at least 50 %) and in the practice
adoption questions (at least 50 %), resulting in 313 complete responses. Whenever not
mentioned otherwise, the analysis will be based on these responses.
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Figure 4.1: Demographic information describing the survey participants. All plots show the percentage of
respondents, grouped by demographic factors.

Demographics. Using the initial preliminary questions, we provide a demographic
characterisation of the respondents in Figure 4.1. First, we grouped the answers using the
location attributes and present the results in Figure 4.1a. We observe that Europe has an
overall higher contribution, although other regions are also well represented. This possible
bias will be discussed later in this section, when analysing the answers for each region.

Figure 4.1b illustrates the percentage of respondents grouped by the organisation
type. The higher percentages are for teams working in tech companies (e.g., social media
platforms, semiconductors) and research labs. These results are not surprising, since both
research and adoption of ML is driven by these two classes of practitioners. Nonetheless,
non-tech companies (e.g., banks) and governmental organisations are also well represented.

In the last two plots, we show the percentage of answers grouped by team size –
Figure 4.1c – and team experience – Figure 4.1d. We observe that most teams have between 4-
5 and 6-9 members, corresponding to normal software development teams (as recommended,
for example, in Agile development). Similarly, most teams have between 1-2 years and
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Figure 4.2: Adoption of practices grouped by various demographic factors. All plots show the percentage of
answers, grouped by the answer types illustrated in the plot legend.

2-5 years of experience, which is an anticipated result, since these intervals correspond
to the recent growth in popularity of ML among practitioners. Overall, the demographic
information indicates that our data is well balanced and diverse.

Next, we analysed the adoption of practices grouped by the demographic factors
introduced earlier. We display the answers from the practice questions in Figure 4.2, grouped
and normalised using the Likert scale used in the survey. Figure 4.2a shows the percentage
of answers grouped by regions. As discussed earlier, Europe is somewhat over-represented
in our data set. However, the adoption of practices for Europe does not present striking
di�erences when compared to South America or Asia. Conversely, the respondents from
North America have a signi�cant higher number of adopted practices (corresponding to
answers “Completely” or “Mostly”) than other regions. Since this region is well represented
in our set of responses, it is likely that practitioners from North America have a higher
adoption of practices. Moreover, since Europe does not present striking di�erences with
other regions, it is likely that little bias is introduced by its over-representation.
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Figure 4.2b shows the adoption of practices grouped by the organisation type. We
observe that tech companies have a higher rate of complete adoption than others. Research
organisations tend to have lower practice adoption. This could re�ect that they are aware
of the practices, but only develop prototypes, for which adoption is not needed, or partial
adoption is su�cient. In fact, for non-deployment practices only, adoption rates are similar.

For team size – Figure 4.2c – we observe a trend towards higher adoption of practices
(and also lower percentage of practices that were not adopted at all) as team size increases.
This could be caused by better task distribution among team members, or it could be a
result of larger teams including members with di�erent backgrounds. Similarly, for team
experience, there is a trend towards higher adoption of practices as the team experience
increases, as seen in Figure 4.2d. These results were anticipated, since more experience or
a deeper involvement in technology exposes team members to the knowledge needed to
adopt best practices. A contrasting trend can be observed only for teams with more than 5
years of experience, where the percentage of practices that are only partially or not at all
adopted increases slightly. This result may reveal that practitioners who started very early
may be unaware of practices that are developed recently.

The results presented above con�rm our questions were clear and achieved their goals,
and that the answer scale did not introduce bias.

Practice adoption ranking. We now explore the adoption of practices, based on
the practice types discussed in Section 4.1. In particular, we are interested in �nding out
whether traditional SE practices are equally adopted in ML engineering and which new or
modi�ed practices are popular among practitioners. Moreover, we also comment on the
least and most adopted practices.

The practices are classi�ed as follows: (1) new practices, designed speci�cally for the
ML process, (2) modi�ed practices, derived from traditional SE practices, but adapted for
the ML process and (3) traditional practices, applied equally in traditional SE and ML. This
classi�cation is illustrated in the “Type” column of Table 4.8.

In order to measure the adoption rate of the practices, we devised a ranking algorithm
with the following steps:

1. Compute for each practice the percentage ℎ of respondents with at least high adoption
(counting “Completely” answers), the percentage m with at least medium adoption
(counting “Completely” and “Mostly”), and the percentage l with at least low adoption
(counting “Completely”, “Mostly”, and “Partially”). As an example, for practice 1 we
obtained ℎ = 9.62%, m = 34.04%, and l = 65.92%.

2. Convert each percentage into a rank number. For practice 1, we obtained rℎ = 22,
rm = 23, and rl = 19.

3. Take the average of the three ranks for each practice and then rank the practices
according to this average. For practice 1, rank 22 was obtained, as can be seen in
Table 4.8.

Thus, the �nal rank is the average of: the practice rank on at least high adoption, its rank
on at least medium adoption, and its rank on at least low adoption. By accumulating the
answers in step 1, we expect to cancel out the noise stemming from fuzzy boundaries
between subsequent answer types.
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Table 4.3: Adoption of practices based on the practice type.

Practice
Type

At least
high adoption

At least
medium adoption

At least
low adoption

Traditional 15.6% 47.8% 76.8%
Modi�ed 11.3% 42.0% 76.9%
New 16.9% 50.0% 83.9%

The results are presented in the supplementary materials and the online version of
the publication [245]. We note that the most adopted practices (practices 6, 7) are related
to establishing and communicating clear objectives and metrics for training. Versioning
(practice 16), continuous monitoring of the model during experimentation (practice 14) and
writing reusable scripts for data management (practice 3) complete the top 5 positions. It
is interesting to note that the most adopted practices are either new or modi�ed practices,
and not traditional SE practices.

At the other end of the spectrum, we note that the least adopted practices (practices
9, 10) are related to feature management. Writing tests (practice 17), automated hyper-
parameter optimisation (practice 13) and shadow deployment (practice 22) complete the
5 least adopted practices. In general, the least adopted practices require more e�ort and
knowledge. Some practices, related to testing (practices 8, 17) or documentation (practice
9) are also known to raise issues in traditional SE. Moreover, shadow deployment (practice
22) and AutoML (practice 13) require advanced infrastructure.

In order to compare the adoption of practices grouped by their type, we averaged
the three percentages described earlier (without transforming them into ranks), for each
practice type. The results are presented in Table 4.3. We observe that the most adopted
practices are new practices, speci�cally designed for ML, followed by traditional and
modi�ed practices. Traditional practices in the “Team” category are ranked highly, since
collaborative development platforms have become common tools among practitioners and
o�er good support for information sharing and coordination inside a team. In contrast,
traditional practices related to code quality, such as running regression tests (practice 17)
or using static analysis tools to check code quality (practice 19), have low adoption.

Influence of data type on practice adoption. The practices presented in Table 4.8
are general and should apply to any context. However, the type of data being processed
in�uences the choice of algorithms and might also in�uence the adoption of practices. For
example, when processing images or text, it is common to rely on deep neural networks
(DNNs), where training is not preceded by a feature extraction step. Conversely, for other
types of ML algorithms, a feature extraction step is common. Here, we investigate the
in�uence of the type of data to be processed on the adoption of practices. Moreover, we
explore the practices with distinct adoption rates per data type.

The percentage of respondents per data type and the corresponding overall practice
adoption rates are presented in Table 4.4. We employ the same percentages described
earlier to assess the practice adoption rates per data type. We observe that, in our data
set, tabular data, text, images and videos are predominant (each above 25%) and have very
similar adoption rates. Audio and time series have lower representation (under 8%), making
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Table 4.4: Adoption of practices based on the data type.

Adoption
Data Type Perc. of

respondents
At least

high
At least
medium

At least
low

Tabular Data 31.7% 18.0% 50.1% 70.2%
Text 29.7% 19.3% 52.6% 71.4%
Images, Videos 26.4% 19.3% 50.5% 71.5%
Audio 8.8% 24.42% 55.8% 72.6%
Time Series 2.6% 28.2% 60.3% 72.6%
Graphs 0.5% - - -

their adoption rates less reliable. Still, apart from the “At least high” category, adoption
rates remain similar. The “Graphs” data type is used rarely (0.5%), making adoption rates
too unreliable to report.

When comparing the adoption of individual practices, grouped by data type, we ob-
served that several practices tend to have higher adoption for particular data types. For
all comparisons, we used the “at least high” adoption rate. First, practice 13, on automatic
hyper-parameter optimisation, has an adoption rate that is more than 8% higher for tab-
ular data than for text or images. This result could be due to the the algorithms or tools
used. The tool support for automatic hyper-parameter optimisation in more traditional ML
methods, such as random forests or SVMs – which are popular for tabular data – is more
mature than for newer techniques, e.g., DNNs. Second, practice 29, on enforcing privacy
and fairness, has an adoption rate for tabular data that is more than 10% higher than that
for text or images. Last, practice 12, on the capacity to run training experiments in parallel,
has adoption rates for text and images that are over 10% higher than that for tabular data.
Perhaps the infrastructure needed to run experiments with text or images, where DNNs
are used extensively and parallelisation is required to achieve good results, facilitates the
practice adoption.

4.6 Analysis of practices and effects

Following the practice adoption questions, in the questionnaire there were four questions
about the perceived e�ects of adopting these practices. These questions were designed to
test the hypothesis that adopting a set of practices will lead to a desired e�ect. A mapping
between practices and e�ects, as initially hypothesised, can be found in Table 4.6.

Correlations among practices. First, we report results from an analysis of the cor-
relation between practices. We employ the Spearman rank correlation coe�cient, �, in
light of the ordinal nature of the Likert scale used in our questionnaire. To determine the
statistical signi�cance of the observed correlations, we perform t-tests with a signi�cance
level of 0.01.

In total we found 244 statistically signi�cant, moderate to strong correlations (� ≥ 0.35),
of which we report on the most informative ones. For example, writing reusable scripts
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Table 4.5: Description of the e�ects studied.

E�ects Description
Agility The team can quickly experiment with new data and al-

gorithms, and quickly assess and deploy new models
Software Quality The software produced is of high quality (technical and

functional)
Team E�ectiveness Experts with di�erent skill sets (e.g., data science, software

development, operations) collaborate e�ciently
Traceability Outcomes of production models can easily be traced back

to model con�guration and input data

for data management (practice 3) correlates positively with testing for skews between
di�erent models (practice 23, � = 0.35). This suggests that the ability to reuse code for
data transformation can facilitate model evaluation. Furthermore, sharing the training
objectives within the team (practice 6) correlates positively with using a shared backlog
(practice 27, � = 0.38) and using relevant metrics to measure the training objective (practice 7,
� = 0.43). Testing the feature extraction code (practice 8) correlates positively with practices
9 (� = 0.35) and 10 (� = 0.56), on feature documentation and management. This indicates
that practitioners tend to use advanced feature management methods concomitantly and
that the feature management practices complement each other. As expected, practice 8
correlates positively with practice 17, on running regression tests (� = 0.37).

Performing peer review on training scripts (practice 11) correlates positively with all
team practices – using collaborative development platforms (practice 26, � = 0.40), working
against a backlog (practice 27, � = 0.44) and good team communication (practice 28, � = 0.44).
This result is in line with our expectations, since collaborative platforms provide features
for code review, and this is further enhanced by good communication within the team. Peer
review also correlates positively with using static analysis tools for code quality (practice
19, � = 0.48), which suggests that teams prioritising code quality apply various techniques
for this purpose.

The practices for deployment correlate positively between themselves, suggesting that
teams with advanced deployment infrastructures tend to adopt all practices. For example,
automated model deployment (practice 20) correlates positively with shadow deployment
(practice 22, � = 0.48) and automated roll backs (practice 24, � = 0.51). Moreover, continuous
monitoring of deployed models (practice 21) correlates positively with logging predictions
in production (practice 25, � = 0.51). These results indicate that the deployment practices
are complementary and that adopting some enables the adoption of others.

Linear relationship between practices and e�ects. Second, we used the initial map-
ping from practices to e�ects (presented in Table 4.6) to investigate the hypothesis that
adopting a set of practices leads to each desired e�ect. For the analysis, we trained four
simple, linear regression models, one for each set of practices and e�ects in Table 4.6.
The e�ects description is presented in Table 4.5. For each model, we used the F-test for
linear regression to test the null hypothesis that none of the practices are signi�cant in
determining the e�ect, with a signi�cance level of 0.01. Since some of the data sets were
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Table 4.6: Linear regression models describing the dependence of e�ects on the practices that were initially
hypothesised to in�uence them. For each e�ect, we report the p-value from the F-test for regression and the R2
coe�cient of determination.

E�ects Practices p-value R2

Agility 12, 18, 22, 24, 28 7 ⋅10−4 0.84
Software Quality 9, 10, 11, 17, 18, 19 5 ⋅10−3 0.95
Team E�ectiveness 6, 26, 27, 28 1 ⋅10−5 0.98
Traceability 3, 5, 16, 25, 27 4 ⋅10−6 0.75

Table 4.7: Mean squared error (MSE), R2 and Spearman correlation (�) between the predicted and the true
outcomes for Random Forest Regression trained to predict the e�ects from the practices in the second column.
The results are extracted from a test data set consisting of 25% of the data.

E�ects Practices MSE / R2 / �
RF Grid Search

Agility 12, 18, 20, 21, 22, 28 0.25 / 0.80 / 0.92
Software Quality 9, 10, 11, 17, 18, 19 0.17 / 0.87 / 0.91
Team E�ectiveness 6, 26, 27, 28 0.19 / 0.84 / 0.92
Traceability 3, 5, 16, 21, 25, 27 0.21 / 0.83 / 0.93

imbalanced, i.e., contained substantially more examples for the positive or negative e�ect,
we applied random under-sampling to balance those sets.

The null hypothesis was rejected for all e�ects; the respective p-values from the F-test
are shown in Table 4.6. We also performed t-tests to assess whether any of the coe�cients
in the regression models were statistically signi�cantly di�erent from zero, and found
evidence that (at signi�cance level 0.01) this was the case. For example, the t-value of
practice 25 for traceability is 6.29. Moreover, the R2 values, also shown in the table, are
high for all e�ects, which indicates that the observed e�ects are rather well described by a
linear model of the degree of adoption of the associated practices.

Non-linear relationship between practices and e�ects. Last, we report the results
from training statistical models to predict each perceived e�ect from sets of practices.
Unlike the linear regression models described earlier, here, we additionally considered
ML models that do not assume a linear relationship between the practices and e�ects.
Moreover, in order to strengthen the evaluation, we performed hold-out testing, using a
test set of 25% of the data for each e�ect, which was only used for the �nal assessment of
our models. We also revised the sets of practices associated with two of the e�ects (agility
and traceability), in order to enhance the prediction accuracy of the models as assessed on
validation data.

For evaluation, we consider a random forest (RF) regression model whose hyper-
parameters were optimised using grid search. During training, we used 5-fold cross-
validation on the training data (i.e., the 75% of the data retained after setting aside the
test sets). For all experiments, we used under-sampling on the training data to remove
class imbalance. We also experimented with the SMOTE over-sampling algorithm for
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Figure 4.3: Practice adoption and importance, for each e�ect and practice. The practice importance is the Shapley
value extracted from the grid search RF models in Table 4.7, using the test data set.

regression [50, 273], but did not observe signi�cant increases in performance of our models.
For grid search used for hyper-parameter optimisation of our RF models, we used 384
candidate con�gurations for each of the �ve folds.

The performance of the predictive model on test data is shown in Table 4.7. For all
e�ects, we used three standard evaluation metrics: mean squared error (MSE), the R2
coe�cient of determination, and the Spearman correlation coe�cient (�) for predicted
vs true outcomes. We observe that, in all scenarios, the e�ects can be predicted from the
practices with very low error and a high coe�cient of determination.

Importance of practices. We also studied the contribution of each practice to the
�nal e�ect, in order to determine the practices that are the most important for each e�ect.
Towards this end, we used a well-known concept from cooperative game theory called the
Shapley value to quantify the contributions of individual practices [78, 159]. In our case,
the Shapley value intuitively re�ects the increase in predictive accuracy caused by a single
practice, averaged over all possible subsets of practices already considered in a given model.
In order to maintain consistency across all e�ects, and because the models obtained from
AutoML are ensembles that are more di�cult to analyse, we performed All Shapley value
computations are performed on the model from Table 4.7. We have computed Shapley
values on training and test data, and obtained consistent results for all e�ects.

In order to showcase the importance of each practice for an e�ect, we contrast it with
the adoption ranking of the practices from Section 4.5. We plot the Shapley values and the
normalised ranks in Figure 4.3. The plot indicates, given our data, which practices are most
important for achieving a desired e�ect. We observe that some very important practices
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have low adoption rates, while some less important practices have high adoption rates. For
example, practice 25 is very important for “Traceability", yet relatively weakly adopted. We
expect that the results from this type of analysis can, in the future, provide useful guidance
for practitioners in terms of aiding them to assess their rate of adoption for each practice
and to create roadmaps for improving their processes. We note that our analysis currently
does not take into account functional dependencies between the practices.

4.7 Discussion

We now comment on the relation between practice adoption and the challenges from
Section 4.2, and discuss threats to the validity of our results.

Engineering challenges vs. practice support. When comparing practice adoption
(Table 4.8) with the engineering challenges referenced in Section 4.2, we observe that many
challenges are supported by well adopted engineering practices.

In particular, versioning the artefacts related to ML projects, considered a challenge
by [14] and corresponding to practice 16 in our study, has a high adoption rate (rank 3). The
challenges raised by experiment management [14] and prototyping [160], such as clearly
specifying desired outcomes or formulating a problem (practices 6, 7), as well as monitoring
experiments and sharing their outcomes (practices 14, 15), also have high adoption rates.
These results suggest that these challenges have been met by practitioners.

In contrast, the challenge of testing ML artefacts [14, 117, 160], corresponds to practices
8 and 17, which have low adoption in our study. Although we do not detail all testing
methods for ML, as done in [311], the adoption rates for the two testing practices in our
study suggests that testing remains challenging.

Several practices presented in this study have low adoption and are not mentioned in
previous studies as challenging; this is particularly the case for the practices related to
feature management (practices 8, 9 and 10) as well as automating hyper-parameter optimi-
sation and model selection (practice 13). Although these practices have been recommended
in the literature, we plan to further validate their relevance through future participant
validation (member check) interviews and by collecting additional data.

Threats to validity. We identify three potential threats to the validity of our study
and its results. First, the data extracted from literature may be subject to bias. To limit
this bias, several authors with di�erent backgrounds have been involved in the extraction
process. Also, the pilot interviews and survey produced no evidence suggesting that
any of the practices we identi�ed are not recognised by practitioners, nor did we �nd
any indications that important practices were missing from our list. Nevertheless, in the
future, we intend to test completeness and soundness of our catalogue of practices through
validation interviews.

Second, the survey answers may be subject to bias. As shown in Section 4.5, some
groups of respondents are over-represented and may introduce selection bias. In particular,
although the adoption rates for respondents in Europe do not present striking di�erences
when compared to those in South America or Asia, Europe remains over-represented. Also,
some bias may stem from respondents in North America, for which the adoption patterns
are di�erent, while they are not equally represented to other groups. This bias can be
removed by gathering more data, as we plan to do in the future.
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Last, the measurements used to investigate the relationship between groups of practices
and their intended e�ects may be subject to bias. Rather than measurements of actual
e�ects, we used the perceived e�ects as evaluated by the survey respondents. We have not
established that perceived e�ects indeed re�ect actual e�ects, which is an important and
ambitious topic for future research.

4.8 Conclusions and future research

We studied how teams develop, deploy and maintain software solutions that involve
ML components. For this, we mined both academic and grey literature and compiled a
catalogue of 29 SE best practices for ML, grouped into 6 categories. Through a survey with
313 respondents, we measured the adoption of these practices and their perceived e�ects.

Contributions. We reported on the demographic characteristics of respondents and
the degree of adoption of (sets of) practices per characteristic. For example, we found
that larger teams tend to adopt more practices, and that traditional SE practices tend to
have lower adoption than practices speci�c to ML. We also found that tech companies
have higher adoption of practices than non-tech companies, governmental organisations
or research labs.

Further analysis revealed that speci�c sets of practices correlate positively with e�ects
such as traceability, software quality, agility and team e�ectiveness. We also trained ML
models that can predict with high accuracy the perceived e�ects from practice adoption.

We contrasted the importance of practices, i.e., their impact on desirable e�ects as
revealed by these predictive models, with practice adoption, and thus indicating which
practices merit more (or less) attention from the ML community. For example, our results
suggest that traceability would bene�t most from increased adoption of practice 25, the
logging of production predictions with model versions and input data. At the level of
teams or organisations, these same results can be used to critically assess current use of
practices and to prioritise practice adoption based on desired e�ects. For example, a team
with a strong need for agility and low adoption of associated practices may plan to increase
adoption of those practices.

Future research. We plan to further increase the number of respondents of our survey,
so we can perform even more �ne-grained analyses. We may also add more questions,
for example to better measure the e�ects of practices related to AutoML, a relatively new
direction that is receiving sharply increasing attention in academia and industry. We
also plan to better cover the traditional best practices from SE, using a process similar
to the other practices. Through validation interviews with respondents, we plan to add
depth to the interpretation of our �ndings, especially regarding the relationships between
practices and their e�ects. We also intend to develop and test a data-driven assessment
instrument for ML teams, to assess and plan their adoption of engineering practices. While
our study is restricted to ML we may also investigate to which extent our �ndings are
applicable for other domains within the broader �eld of AI. Overall, our hope is that
this line of work can facilitate the e�ective adoption of solid engineering practices in the
development, deployment and use of software with ML components, and thereby more
generally contribute to the quality of AI systems. Furthermore, we are convinced that
other areas of AI would bene�t from increased attention to and adoption of such practices.
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To strengthen the online catalogue in this direction, we extended it with various practices
related, for example, to trustworthy AI development [247].
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Table 4.8: SE best practices for ML, grouped into 6 classes.

Nr. Title Class
1 Use Sanity Checks for All External Data Sources Data
2 Check that Input Data is Complete, Balanced and Well Distributed Data
3 Write Reusable Scripts for Data Cleaning and Merging Data
4 Ensure Data Labelling is Performed in a Strictly Controlled ProcessData
5 Make Data Sets Available on Shared Infrastructure (private or

public)
Data

6 Share a Clearly De�ned Training Objective within the Team Training
7 Capture the Training Objective in a Metric that is Easy to Measure

and Understand
Training

8 Test all Feature Extraction Code Training
9 Assign an Owner to Each Feature and Document its Rationale Training
10 Actively Remove or Archive Features That are Not Used Training
11 Peer Review Training Scripts Training
12 Enable Parallel Training Experiments Training
13 Automate Hyper-Parameter Optimisation and Model Selection Training
14 Continuously Measure Model Quality and Performance Training
15 Share Status and Outcomes of Experiments Within the Team Training
16 Use Versioning for Data, Model, Con�gurations and Training

Scripts
Training

17 Run Automated Regression Tests Coding
18 Use Continuous Integration Coding
19 Use Static Analysis to Check Code Quality Coding
20 Automate Model Deployment Deployment
21 Continuously Monitor the Behaviour of Deployed Models Deployment
22 Enable Shadow Deployment Deployment
23 Perform Checks to Detect Skews between Models Deployment
24 Enable Automatic Roll Backs for Production Models Deployment
25 Log Production Predictions with the Model’s Version and Input

Data
Deployment

26 Use A Collaborative Development Platform Team
27 Work Against a Shared Backlog Team
28 Communicate, Align, and Collaborate With Multidisciplinary

Team Members
Team

29 Enforce Fairness and Privacy Governance
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5
Adversarial

Machine Learning

In the the second part of the thesis we address the challenge of designing robust
deep learning models in the small world. In particular, we investigate the design
of robust deep learning based computer vision models against intentional per-
turbations (adversarial examples), and the design of robust deep learning based
planning algorithms. In this chapter, we give a brief introduction to adversarial
examples – inputs intentionally designed to decrease the performance of deep
learning models, while being in close resemblance to training data. Given the
surprisingly small size the perturbation needed to create adversarial examples, a
wide body of literature conjectures on their existence, and how this phenomenon
can be mitigated. A complete characterisation of adversarial examples can be
found in our previous publication [242]. Here, we focus on describing the most
common methods to generate and protect against adversarial examples, and
discuss their relevance to safety and security of deep learning models.

This chapter is a short summary of q A. Serban, E. Poll, J. Visser, Adversarial Examples on Object Recognition: A
Comprehensive Survey, ACM Computing Surveys, 2020 [242].
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5.1 Introduction

We discuss the ability of DL models to cope with uncertainties in the operational envi-
ronment, also called algorithmic robustness. Recent publications [198, 267] showed DL
models exhibit low robustness, and triggered an impressive wave of publications. Notably,
DL models are sensitive to small, intentional, perturbations – used to build inputs which
substantially decrease their performance, while being in close resemblance to training data.
The term adversarial examples was �rst used to describe such inputs by Szegedy et al. [267].

Since an intention is required, many publications claim security consequences, e.g., [96,
142, 187, 199], and hypothesize that commercial deployment is hindered by low robust-
ness. In contrast, other publications show these claims are sometimes exaggerated and
demand that clear security requirements are formulated before security consequences are
claimed [45, 86]. In between, many publications investigate the existence of adversarial
examples from a theoretical perspective and shed light on this particular behaviour of
ML algorithms [39, 235]. Overall, there are two emergent reasons to study adversarial
examples: (1) because attackers might use them to exploit ML algorithms and (2) because
they show that ML algorithms are not robust, which may stop them from being adopted in
some domains (particularly in safety-critical systems).

Although adversarial examples can be found for a variety of tasks, we restrict the
presentation to object recognition because this task is particularly relevant to autonomous
systems, and to the i-CAVE project. Nevertheless, adversarial example are constantly
explored in other tasks. Of particular interest is malware detection [92, 111, 139] because
it implies direct consequences on security. Other tasks such as speech recognition [43, 44],
facial recognition [257] or video processing [152, 272, 288] are also explored.

This chapter is organised as follows. We start with a brief characterisation of adversarial
examples in Section 5.2. Next, we introduce methods to create adversarial examples in
Section 5.3 and defences in Section 5.4. We show that adversarial training – i.e., including
adversarial examples in the training data set – is the most e�ective defence to date. The
chapter ends with a general discussion about the implications of adversarial examples
to robustness, safety and security of DL models in Section 5.5. Conclusions follow in
Section 5.6.

5.2 ML background and adversarial examples

Prerequisites. A computer is said to learn from experience w.r.t. a task and a performance
measure if its measured performance on the task increases with experience [179]. In this
chapter, we focus on the task of object recognition: given a set of images de�ned on the
input space  with their labels from the output space  , sampled from a �xed, but unknown
probability distribution  over the space  =  × , a ML algorithm attempts to �nd a
mapping f ∶ → which minimizes the number of misclassi�ed samples. We assume that
 is a metric space and we can de�ne distance functions between two points of the space.
The error made by a prediction f (xi) = ŷi when the true label is yi is measured by a loss
function l ∶ × → ℝ. Through learning, we select a function f ∗ from a hypotheses space
 such that the expected loss r(f ) = E(x,y∼)[l(f (x), y)] is minimal: f ∗ = argminf ∈ r(f ). In
practice,  is not known and only a set of samples  (de�ned as a set of pairs {(xi , yi)}ni=1)
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is available for training. Thus, a ML algorithm uses the empirical loss to approximate the
expected loss:

f̂ = argmin
f ∈

E(x,y)∼ [l(f (x), y)]. (5.1)

The hypotheses space  can be any mapping from  to  such as a linear function or
a DNN. Choosing  for a task adds an inductive bias from the algorithm designer and
involves a trade-o� between expressivity and generalization: if  is not expressive enough,
the algorithm will not be able to learn complex hypotheses. On the opposite, if  is too
expressive, the algorithm will over�t on the training data. The loss function is generally
chosen to be zero when f (xi) = yi and positive otherwise. The most common loss function
for object recognition is the cross-entropy loss.

The Probably Approximately Correct (PAC) [278] theoretical model for statistical learn-
ing guarantees that given enough samples for a desired accuracy � and for the probability of
getting non-representative samples from the training distribution � (0 < �,� < 1), the empir-
ical risk will have an error less than or equal to � with probability 1−� : P (|r(f̂ )− r(f ∗)| ≤ �) ≥
1−� . In this framework, given the choice for � and � , we can derive the sample complexity
for learning a hypothesis with minimal risk. An important assumption of this model is
that training and test data are drawn from the same probability distribution . Moreover,
all data are sampled independently from distribution  (also called independent and iden-
tically distributed (i.i.d)). A hypothesis behind the existence of adversarial examples is that
they are sampled from a di�erent distribution than the training data [85, 147, 172, 263].
However, this hypothesis was questioned by developing attacks that can easily bypass
detectors which learn the distribution of adversarial examples [41].

Adversarial Examples. Adversarial examples are inputs intentionally designed to be in
close resemblance with samples from the distribution , but cause a misclassi�cation.
Formally, given a classi�cation function f and a clean sample x , which gets correctly
classi�ed by f with label y, an adversarial example x′ is constructed by applying the
minimal perturbation � to input x such that x′ gets classi�ed with a di�erent label ŷ:
argminc f (x + �) = ŷ. Similarly, in the initial paper on adversarial examples, Szegedy
et al. [267] search for the perturbation solving the following optimisation problem:

min
�
. � = ‖x′ −x‖p ,

s.t . f (x′) = ŷ,
(5.2)

where || ⋅ ‖p is a distance function de�ned on the metric space  . Searching for the minimal
perturbation is often a complex task because the search space is non-linear and non-
convex [145, 199]. However, many approximation solutions have been proposed. Finding
solutions to Eq. 5.2 is illustrated in Figure 5.1. Some examples of perturbations are illustrated
in Figure 5.2.

The distance function most commonly used for adversarial examples in the object
recognition domain is the p-norm:

‖x‖p =(

n
∑
i=1

|xi |p)

1
p

, (5.3)
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Figure 5.1: Adversarial example in input and representation space [225]. While the two pictures of cars are
similar in the image space, the activation patterns of the second car are close to the activation patterns of the dog.
Therefore, the second car gets classi�ed as a dog. Moving the activation patterns from cars to dogs while keeping
the representation in the image space similar is equivalent to searching for a solution to Eq. 5.2 and generating an
adversarial example.

where p ∈ {0,2,∞}. The choice for p in�uences the coordinates changed in the initial
sample as follows:

• when p = 0 the distance measures the number of di�erent coordinates between the
normal input and the adversarial; corresponding to the number of pixels altered in
the original image.

• when p = 2 the distance measures the Euclidean distance between the original and
the adversarial image. This metric remains small when there are many small changes
to many pixels and increases when there is a big change in one or multiple pixels.

• when p = ∞ the distance measures the maximum change in any of the coordinates
and is equivalent to the maximum bound for changing each pixel in an image, without
restricting the number of changed pixels.

Historical considerations. Even though the term adversarial examples was �rst coined
around 2014 in research by Szegedy et al. into DNNs [267], adversarial machine learning
was established long before. Unfortunately, as other authors have also observed [30, 87],
recent publications concerning DNNs seem unaware of the earlier research on adversarial
machine learning and loose important perspective in this �eld. In particular, the importance
of thread modelling to security is overlooked.

The �rst publication regarding adversarial ML was published in 2004, when Dalvi
et al. [62], followed by Lowd and Meek [157], managed to fool linear classi�ers for spam
detection by making changes to spam e-mails [30]. Barreno et al. [20] �rst introduced
a taxonomy for attacks and defences in adversarial settings, and later re�ned it in [21].
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(a) Speci�c perturbations for each
new input. The images in the �rst
column are inputs correctly clas-
si�ed, the ones in the middle are
the perturbations and the images
on the last column are the resulting
adversarial examples [267].

(b) Universal perturbations – only one per-
turbation can be applied to any picture on
the left to generate adversarial examples
on the right [182].

Figure 5.2: An illustration of adversarial examples.

This early taxonomy de�nes ML threat models and is comprehensive enough to include
adversarial examples. However, the notion of minimal perturbation was not yet adopted.

Thereafter, a large body of publications discussed adversarial attacks against ML models
at both training time [31, 224] and test time [88, 157] or defences against such attacks [38,
137]. Attacks at training time modify or poison the training data set (before training), while
attacks at test time only modify the samples used for test (after training). In parallel to
developing attacks and defences, several publications proposed methods to evaluate the
security of ML models against adversarial attacks [21, 32]. Biggio and Roli [30] trace an
interesting parallel between the evolution of adversarial ML and the rise of DNNs.

Adversarial examples represent attacks against machine learning models at test time.
Moreover, they have a special trait: the perturbations used to fool classi�ers are desired
to be minimal, or as small as possible. In practice, such perturbations are very small and
barely noticeable to human observers (see Figure 5.2). In this thesis we are concerned with
recent literature, triggered by Szegedy et al. [267] and the widely adopted de�nition of
adversarial examples presented in Eq. 5.2. This body of work focuses on DNNs and was
triggered by the surprisingly small perturbations needed to fool such algorithms.

From a security standpoint, we can make another distinction between publications
before and after Szegedy et al. [267]: generally, publications before Szegedy et al. look
at attacks on systems providing security functionality (e.g., spam or virus detection), in
contrast to more recent papers [30, 200] which look at secure functionality of any application
of ML algorithms, i.e., if any application of ML algorithms is secure. This distinction will
be further developed in Section 5.5.

Overviews. We published a comprehensive study of adversarial examples [242], which
builds on previous work [3, 156] by relating the threats posed by adversarial examples
to security, safety and robustness of MLs. Moreover, we discuss the hypotheses on the
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existence of adversarial examples and their property of being transferable between di�erent
ML models. For detailed information please refer to the publication mentioned above [242].

5.3 Methods to generate adversarial examples

General optimisation algorithms – e.g., L-BFGS – can be successfully used to �nd solutions
to Eq. 5.2 [267]. However, depending on the input size the computation may require a
large computational budget. In order to speed up adversarial attacks, Goodfellow et al. [91]
showed that taking a small step towards increasing the loss function w.r.t. to an input su�ces
to �nd perturbations. The procedure – called the fast gradient sign method (FGSM) – is
de�ned as:

� = � sign(∇x l(�,x,y)) , (5.4)

where � controls the perturbation budget. Although not optimal, FGSM only requires
to evaluate the gradient w.r.t. an input once, which makes it very fast. However, FGSM
searches for perturbations in one direction and is therefore not very e�ective. In order to
strengthen FGSM, Madry et al. [162] proposed to iteratively apply FGSM and project the
outcome in the norm ball de�ned using the perturbation budget �:

x = {x′| ‖x′ −x‖p < �}. (5.5)

This procedure – called projected gradient descent (PGD) – is de�ned as:

x′n =∏
x+�

(x′n−1 + � sign(∇x′n−1 l(�,x
′
n−1, y))). (5.6)

Naturally, the quality of the resulting adversarial examples depends on the number of
iterations n. Using a large number of iterations, PGD can better approximate the norm
ball around an input, and lead to more representative adversarial examples. However, it
negatively a�ects the computation time. When n = 1, PGD is equivalent to FGSM.

Besides the attacks based on optimisation algorithms (L-BFGS) and on FGSM, a large
number of attacks have been proposed by optimising surrogate functions [42], using
evolutionary algorithms [187, 265] or generative models [19, 209]. A common characteristic
of these attacks is that they require access to the model parameters. Therefore, from a
security point of view, they can be described as white-box attacks [242].

Szegedy et al. [267] showed that adversarial examples also transfer between di�erent
ML models. This property was later explored by Papernot et al. [198] in an attempt to
generate black-box, attacks i.e., attacks which do not require access to the model param-
eters. The authors showed that adversarial examples crafted on one model can transfer
between several ML techniques such as linear regression, support vector machines or
DNNs. Therefore, the attacker can train a substitute model and craft adversarial examples
without access to the parameters of the model under attack.

This investigation triggered a new generation of attacks which are more relevant to real
world scenarios; in which attackers do not have access to the model parameters, but can
query it. For example, Chen et al. [53] present an attack based on zeroth-order optimisation
that is derivative free. This method can estimate the gradient across the perturbation’s
direction taking into consideration the value of the objective function at two neighbouring
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points (corresponding to adding or subtracting a small perturbation). Thus it also eliminates
the need to train substitute models. Similar approaches were developed by Narodytska
and Kasiviswanathan [184], Ilyas et al. [115] or Rosenberg et al. [221] outside the object
recognition domain.

More recently, attacks based on ensembles of diverse attacks have been proposed as
an extension of PGD, in order to overcome some failures due to sub-optimal step sizes, or
mis-speci�cation of the objective function [59].

5.4 Defences against adversarial examples

Similar to adversarial attacks, a wide range of defences have been proposed based on
di�erent strategies [242]: e.g., detection of adversarial examples [93, 175], input transfor-
mations [52, 214], feature removal [80], or using formal methods to verify that adversarial
examples can not be found within some bounds [67, 296].

However, most defences only alleviate a model’s sensitivity to small changes in the input
by minimising the gradients during the learning phase, or by constructing models without
useful gradients. Nonetheless, forbidding access to gradient information is not enough to
limit an attacker from constructing adversarial examples [199]. This phenomenon, called
gradient masking [199, 200] was identi�ed to give a false sense of security and leads to an
improper evaluation of adversarial defences [15, 41, 274]. Defences that exploit gradient
masking can be sometimes broken with stronger attacks [41, 45]. Moreover, defences which
rely on formal veri�cation can only provide guarantees for the training data set, and can
be bypassed by slightly di�erent test data [209].

The most e�ective adversarial defence to date (which does not rely on gradient masking)
is adversarial training, and consists of adding a regularisation term to the loss function:

l̃(⋅) = �l(�,x,y) + (1−�)l(�,x′, y), (5.7)

where x′ is an adversarial example generated from input x and � controls the contribution
of adversarial examples to the loss function. The most e�ective choice of � is zero [162],
which poses the learning problem as a min-max problem where the inner maximisation
seeks to �nd the worst adversarial example for an input, and the outer minimisation seeks
to strengthen the model against it:

f = argmin
f ∈

E(x,y)∼ [ maxx′∈x
l(�,x′, y)], (5.8)

The inner maximisation can be solved with any e�cient algorithm from Section 5.3.
In practice, only the PGD attack was used successfully. However, in order to obtain an
accurate estimation of x , PGD requires a large number of iterations. The number of
iterations has a direct impact on training time because each iteration of PGD requires to
compute the gradients. In order to limit this impact, PGD is commonly used with less than
ten iterations for training, but with more iterations for testing. Faster ways to perform
adversarial training exist, and will be discussed in Section 6.2.
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We also mention that adversarial training brings bene�ts beyond robustness, such as
more interpretable gradients [276] or better transferability [226]. However, a trade-o�
between robustness and accuracy is known to exist [276].

5.5 Implications ofadversarialexampletorobust-
ness, safety and security of ML

Given the large number of publications and claims regarding adversarial examples, we
discuss the relevance of adversarial robustness to security, safety, and the economics of
building more robust models. Moreover, since p-norm is the dominant similarity metric, we
also comment on its relevance. This section ends with a discussion on the representations
learned by DNNs, and how they impact adversarial examples.

On the relevance of robustness to security. Gilmer et al. [86] express some skepticism
about whether adversarial examples are always a serious security concern. Here it is
interesting to note again that much of the early work on adversarial machine learning
[21, 157] concerned applications of ML for security tasks, such as detecting spam, malware,
or network intrusions. In such applications there is by de�nition an attacker interested in
causing misclassi�cation, as the whole point of the system is to defend against such an
attacker, and hence miss-classi�cations have a security impact. By contrast, most recent
work on adversarial learning focuses on computer vision. While adversarial examples
may seem worrying thinking of some applications of computer vision for autonomous
systems, this does not imply that there is an interesting way for attackers to exploit it.
For example, Eykholt et al. [74] use perturbed stop signs to attack autonomous vehicles.
However, the perturbations are far from sensible and can be detected by human observers.
Simply obscuring or removing the sign may be easier ways to achieve the same e�ect.

On the relevance of robustness to safety. From an engineering perspective, safety is
the ability of a system to protect its users from harmful or non-desirable outcomes. The
distinction between security and safety is that security protects a system against intentional,
malicious, attacks while safety protects a system from unintended mishaps in the operational
environment. Some publications aim to improve or validate the safety of DNNs – e.g., [84,
113, 158]. However, safety is an inherent property of a system and not of an algorithm
solely. Moreover, safety becomes important when a system can produce physical or material
damage to humans, assets or the environment. Talking about safety for systems without
such impact – e.g., an image based search engine using ML – is futile. In order to guarantee
safety, one should make sure that possible errors are detected and contained inside the
system without a�ecting its normal operation. Take the example of an autonomous vehicle.
If the outcome of its computer vision system is cross checked with information coming
from maps, the e�ect of using adversarial examples on tra�c signs can be detected and
contained inside the system, reducing their impact on safety.

The discussion of ML safety in relation to robustness should take into account the
operational environment of an algorithm because some perturbations (such as those needed
to build adversarial examples) may never appear in some environments, but may be common
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in others. Besides, it might also be interesting to benchmark an algorithm and increase its
robustness to common corruptions and perturbations [103].

On the relevance of p-norm. The dominant similarity metric in the literature is the p-
norm distance de�ned in Eq. 5.3. Choosing an adequate metric is still an open question.
However, since there are no solutions to robustness for the p-norm distance, it is hard to
believe that using other metrics will result in more robust models [45]. Nonetheless, there is
an increased interest to explore new distance functions, e.g., the Wasserstein distance [297]
or using physical parameters underlying the image formation process [155]. We argue that
the p-norm remains relevant for experimental settings; however, it must be paired with
relevant threat models in order to evaluate its impact in security, and search for operational
environments where it impacts safety.

On the economics of defending against adversarial examples. Until now there seems
to be a trade-o� between accuracy and robustness to adversarial examples, inherent to the
algorithms and the training methods used. This means robustness comes at a cost. Whether
these cost are acceptable, and how high they can be, will depend on the application and the
context. Given that the real impact of adversarial examples on safety and security is still
to be determined, it remains to be seen which defences can be cost-e�ective in practice.
Nonetheless, recent draft regulation emphasises robustness [77] and hints towards a future
in which robustness will be needed for compliance.

On the representations learned by DNNs. The sensitivity of DNNs to adversarial exam-
ples raises questions about their ability to learn high level abstractions from data. Although
it is believed that increasing the depth of a network helps increasing the level of abstraction
and it was observed that early layers in convolutional networks learn �lters that resemble
contour extractors, while deeper layers learn more complex patterns, DNNs seem to learn
super�cial abstractions restricted to the space on which they operate. In object recogni-
tion, the training objectives lie in pixel space, and not in a conceptual or relational space.
Pixel spaces are necessary for extracting �rst order information about the task, but seem
to be insu�cient for higher level abstractions needed to overcome complex perception
systems. Moreover, the capacity to create adversarial inputs which are not intelligible by
humans (as in [187]) shows that DNNs use di�erent features than we wish for. Research in
adversarial examples strengthen the conclusions from Jo and Bengio [122] which analysed
convolutional networks in di�erent regimes and showed they exhibit a tendency to learn
surface regularities, rather than higher-level abstract concepts. Therefore, adversarial
examples might be intrinsic to the methods used to solve ML tasks, or to the current
training procedures. In this context, it is interesting to search for models which learn
a better representation of the world and which may solve the sensitivity to adversarial
examples as a side e�ect. Research carried out recently shows that robustness against
adversarial examples can indeed be achieved this way, using supervision from language
representations, and by training very large models [212]. However, this opens up a new
range of adversarial attacks [89].
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5.6 Conclusions

We provided a brief introduction to the adversarial examples phenomenon that will support
the next two chapters. For a comprehensive study of this phenomenon, we refer the reader
to our previous publication [242]. We note that adversarial examples are an intriguing
phenomenon of DL algorithms, and their existence can raise both safety or security alarms.
A key take away is that the phenomenon of adversarial examples has no generally accepted
explanation or solution. Moreover, until now all defenses (including the ones using formal
veri�cation) have been broken. Therefore, the �eld remains active and spans several future
research directions.

In the next two chapters, we focus solely on decreasing the impact of adversarial
training on training time.
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6
Deep Repulsive Prototypes
for Adversarial Robustness

As discussed previously, themost compelling defence against adversarial examples
is adversarial training, and consists of complementing the training data set with
adversarial examples. Yet adversarial training severely impacts training time
and depends on �nding representative adversarial samples. In this chapter, we
propose to train models on output spaces with large class separation in order to
gain robustness without adversarial training. We introduce a method to partition
the output space into class prototypes with large separation and train models to
preserve it. Experimental results shows that models trained with these prototypes –
which we call deep repulsive prototypes – gain robustness competitive with
adversarial training, while also preserving more accuracy on natural samples.
Moreover, the models are more resilient to large perturbation sizes. For example,
we obtained over 50% robustness for CIFAR-10, with 92% accuracy on natural
samples and over 20% robustness for CIFAR-100, with 71% accuracy on natural
samples without adversarial training. For both data sets, the models preserved
robustness against large perturbations better than adversarially trained models.

This chapter has been published as q A. Serban, E. Poll, J. Visser, Deep Repulsive Prototypes for Adversarial
Robustness, arxiv, 2021 [240].
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6.1 Introduction

As mentioned in Section 5.4, adversarial training is subject to several trade-o�s. Firstly,
the time needed to generate adversarial examples substantially increases training time.
Recent attempts to generate adversarial examples faster exist [298]. However, they are (at
the moment) unstable and introduce new issues such as catastrophic forgetting [10].

Secondly, a trade-o� between accuracy on natural samples and robustness on adversarial
examples is known to exist [307]. This trade-o� implies that robustness against adversarial
examples comes with a cost of losing accuracy on natural examples, and can be controlled
through adversarial training [307]. Lastly, adversarial training over�ts on training data
and provides little robustness against data outside this distribution [217, 309].

A model robust to adversarial examples should provide: (i) inter-class separability,
(ii) intra-class compactness, and (iii) marginalisation or removal of non-robust features [116,
260]. However, adversarial training does not impose explicit constraints for meeting these
properties (e.g., inductive biases). Therefore, it depends only on �nding representative
adversarial examples for training.

In supervised classi�cation, adversarial training uses the standard softmax cross-entropy
loss. Recently, there is increasing evidence that softmax partitions the output space into
class centroids situated at equal distance from the origin (inter-class separability), and that
adversarial robustness can be improved by clustering the data points in the proximity of
these centroids (intra-class compactness) [105, 196].

However, the distance between class centroids is insu�cient to provide robustness, and
even models with high intra-class compactness are vulnerable to adversarial attacks. In this
chapter we tackle this issue by enforcing large inter-class separation prior to training using
class prototypes [262]. Using this inductive bias we gain more control over the output
space structure, and can decrease the number of training samples needed [174].

We show that training with class prototypes optimised to provide large inter-class
separation helps to gain robustness competitive with adversarial training, without ad-
versarial training. Moreover, training with class prototypes involves a smaller trade-o�
between accuracy and robustness, and a higher resilience against large perturbations.
The prototypes are built prior to training with little overhead, through an optimisation
procedure that increases the distance between their centres. As a result of this repelling
optimisation procedure, and because we use deep neural networks for empirical validation,
we call the prototypes deep repulsive prototypes. We test repulsive prototypes on CIFAR-10
and CIFAR-100, and observe consistent results on both data sets, with 51.3% and 20.5%
robustness against iterative adversarial attacks.

This chapter is organised as follows. Initially, we introduce background information and
discuss related work in Section 6.2. Later, we present repulsive prototypes in Section 6.3,
followed by an evaluation against white and black-box attacks in Section 6.4. We conclude
with a discussion in Section 6.5 and future work in Section 6.6.

6.2 Background and related work

As mentioned in Section 5.4, the quality of adversarial examples depends on the number of
iterations n from Eq. 5.6, page 78. Using a large number of iterations, projected gradient
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descent (PGD) can better approximate the space around an input we want to provide
robustness to, and leads to more representative adversarial examples for training. However,
it negatively a�ects training time.

Several attempts have been made to change the training procedure in order to enforce
inter-class separability or intra-class compactness, and also decrease the impact of adver-
sarial training. Mao et al. [164] used a triplet loss (inspired by metric learning), where one
element of the triplet loss is an adversarial example. An attempt to reduce the impact of
adversarial training on training time was made by only generating one adversarial example
for each triplet data. Further inductive biases, such as careful negative sample selection for
the triplet loss, help to improve robustness.

Papernot and McDaniel [196] showed that explicitly tailoring intra-class compactness
using k-neighbours in the representation space helps to detect adversarial examples. Hess
et al. [105] proved a similar result and proposed a method based on the Gauss kernel to
enforce intra-class compactness and improve robustness. Pang et al. [193] introduced a loss
function to enforces inter-class separability using the centroids of the Max-Mahalanobis
distribution. During inference, the class centroid closer to the input’s deep representation
(measured using the Euclidean distance) was used to classify an input. The defence builds
on earlier work by Pang et al. [194], where at inference time an input is interpolated with
samples from the same predicted class, and from distinct classes in order to alleviate the
impact of perturbations. Unfortunately, none of these defences proved e�ective [275].

Jin and Rinard [121] showed that manifold regularisation improves adversarial robust-
ness signi�cantly while retaining better accuracy on natural examples, without adversarial
training. Their proposal induces local stability in the neighbourhood of natural inputs even
if the model classi�es the inputs incorrectly. This is in contrast with adversarial training,
where a model is trained to classify correctly worst case adversarial examples.

Mustafa et al. [183] used class prototypes to enforce inter-class separability, by including
a prototype separation constraint in the loss function. A convex polytope is assigned as
prototype to each class and during training the distance between all class polytopes is
maximised. Thus the class centroids are learned together with the internal representation.
However, adding the distance maximisation term to the loss function does not su�ce to
improve robustness, and they propose to add similar constraints to hidden layers. When
paired with adversarial training, robustness increases at a decreased cost for accuracy on
natural samples.

Mettes et al. [174] showed that de�ning class prototypes a priori to training in order
to enforce desired properties of the output space (e.g., large margin separation) improves
training in several settings; such as few-shot classi�cation, regression or joint classi�cation
and regression. Instead of constantly re-estimating and calibrating the prototypes – as
in Mustafa et al. [183] or others [94, 262] – they propose to de�ne the output space as a
hyper-sphere and partition it into prede�ned class prototypes. During training, the distance
between the model’s output and class prototypes is minimised. The a priori de�nition of
class prototypes enables control over several factors such as the output space size, or its
shape. In this paper we take a similar path and de�ne class prototype prior to training.
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Figure 6.1: Repulsive prototypes. The grey spheres represent prototypes obtained using the L2 distance, and the
blue cubes are obtained using the L∞ distance.

6.3 Repulsive prototypes for robustness

The idea behind building class prototypes for adversarial robustness is to explicitly design
prototypes with large inter-class separation, and during training enforce intra-class com-
pactness. To this end, the input or the output space is partitioned into hyper-planes speci�c
to each class, to which we impose separation constraints. Similar approaches have been
used in the past, e.g., by Schiilkop et al. [233] who used the smallest sphere enclosing the
data to estimate the VC-dimension for support vector classi�ers, or by Wang et al. [284]
who used separating spheres in the feature space for classi�cation.

We propose an approach similar to Wang et al. [284] and Nguyen and Tran [188], and
more recent work by Mettes et al. [174], where the separation boundaries are imposed
to the output space – instead of the input space – because the output space allows more
�exibility and can achieve larger margin separation. Prior to learning, the D-dimensional
output space is divided into k prototypes P = {p1,⋯ , pk}, where each prototype corresponds
to a class. For a binary classi�cation problem and a Euclidean output space, we wish to
�nd two hyper-spheres with centres at c1, c2 – one enclosing samples from the positive
class and the other enclosing samples from the negative class – and maximise the distance
between them:

min
�1,�2,c1,c2

�21 + �
2
2 − r‖c1 − c2‖

2

s.t. ‖f (xi) − c1‖2 ≤ �21 ,∀i,yi = +1

‖f (xi) − c1‖2 ≥ �21 ,∀i,yi = −1

‖f (xi) − c2‖2 ≤ �22 ,∀i,yi = −1

‖f (xi) − c2‖2 ≥ �22 ,∀i,yi = +1,

(6.1)

where r is a constant that represents the repulsive degree between the two prototypes,
and �1, �2 de�ne the d(⋅)-ball around the prototype centres for which we want to provide
robustness (corresponding to the uncertainty set in Eq. 5.8, page 79).

For non-separable data sets, the constraints above can be relaxed by introducing slack
variables and regularisation terms to the objective function. Although the objective in
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Eq. 6.1 is not convex, it can be reformulated to have a convex form and solved using
Lagrange multipliers. However, in practice the constraints can be relaxed and the problem
can be solved in two steps: �rstly �nd prototypes with large separation (to provide inter-
class separability), and secondly train models to �t the data within the proximity of the
prototype centres (to provide intra-class compactness). An approximate solution to the
�rst problem can be found using gradient descent on the unconstrained objective:

min
�1,�2,c1,c2

�21 + �
2
2 − r‖c1 − c2‖

2,

with a generalisation to k-classes and any metric space:

min
�,c

�k − r ∑
(i,j,i≠j)∈k

d(ci , cj ). (6.2)

The choice of r can also be controlled using the learning rate � for gradient descent. The
choice of d(⋅) in�uences the prototypes and the classi�cation regions de�ned in the output
space. For example, using the Euclidean L2 distance leads to hyper-spherical classi�cation
regions, and using the Chebyshev L∞ distance leads to hyper-cubical regions. An illustration
is provided in Figure 6.1, where the grey spheres represent regions for perturbations in
the L2 space and the blue cubes are regions for perturbations in the L∞ space around the
centres. Iterating over Eq. 6.2 is equivalent to increasing d(⋅) or adding slack variables to
Eq. 6.1. Larger distances between class prototypes introduce bu�ers between classi�cation
boundaries and should improve robustness.

The second step – training models to �t the data within the proximity of the prototype
centres – can be solved by minimising the distance between the prototype centres and the
model’s output. The choice for this distance function is part of the threat model and it is
the same as d(⋅) from Eq. 6.2, which induces the following loss function:

l =
N
∑
i=1
(1−d(f (xi), pyi ))

2, (6.3)

where pyi is the prototype speci�c to class yi .

6.4 Empirical evaluation

All experiments are performed using a vanilla ResNet-18 network (the smallest variant of
ResNet). Capacity is known to help adversarial robustness [162, 302]. Therefore, we avoid
using larger networks. During training with repulsive prototypes only natural samples are
used, i.e., no adversarial training is performed.

Firstly, we adopt a white-box threat model for testing, where attackers presumably
have full knowledge of the model under attack, the training and the testing data [45]. To
generate adversarial examples we use the PGD (Eq. 5.6, page 78) PyTorch implementation
from Cleverhans, with di�erent iterations and random restarts [197]. Testing against larger
n is recommended, as it shows if the model exhibits a false sense of robustness or obfuscates
attack vectors [45].



6

88 6 Repulsive Adversarial Prototypes

Table 6.1: Prototype selection on CIFAR-10.

Output
Dimension (D) Epochs Clean

Samples PGD-20

50 50 90.3 37.2
100 50 90.6 39.9
200 50 89.5 40.7
100 100 91.0 48.7
200 100 91.1 38.7

Attackers are constrained to generate adversarial examples in the � = 8 (normalised)
Lp norm ball around inputs – a common benchmark for adversarial robustness. Since the
distance between prototypes is larger than �, we expect models trained with repulsive
prototypes to also exhibit resilience to higher � values. To test this hypothesis, we use
robustness curves obtained by step-wise increasing the size of the perturbation in the
interval [8,16].

We compare with results from literature on two common data sets; CIFAR-10 and
CIFAR-100 [140]. The �rst one consists of 60 000 32x32 colour images and 10 classes (with
5 000 images for training and 1 000 images for testing per class). The second data set
consists of 60 000 32x32 images and 100 classes (with 500 training images for training and
100 images for testing per class). We use minimal pre-processing for training, consisting of
random cropping and random horizontal �ip. No pre-processing is used for testing.

For training, we use the cyclical learning rate [259], mixed precision arithmetic and early
stopping, as they are reported to improve training time and prevent over�tting [217, 298].

Later in this section we also adopt a black-box threat model, where attackers can only
observe the outcome of the models under attack. For evaluation we use the transferability
attack, where adversarial examples are generated with a distinct model, and transferred to
the models under attack [45, 264].

6.4.1 Prototype Selection

Several parameters in�uence the quality of the prototypes: the output space dimension D,
the choice of �, r , the learning rate � and the number of epochs for solving Eq. 6.2. Since r
and � can be compressed to one constant, and (to some extent) the e�ect of the learning
rate can be attenuated by running the optimisation longer, the most important parameters
are the output space dimension and the number of epochs. As mentioned earlier, when not
mentioned otherwise we use the same choice for � = 8 (normalised).

Previously, it has been shown that increasing D can bene�t both classi�cation and
regression [174]. In order to determine the in�uence of D on robustness and accuracy, we
run an experiment on the CIFAR-10 data set, training a ResNet-18 model for 50 epochs
with di�erent output sizes D ∈ {50,100,200} – corresponding to multiplying the number
of classes k with factors of {5,10,20}. Testing is performed with natural and perturbed
samples using the PGD attack, with n = 20. In all cases, the prototypes are generated by
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Table 6.2: CIFAR-10 results, � = 8. The models are 1ResNet-18, 2PreActResNet-18, 3WideResNet-34-10, 4ResNet-110.

Run Epochs Natural PGD
20

PGD
100

Adv.
Training

Regular1 120 93.7 0 0 None
Repulsive1 127 92.0 51.3 48.4 None
Madry2 200 87.2 45.8 - PGD-7
Early Stop3 100 86.1 56.1 - PGD-10
TRADES3 100 84.9 56.6 - PGD-10
RHS4 300 91.8 42.6 - PGD-7

running gradient descent on Eq. 6.2 for 100 epochs, with � = 0.01. This modest optimisation
budget is su�cient to obtain large distances between the prototypes.

The results are presented in Table 6.1. We observe that increasing the output dimen-
sion D has almost no impact on accuracy on natural samples, but a signi�cant impact on
robustness, for all values of D except the last one. For the last two values of D we ran
training longer and observe that the largest output space (i.e., 200) has a bigger tendency
to over�t for adversarial examples, while maintaining similar accuracy on natural sam-
ples (corresponding to 100 epochs in Table 6.1). This phenomenon will be elaborated in
Section 6.5.

The initial experiments on prototype selection reveal that the output size is important
for adversarial robustness, but plays a marginal role for accuracy on natural samples.

6.4.2 CIFAR-10

Following the previous experiments, we present the results from training a ResNet-18
model on CIFAR-10 with the same parameters as earlier, but run the optimisation for longer
and test it against stronger attacks. For all experiments, the output dimension is D = 100,
corresponding to multiplying the number of classes by a factor of ten.

We benchmark our results against the following results from literature: (i) the initial
results for adversarial training from Madry et al. [162], (ii) the improved results for ad-
versarial training from Rice et al. [217] which use early stopping to prevent over�tting
in adversarial training, (iii) the work of Zhang et al. [307] which trades more accuracy
on natural samples in order to gain robustness, and (iv) the work of Mustafa et al. [183]
which use class prototypes jointly optimised during training, and where the inter-class
separation constraints are applied to multiple layers, and paired with adversarial training.
We note that Zhang et al. report the highest robustness. However, Rice et al. showed that
early stopping improves robustness, and reduces the gap between Madry et al. and Zhang
et al., while also preserving more accuracy on natural samples.

While Madry et al. and Mustafa et al. use PGD adversarial training with n = 7, Zhang
et al. and Rice et al. use n = 10. As mentioned above, adversarial training adds a non-trivial
overhead, and a higher n further increases it. While faster methods to perform adversarial
training exist, they achieve atmost similar results to classical adversarial training. Therefore,
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Figure 6.2: Robustness curves for CIFAR-10, obtained by testing with PGD-20, and various perturbation sizes (�).

we compare our results with the state-of-the-art for classical adversarial training. Since
our method does not add any signi�cant overhead to training, whenever we discuss the
impact on training we compare with Wong et al. [298], which is (at the moment) the fastest
way to perform adversarial training, albeit not stable [10].

The results are presented in Table 6.2, where the acronyms follow the order above: (i)
Madry [162], (ii) Early Stop [217], (iii) TRADES [307], (iv) RHS [183]. The Regular run was
trained on natural samples with the softmax cross-entropy loss, and a multi-step learning
rate scheduler that starts from 0.1 and decays by a factor of 0.1 at epochs 50 and 100. For
the models in literature we present the reported results, since with the exception of Rice
et al. the results could not be reproduced precisely.

For the model trained using repulsive prototypes (the Repulsive run) we report the
robustness against the PGD attack with 20 and 100 iterations. During training, the cyclical
learning rate was reduced by a factor of ten compared to Smith [259]. We found that
using smaller learning rates bene�ts robustness and has little impact on natural accuracy.
The reason for this is that larger updates may push the samples closer to the decision
boundaries, where it is easier for adversarial perturbations to induce undesirable behaviour.
For all models we also report the accuracy on natural samples, the number of epochs
needed to reach the results and the architecture used for training.

We observe that training with repulsive prototypes yields higher accuracy on natural
samples (92%) than methods based on adversarial training, and competitive robustness
(51.3%) compared with the state-of-the-art (56.6%), at a relatively small increase of training
epochs (+27). This is a gain even for Wong et al. [298], which uses the Fast Gradient Sign
Method (FGSM) attack and thus requires at least two forward and backward passes at
each epoch. Moreover, TRADES and Early Stop use n = 10 for adversarial training (which
increases robustness over Madry), and use a WideResNet-34-10 architecture, which has
over 34 ∗ 106 more training parameters than ResNet-18. Both capacity and a higher n are
known to increase robustness [162].

Figure 6.2 illustrates the robustness curve obtained by testing the models with PGD
n = 20, against di�erent perturbation sizes. For comparison, we use the Early Stop model
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Table 6.3: CIFAR-100 results, � = 8. The models are are 1ResNet-18, 2PreActResNet-18, 3ResNet-110.

Run Epochs Natural PGD
20

PGD
100

Adv.
Training

Regular1 120 73.8 0 0 None
Repulsive1 106 71.7 20.5 20.0 None
Madry2 200 59.8 22.6 - PGD-7
Early Stop2 100 52.7 28.1 - PGD-10
Early Stop-R2 100 54.1 20.8 - PGD-10
RHS3 300 68.3 20.2 - PGD-7

by Rice et al., the only one for which the results could be reproduced with precise accuracy.
We observe that training with repulsive prototypes yields models which are more resilient
to higher perturbations than adversarially trained models (equivalent to a milder slope in
Figure 6.2). Moreover, the overall decrease in accuracy is signi�cantly smaller for models
trained with repulsive prototypes; preserving more than 60% of the initial robustness when
the perturbation size is doubled.

6.4.3 CIFAR-100

We perform and report complementary experiments on the CIFAR-100 data set. The key
di�erence between the two is that the number of classes increases by a factor of ten.
Therefore, the output space partitioning is more challenging.

Moreover, since the last fully connected layer of ResNet-18 has 512 nodes, we use a
multiplicative factor of 50 instead of 100 for D in order to preserve a possible compression
in the last layer, as for CIFAR-10. Experiments with di�erent multiplicative factors, as
those discussed in Table 6.1, are available in the project’s repository.

The results are presented in Table 6.3, with the notable di�erence that TRADES was not
tested on this data set neither in the original paper [307] or in the Early Stop paper [217].
Moreover, for Early Stop we could not reproduce the results reported in the paper. Therefore,
we also report on a new benchmark, Early Stop-R, which is obtained using the model
parameters shared in the project’s repository by Rice et al. Also note that for CIFAR-100
Early Stop uses the PreActResNet-18 architecture instead of WideResNet.

We observe that training with repulsive prototypes yields signi�cantly higher accuracy
on natural samples (71.7%) compared with adversarial training methods, where the maxi-
mum is achieved by Madry et al. [162] (59.8%). Moreover, competitive robustness (20.5%)
with adversarial training (22.6%) can be observed, at almost no increase in training epochs
(+6). The results reported for Early Stop by Rice et al. show 7.6% more robustness than
training with repulsive prototypes, at the cost of losing 17% accuracy on natural samples.
A similar result can be observed for CIFAR-10, which indicates that training with repulsive
prototypes trades less accuracy on natural samples, at the cost of a modest contraction in
robustness.

Similarly to CIFAR-10, we present in Figure 6.3 the robustness curve obtained by testing
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Figure 6.3: Robustness curves for CIFAR-100, obtained by testing with PGD-20, and various perturbation sizes (�).

with di�erent perturbation sizes. We compare the results with the Early Stop-R model,
which uses the �nal parameters published by Rice et al.. We observe that, as for CIFAR-
10, training with repulsive prototypes yields models resilient to large perturbation sizes,
preserving more than half of the initial robustness when increasing the perturbation by a
factor of two.

6.4.4 Black-box evaluation

Besides the white-box threat model investigated above, we evaluate the models in a black-
box scenario. In particular, we use the transferability attack, in which an attacker trains a
substitute model and uses it to craft adversarial examples.

Black-box attacks are used to evaluate the model’s robustness, but also to detect if the
defences employed give a false sense of security – e.g., due to obfuscating gradients [15].
Since training with repulsive prototypes does not add any transformation or randomisation
which may have adverse e�ects (such as gradient obfuscation), we expect the defence
to behave similarly to adversarial training – a defence known to have no side e�ects.
Therefore, we compare transferability on repulsive prototypes with transferability on
adversarially trained models.

Su et al. [264] showed that the architecture can impact transferability. Particularly
when the network’s building blocks are di�erent (e.g., between the Inception architecture
which uses di�erent �lter sizes and ResNet which uses invariant �lter sizes and residual
connections), robustness has higher variance. However, when the building blocks are the
same, but the depth of the network increases (e.g., ResNet-50 vs. ResNet-101), robustness
has smaller variance.

Therefore, since all the models from this paper use a variant of the ResNet architecture,
we use a substitute model based on it. We also assume that an attacker has access to
the training data set and does not need to apply data augmentation [198]. For crafting
adversarial examples we use the Regular model from Tables 6.2 and 6.3. For testing, we use
the PGD attack with n = 20 and compare with the Early Stop and Early Stop-R models.
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Figure 6.4: Over�tting in training with repulsive prototypes.

Table 6.4: Robustness against transferred adversarial examples. The models are 1ResNet-18, 2WideResNet-34-10,
3PreActResNet-18

Source Target CIFAR-10 CIFAR-100
Regular1 Repulsive1 72.5 36.2
Regular1 Early Stop2 75.1 -
Regular1 Early Stop-R3 - 37.4

The results for both CIFAR-10 and CIFAR-100 are presented in Table 6.4. We observe
that (i) robustness against black-box attacks is higher than robustness against white-box
attacks, which indicates that both defences have no adverse side e�ects such as obfuscated
gradients, and (ii) both models achieve similar robustness, consistent with the results
from Tables 6.2 and 6.3. Since for CIFAR-10 Early Stop uses a more complex architecture,
we expect the model to also have higher robustness (which corresponds with the results
from Su et al. [264], and the higher gap in Table 6.4).

However, since the target models have di�erent architectures and loss functions, we
expect them to also have distinct internal representations. Therefore, the transferability
results should have higher variance than those from Tables 6.2 and 6.3. Yet the results from
Table 6.4 suggest that the target models have similar failing modes, and raise the question
if some samples are more sensitive to perturbations than others, and if the samples are
common between the target models. An enquiry follows in the next section.

6.5 Discussion

Firstly, we investigate if robustness is linked to properties of the testing data set, or of
certain samples. Following the observation from the last section – that models trained with
repulsive prototypes and with adversarial examples behave similarly against black-box
attacks – we plot the confusion matrices for adversarial examples on CIFAR-10, for the
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(b) Early Stop.

  

(c) Misclassi�ed and nearest correctly
classi�ed samples.

Figure 6.5: Adversarial confusion matrices for the (a) Early Stop, and for the (b) Repulsive models in Table 6.2.
Figure (c) shows misclassi�ed samples (left) and the nearest correctly classi�ed samples in the representation
space (right).

Repulsive and Early Stop models (Figures 6.5b and 6.5a).
We observe that 60% of the top-1 misclassi�ed classes are the same for both models

(e.g., planes misclassi�ed as ships). This percentage increases to 90% when we judge the
top-2 classes (e.g., planes misclassi�ed as ships or birds). We also analysed the overlap
between misclassi�ed adversarial examples by the two models and found that over 65% of
the samples were common. This result indicates that some samples may be more sensitive
to perturbations. For the Repulsive model, it indicates that for some samples training fails
to provide intra-class compactness. When perturbed, these samples are easier to move to
incorrect regions.

In order to further investigate this phenomenon, we performed random sampling on
the misclassi�ed examples for manual inspection. For all samples, we also extracted the
closest examples from the predicted (wrong) class. Two such examples are displayed in
Figure 6.5c, where the pictures on the left are the incorrectly classi�ed examples and the
ones on the right are the closest examples in the predicted class. We observe that both
examples have many common characteristics with the closest sample in the incorrect
classi�cation regions. Similar results could be observed for other samples (suppressed due
to space constraints). Previously, Jo and Bengio [122] showed that neural networks have
a tendency to learn surface regularities rather than higher-level abstractions. Our initial
investigation indicates that samples with similar surface regularities are also more sensitive
to adversarial perturbations, even if the models using them are trained with distinct loss
functions. A deeper investigation into this phenomenon is planned for future work.

Secondly, we note that training with repulsive prototypes for adversarial robustness is
more sensitive than pursuing the highest accuracy on natural samples. This is a consequence
of the loss function (Eq. 6.3) which measures a distance, and taking large steps towards
minimising it may push samples closer to the classi�cation boundaries, rather than closer
to the prototypes. Larger steps are not relevant for natural samples, but are important
for robustness. In order to alleviate this e�ect we used smaller learning rates and early
stopping. However, this also means that models trained with repulsive prototypes are
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prone to over�tting for robustness. Figure 6.4 shows the behaviour of the Repulsive models
trained on both data sets studied. We observe that, while the models are stable on natural
samples, they are prone to over�tting against adversarial examples. Moreover, the models
seem likely to over�t faster when trained with repulsive prototypes than with adversarial
training [217].

Lastly, we note that prototypes designed prior to training can also embed other prop-
erties in the output space. For example, Mettes et al. used word2vec [177] to designed
prototypes. Adding more structure to the output space may lead to higher abstractions –
e.g., to compositionality, as in word2vec – and it is an interesting avenue for future work.

6.6 Conclusions and future research

We introduce deep repulsive prototypes for adversarial robustness – a training method
which partitions the output space prior to training into prototypes with large class separa-
tion, and train models to preserve it. Repulsive prototypes help models to gain robustness
competitive to adversarial training, while removing the need to generate adversarial ex-
amples. Moreover, models trained with repulsive prototypes are less sensitive to large
perturbations and trade less accuracy on natural samples for robustness.

Our results indicate that the output space size is important for robustness, and that test
samples with similar surface regularities are more sensitive to adversarial perturbations.
For future work we propose to search for better ways to design prototypes for robustness,
which may embed other properties to the output space than large inter-class separation.
Moreover, we plan to further investigate if mis-classi�ed samples present similar surface
regularities with samples in the predicted class, and �nd ways to remove the tendency of
neural networks to rely on surface regularities.
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7
Learning to Learn

from Mistakes:
Robust Optimisation for

Adversarial Noise

In this chapter we aim to overcome the impact of adversarial training on training
time using meta- and transfer-learning. Towards this goal, we train robust DL
models in low data regimes, and transfer adversarial knowledge to new models. In
particular, we train a meta-optimiser which learns to robustly optimise a model
using adversarial examples, and it is able to transfer the knowledge learned to
new models without the need to generate new adversarial examples. Experimen-
tal results show the meta-optimiser is consistent across di�erent architectures
and data sets, suggesting it is possible to learn and transfer knowledge about
adversarial vulnerabilities.

This chapter This chapter has been published as q A. Serban, E.Poll, J. Visser, Learning to Learn from Mistakes:
Robust Optimization for Adversarial Noise, International Conference on Arti�cial Neural Networks [243].
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7.1 Introduction

As mentioned in Section 5.4, although many defences against adversarial examples have
been proposed, most solutions over�t on the training data and behave poorly against data
outside this distribution [217, 309]. Theoretical investigations suggest these results are
expected because training robust models requires more data [61], more computational
resources [39] or accepting a trade o� between accuracy and robustness [277]. Moreover,
solutions to one vulnerability have a negative impact on others [119].

On a di�erent path, designing ML algorithms capable to rapidly adapt to changes in the
operational environment, to adapt to distribution shifts or capable to learn from few samples
is an active research �eld. Particularly, the �eld of meta-learning investigate optimisation
algorithms learned from scratch for faster training [11], with less resources [215] and for
fast adaptation [76].

In this chapter, we show that meta-learning algorithms can be used to extract knowledge
from a model’s vulnerability to adversarial examples and transfer it to new models. Towards
this goal, we train a meta-optimiser to learn how to robustly optimise other models using
adversarial training. Later, when asked to optimise new models without seeing adversarial
examples, the trained meta-optimiser can do it robustly. This process is analogous to
learning a regularisation term for adversarial examples, instead of manually designing one.
The experimental results suggest a broader horizon, in which algorithms learn how to
automatically repair or treat vulnerabilities without explicit human design.

This chapter is organized as follows. In Section 7.2 we introduce related work. Sec-
tion 7.3 formalizes meta-learning and the adversarial training problems, and gives im-
plementation details. Section 7.4 presents experimental results on two distinct data sets,
followed by a discussion in Section 7.5 and conclusions in Section 7.6.

7.2 Background and related work

Until recently, solving the outer minimisation objective from Eq. 5.8, page 79, relied on
static, hand designed algorithms, such as stochastic gradient descent or ADAM. [132]. The
literature surrounding this topic is focused on tailoring update rules for speci�c classes of
problems. This line of research is driven by the no free lunch theorem of optimisation [295]
which states that, on average, in combinatorial optimisation no algorithm can do better than
a random strategy; suggesting that designing speci�c algorithms for a class of problems is
the only way to improve performance.

Recent advancements in the �eld of meta-learning have taken a di�erent approach,
posing the problem of algorithm design dynamically and modelling it with neural net-
works [11], or as a reinforcement learning (RL) problem [149]. In both cases, the algorithms
show empirically faster convergence and the ability to adapt to di�erent tasks.

For example, in Andrychowicz et al. [11] the hand designed update rules are replaced
with a parametrized function modelled with a recurrent neural network (RNN). During
training, both the optimiser and the optimisee parameters are adjusted. The optimisation
algorithm design now becomes a learning problem, allowing to specify constraints through
data examples. Their results suggest the optimiser performs favourably against state-of-
the-art optimisation methods and shows a high adaptability between di�erent tasks.
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The method has roots in the previous research of Schmidhuber [234], where RNNs
were designed to update their own weights, and in Bengio et al. [29], which designed
parametric update rules for neural networks. The results of back-propagation from one
network were only later fed to a second network which learns to update the �rst [305].
Andrychowicz et al. [11] build on previous work using a di�erent learning architecture.
Similarly, Ravi and Larochelle [215] used this paradigm to train neural networks in a few
shot regime, and Santoro et al. [227] augmented it with memory networks. Meta-learning
has also shown promising results in training algorithms for fast adaptation [76].

Instead of using RNNs, Li and Malik [149] formulate the optimisation problem as a
RL problem where the reward signal represents successful minimisation, and train an
agent using guided policy search. Later, the authors re�ne their method for training neural
networks [150]. In both cases the agent learns to optimise faster than hand designed
algorithms and exhibits better stability.

Recent research in adversarial examples has also tackled the need to decrease training re-
sources by either accumulating perturbations [254, 298] or by restricting back-propagation
to some layers of the model [306]. While the latter method requires forward and backward
passes, the former reduces the need to do backward passes in order to generate adversarial
examples. Adversarial training has also been used in meta-learning, but with the goal of
increasing the algorithm’s robustness against adversarial examples [90, 303] and not to
abstract or transfer information from adversarial training.

7.3 Meta adversarial learning

Meta-learning frames the learning problem at two levels: acquiring higher level (meta)
information about the optimisation landscape and applying it to optimise one task. In
this chapter, we are interested to learn robust update rules and transfer this knowledge
to new tasks without additional constraints. We focus on training robust ML models
through adversarial training, which is one of the most e�ective defences against adversarial
examples [162]. Because generating adversarial examples during training is time consuming,
especially for iterative procedures and can only provide robustness for the inputs used
during training [309], through meta-learning we learn to optimise robustly without explicit
regularisation terms and transfer the knowledge to new tasks, without the need to generate
new adversarial examples.

At a high level, adversarial training discourages local sensitive behaviour – in the
vicinity of each input in the training set – by guiding the model to behave constantly in
regions surrounding the training data. The regions are de�ned by a chosen uncertainty set
(as in Eq. 5.8, page 79). This procedure is equivalent to adding a prior that de�nes local
constancy, for each model we want to train. In most cases, specifying this prior is not trivial
and requires the design of new regularisation methods [180], new loss functions [296] or
new training procedures [178]. Here, we take a di�erent approach and try to learn a regu-
larisation term automatically using meta-learning. During the meta-knowledge acquisition
phase, the meta-optimiser learns to perform the updates robustly using adversarial training.
Later, the knowledge acquired is transferred to new models using the meta-optimiser to
train new models, without generating adversarial examples. In the next paragraphs we
describe the meta-optimiser, some implementation details and the adversarial training



7

100 7 Meta Adversarial Learning

procedure.

Learning to optimise. The learning function de�ned in Section 5.2, f (⋅), is parametrised
with a set of parameters � . Upon seeing new data, we update the parameters in order to
minimise the prediction errors. The update consists in moving one step in the opposite
direction of the gradient:

�t+1 = �t − �∇�t l(⋅), (7.1)

where � (the learning rate) determines the size of the step. Di�erent choices of � or ways
to automatically adapt it results in di�erent optimisation algorithms such as stochastic
gradient descent or ADAM [132].

In order to avoid over�tting or impose additional constraints such as constancy around
inputs, it is common to add a regularisation term to the loss function which will be back-
propagated and re�ected on all parameter updates. Instead of looking for regularisation
terms manually, we use a method to automatically learn robust update steps with regulari-
sation included.

As discussed in Section 7.2, a parametrised update rule has been previously represented
with a RNN [11, 215] or as a RL problem [149]. In this paper, we follow an approach similar
to [11] and model the update rule with a RNN with long short-term memory (LSTM) cells:

�t = �t−1 + ct ,

where :
ct = ftct−1 + it−1c̃t , (7.2)

is the output of an LSTM network m with input ∇�t (l(⋅)):

[
ct
ℎt+1]

=m(∇t ,ℎt ,�), (7.3)

and � are the LSTM’s parameters. In [215], the authors consider each term in Eq. 7.2
equivalent to each term in Eq. 7.1 – e.g., ft = 1, ct−1 = �t – and disentangle the internal
state of the LSTM, ℎt , with special terms for individual updates of ft and it . This type of
inductive bias brings bene�ts in some cases and will be further discussed in Section 7.5.
However, in this paper we try to avoid such biases whenever possible.

Parameters Sharing and Gradient Preprocessing. In order to limit the number of
parameters of the optimiser, we follow a procedure similar to [11, 215] in which for each
parameter of the function we want to optimise, �i∶n , we keep an equivalent internal state
of the optimise, ℎi∶n , but share the weights � between all states. This procedure allows
a more compact optimiser to be used and makes the update rule dependent only on its
respective past representation, thus being able to simulate hand designed optimisation
features such as momentum.

Moreover, since gradient coordinates can take very distinct values, we apply a common
normalization step in which the gradients are scaled and the information about their
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Figure 7.1: The loss landscape when training a neural network on the MNIST data set, perturbed with FGSM and
di�erent perturbation sizes (�). The meta-optimiser is trained with adversarial examples – label L2L – transferred
to a scenario where training is performed with normal and adversarial data, but tested with adversarial examples –
label L2L-Transfer – and compared with a meta-optimiser trained with normal data and transferred to adversarial
settings – label Transfer-NOT – and with ADAM. Best seen in colour.

magnitude and their direction is separated:

∇→

{
(
log(|∇|)

p ,sign(∇)) if |∇| ≥ e−p

(−1, ep∇) otherwise.
(7.4)

We experiment with di�erent values for p by grid search and observe that increasing the
size of p yields better results when the perturbations are larger. However, for consistency,
we use p = 10 for all experiments.

The meta-optimiser’s parameters are updated using an equivalent to Eq. 7.1. Since its
inputs are based on the gradient information of the function to be optimised (the optimisee),
the updates will require second order information about it (taking the gradient of the
gradient). This information is commonly used for meta-learning – e.g., in [76, 291] – and
will be further discussed in Section 7.5. However, in this paper only �rst order information
is used, corresponding to limiting the propagation of the optimiser’s gradient on the
optimisee parameters (or stopping the gradient �ow in the computational graph).

7.4 Empirical evaluation

In all experiments the optimiser consists of a two-layer LSTM network with a hidden state
size of twenty. We compare the results on training two types of neural networks on two
distinct data sets with the adaptive optimiser ADAM.

We focus on two experiments related to training neural networks, as in prior work on
meta-learning [11, 149, 150, 215]. More experiments with minimising other functions –
e.g., logistic regression – and an integration with the Cleverhans framework are available
in the project’s repository. In all cases, an optimiser is trained using normal and adversarial
examples on a data set and tested by training a robust optimisee without generating
adversarial examples. Several perturbation sizes are analysed, as introduced below.
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Figure 7.2: The loss landscape when training a neural network on the MNIST data set perturbed with the PGD
method and di�erent perturbation sizes (�). The legend is detailed in the caption of Figure 7.1.

7.4.1 MNIST

We begin by training a small, fully connected, neural network with 20 units and ReLU
activation on the MNIST data set. The perturbations take di�erent values in the set � ∈
{0.05,0.1,0.2,0.3} for both attacks introduced earlier (Eq. 5.4) and Eq. 5.6). We experiment
with di�erent learning rates by grid search and �nd the best to be 0.001 for the meta-
optimiser. Training is performed using the common cross entropy loss function, with a
batch size of 128. We shu�e the training data set (consisting of 60.000 examples) and divide
in two parts equally: the �rst is used to train a meta-optimiser using both normal data and
adversarial examples and the second is used to test its performance while training with
normal data and testing with perturbed data. Each experiment ran for 100 steps. The results
are illustrated in Figures 7.1 and 7.2. All experiments are done using � = 0.5 in Eq. 5.7,
page 79, during training and � = 0.0 during the meta-optimiser transfer phase, as �rst
introduced in [91]. In addition to ADAM’s performance compared to the meta-optimiser,
we evaluate the performance of the meta-optimiser during training and the performance
of training a meta-optimiser using � = 1 and testing with � = 0 (L2L and Transfer-NOT
labels in Figures 7.1 and 7.2). Figure 7.1 illustrates the results from generating adversarial
examples using the FGSM method (Eq. 5.4, page 78).

In all cases, the meta-optimiser is able to transfer the information learned during
training and has comparable performance to ADAM (in some cases performing better). We
remind that during testing the optimiser uses normal data, but the plots are generated by
feeding adversarial perturbed data to the optimisee. This implies that the meta-optimiser
proposes update rules which lead to smooth surfaces around the tested inputs. Moreover,
it is able to learn a robust regularisation term during training and transfer it to new tasks
without the need to generate new data. Also, the trained meta-optimiser exhibits more
stable behaviour. These results bring evidence that adversarial training leads to more
interpretable gradients [277].

When the optimiser is trained only with normal examples, but used to optimise the
model using adversarial examples – Transfer-NOT label in Figure 7.1 – its performance
decreases signi�cantly. This result implies that a meta-optimiser is domain speci�c and
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Table 7.1: MNIST PGD results, � = 8.

Run Ep. Natural PGD
20

PGD
100

Regular 100 99.0 0 0
L2L 100 98.6 92.0 91.2
L2L-Transfer 100 97.8 91.8 90.9
Madry2 100 98.8 92.9 91.8

does not have the general behaviour of ADAM, an observations which will be further
discussed in Section 7.5.

In Figure 7.2 we illustrate the results from running similar experiments, but generate
adversarial examples using the PGD method from Eq. 5.6, page 78. Training with PGD is
generally performed only using the perturbed examples (corresponding to � = 0 in Eq. 5.7,
page 79), as in the original paper [162]. We take a similar approach in this paper.

The results are consistent with the FGSM method, although the gap between ADAM
and the transferred meta-optimiser is smaller. A constant decrease in performance is also
observed, possibly corresponding to the decrease in performance speci�c to adversarial
training [277]. Nevertheless, the results are consistent and bring evidence that the meta-
optimiser is able to learn robust update rules.

The accuracy results – similar to the one in Table 6.2 – are presented in Table 7.1.
The optimisation ran for 60 epochs, using cross-validation (as described earlier). Here,
we observe that the meta-learning algorithm is able to preserve similar accuracy against
the PGD attack, for di�erent number of iterations. Only a small decrease is observed,
which may once again correspond to the decrease in performance speci�c to adversarial
training [277]. This result is expected, since unlike the method presented in the previous
chapter, we now rely on adversarial training to extract knowledge during the meta-learning
phase.

7.4.2 CIFAR-10

We present the results from training a model using both convolution and fully connected
layers on the CIFAR-10 data set. The network consists of three convolutional layers with
kernel size 3, a fully connected layer with 32 hidden units and a logits layer of size 10. All
activation functions are ReLU, the loss is cross-entropy and batch normalization is used in
the convolutional layers. The meta-optimiser is trained using a learning rate of 0.001.

Since there are striking di�erences between convolutional and linear layers, we use two
sets of parameters for the meta-optimiser – one for optimising all convolutional layers and
one for the linear layers. Moreover, since the CIFAR-10 problem is more di�cult, we train
the optimisee for 1000 steps and present the results in Figure 7.3 for perturbations generated
with FGSM and in Figure 7.4 for PGD. The evaluation was performed as earlier, using
2-fold cross validation for training a meta-optimiser in adversarial settings and transfer it
to training a model in normal settings, but tested with adversarial examples.
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Figure 7.3: The loss landscape when training a neural network on the CIFAR-10 data set, perturbed with the
FGSM method and di�erent perturbation sizes (�). The legend is detailed in the caption of Figure 7.1.

We observe that in the case of FGSM, the transferred meta-optimiser (label L2L-Transfer,
Figure 7.3) exhibits similar behavior as in the MNIST experiments: it has similar and some-
times better performance than ADAM. We remind that, in this case, no adversarial examples
are used during training. The meta-optimiser trained normally, but tested with adversarial
examples (Transfer-NOT label, Figure 7.3) performs visibly worse, which strengthens the
observation that meta-learning optimisation is domain speci�c.

Figure 7.4 shows results from running the same experiment using perturbations gener-
ated with PGD, with a number of 7 steps, as in the original paper [162]. In all cases, the loss
improvements are small, although the meta-optimiser exhibits better performance than
ADAM both during training and testing. However, the improvements in training time are
signi�cant since after training an adversarial meta-optimiser, it can be applied to di�erent
models without the need to execute the PGD steps for each batch of data.

Table 7.2 shows the �nal results after training for 60 epochs. Once again, we observe
that the meta-optimiser o�ers robustness competitive with adversarial training, while
removing the need to generate adversarial samples.

7.5 Discussion

Typically used to rapidly adapt to new tasks or generalize outside the i.i.d assumption,
meta-learning algorithms show promising results to reduce the training samples needed
for adversarial training. The results presented in this paper suggest these algorithms can
be used in the future to build adversarial defences with less computational resources and
capable to adapt to new data.

We hereby note some weaknesses discovered during the process. Although capable of
achieving better performance than hand crafted optimisers [11, 150] and, as discussed in
Section 7.4, showing promising results in transferring information about adversarial exam-
ples, meta learning algorithms still su�er from broader generalization. In particular, trained
optimisers can not generalize to di�erent activation functions, or between architectures
with noticeable di�erences [291]. This means that an optimiser trained for ReLU can not
be used for sigmoid (or other) activation functions. Moreover, if the meta-optimiser is not
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Figure 7.4: The loss landscape when training a neural network on the CIFAR-10 data set, perturbed with the PGD
method and di�erent perturbation sizes (�). The legend is detailed in the caption of Figure 7.1.

Table 7.2: CIFAR PGD results, � = 8.

Run Ep. Natural PGD
20

PGD
100

Regular 100 83.3 0 0
L2L 100 81.9 43.4 41.9
L2L-Transfer 100 81.6 42.9 41.5
Madry2 100 82.5 43.6 42.2

trained with speci�c data that will be later used, it does not exhibit general behaviour. For
example, if the meta-optimiser does not use any adversarial examples during training, but
it encounters such examples during testing, it faces di�culties. This behaviour is illustrated
in the �gures above with the label Transfer-NOT.

Second order information (taking the gradient of the gradient, as introduced in Sec-
tion 7.3) was not used in this paper. As shown in [291], this information can help the
meta-optimiser better generalize and induce more stable behaviour. However, it also intro-
duces more complexity. Analysing the trade-o� between the optimiser’s complexity and
its ability to learn and transfer knowledge related to adversarial vulnerabilities is left for
future research.

7.6 Conclusions and future research

We introduce a method to learn how to optimise ML models robust to adversarial examples,
in low data regimes. Instead of specifying custom regularisation terms, they are learned
automatically by an adaptive optimiser. Acquiring meta information about the optimisation
landscape under adversarial constraints allows the optimiser to reuse it for new tasks.

For future research, we propose to train the meta-optimiser concomitantly with di�erent
perturbation types – e.g., l1, l2-norm – and test if the optimiser can learn to robustly optimise
under all constraints. Other perturbations, such as naturally occurring perturbations [103]
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can also be included. Another research direction is to use the meta-optimiser to re�ne a
trained model and evaluate if it is possible to robustly regularise it with less data.
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8
Counterexample-Guided

Strategy Improvement for
POMDPs Using Recurrent

Neural Networks

In this chapter we tackle the problem of robust decision making for autonomous
systems under uncertainty. This problem is relevant for any autonomous system
for which the environment is not completely known, which is the case in most real-
world scenario. In particular, we study strategy synthesis for partially observable
Markov decision processes (POMDPs) – i.e., determine strategies that provably
adhere to probabilistic temporal logic constraints. This problem is known to be
computationally intractable. We propose a novel method to solve this problem
by combining techniques from machine learning and formal veri�cation. Firstly,
we train a deep learning model to encode POMDP strategies. The deep learning
model accounts for memory-based decisions without the need to expand the full
belief space of a POMDP. Secondly, we restrict the deep learning based strategy
to represent a �nite-memory strategy and implement it on a speci�c POMDP. For
the resulting �nite Markov chain, formal veri�cation techniques provide provable
guarantees for temporal logic speci�cations.

This chapter has been published as q S. Carr, N. Jansen, R. Wimmer, A. Serban, B. Becker, U. Topcu, Counterexample-
Guided Strategy Improvement for POMDPs Using Recurrent Neural Networks, International Joint Conference on
Arti�cial Intelligence, 2019 [46].
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8.1 Introduction

Autonomous agents that plan decisions under uncertainty and incomplete information
can be mathematically represented as partially observable Markov decision processes
(POMDPs). In this setting, when an agent makes decisions within an environment, it obtains
observations and infers the likelihood of the system being in a certain state (also known as
the belief state). POMDPs are e�ective in modelling a number of real-world applications –
e.g., [126, 271] – and are the standard model for decision making in autonomous systems
where the environment is not completely known.

Traditional POMDP problems seek to compute a strategy that maximizes a cumulative
reward over a �nite horizon. However, the agent’s behaviour is often required to obey more
strict speci�cations. For example, reachability, liveness or, more generally, speci�cations
expressed in temporal logic (e.g., LTL [207]) describe tasks that cannot be expressed using
reward functions [153]. For example, one would like to verify upfront that an autonomous
agent has low probability of reaching a bad state and guarantee safe operation. Therefore,
a robust decision making algorithm must satisfy with high probability the speci�cations.

Strategy synthesis for POMDPs is di�cult, both from a theoretical and practical per-
spective. For in�nite- or inde�nite-horizon problems, computing an optimal strategy is
undecidable [161]. Optimal action choices depend on the whole history of observations and
actions, thus requiring an in�nite amount of memory. When restricting the speci�cations
to maximize accumulated rewards over a �nite horizon and limiting the available memory,
computing an optimal strategy is PSPACE-complete [195]. This problem is, practically,
intractable even for small instances [176]. Moreover, even when strategies are restricted to
be memoryless, �nding an optimal strategy within this set is still NP-hard [280]. For more
general speci�cations like LTL properties, synthesis of strategies with limited memory is
even harder, namely EXPTIME-complete [48]).

The intractable nature of these problems gave rise to approximate [101], point-
based [205], or Monte-Carlo-based [258] methods. However, none of these approaches
provides guarantees for given temporal logic speci�cations. The tool PRISM-POMDP
[190] does so by approximating the belief space into a fully observable belief MDP, but is
restricted to small examples. Other techniques – such as those using satis�ability modulo
theory solvers over a bounded belief space [285] or a label-based simulation over sets of
belief models [98] – are also only restricted to small examples.

Although strategy synthesis for POMDPs is di�cult, a candidate strategy resolves
non-determinism and partial observability for a POMDP, and yields a so-called induced
discrete-time Markov chain (MC). For this simpler model, veri�cation methods are capable
to e�ciently certify temporal logic constraints and reward speci�cations for billions of
states [18]. Tool support is also available via probabilistic model checkers such as Storm [64].

However, there is a tension between directly synthesizing an optimal strategy and
e�cient veri�cation of a candidate strategy. Here, two questions arise: (i) how to generate
a suitable strategy, and (ii) how to improve a strategy if veri�cation refutes the speci�ca-
tion? Machine learning (ML) and formal veri�cation techniques address these questions
separately. In this chapter, we bridge methods from both �elds in order to guarantee that a
candidate strategy learned through ML provably satis�es temporal logic speci�cations.
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First, we learn a randomized strategy1 via recurrent neural networks (RNNs) [107] –
which we refer to as the strategy network. RNNs are a good candidate for learning a strategy
because they can successfully represent temporal dynamic behaviour [202]. Second, we
extract a concrete (memoryless randomized) candidate strategy from the RNN and use it
directly on a given POMDP, resulting in the MC induced by the POMDP and the strategy.
Formal veri�cation reveals whether speci�cations are satis�ed or not. In the latter case, we
generate a counterexample [293], which points to parts of the MC (and by extension of
the POMDP), that are critical for the speci�cation. For those critical parts, we use a linear
programming (LP) approach that locally improves strategy choices (without guarantees on
the global behaviour). From the improved strategy, we generate new data to retrain the
RNN. We iterate that procedure until the strategy network yields satisfactory results.

While the strategies are memoryless, allowing randomisation over possible choices and
relaxing determinism is often su�cient to capture necessary variability in decision-making.
The intuition is that deterministic choices at a certain state may need to vary depending on
previous decisions, thereby trading o� memory. However, randomization in combination
with �nite memory may supersede in�nite memory even more for many cases [7, 125]. We
encode �nite memory directly into a POMDP by extending its state space. We can then
directly apply our method to create �nite-state controllers (FSCs) [176].

As previously discussed, the investigated problem is undecidable for POMDPs [161]
and therefore the approach is naturally incomplete. Soundness is provided, as veri�cation
yields hard guarantees on the quality of a strategy.

This chapter is organised as follows. Section 8.2 introduces the formal foundations on
POMDP and related work. Section 8.3 describes the strategy synthesis procedure, followed
by details on how the strategy is trained using RNNs in Section 8.3.1. The method’s
e�ectiveness is demonstrated using a selection of temporal logic examples, as well as
comparing to well-known benchmarks [261] in Sect. 8.4. Conclusions and future work
follow in Section 8.5.

8.2 Background and related work

Preliminaries. A probability distribution over a �nite or countably in�nite set X is a
function �∶ X → [0, 1] ⊆ ℝ with ∑x∈X �(x) = �(X ) = 1. The set of all distributions on X is
Distr(X ). The support of a distribution � is supp(�) = {x ∈ X |�(x) > 0}.

A Markov decision process (MDP)M is a tuple M = (S,Act,) with a �nite (or countably
in�nite) set S of states, a �nite set Act of actions, and a transition function  ∶ S ×Act →
Distr(S). We use a reward function r ∶ S × a → ℝ. A �nite path � of an MDP M is a
sequence of states and actions; last(� ) is the last state of � . The set of �nite paths of M is
PatℎsMf in . A discrete-time Markov chain (MC) is an MDP with |Act(s)| = 1 for all s ∈ S.

A strategy  for and MDPM is a function  ∶ PatℎsMf in→Distr(Act)with supp( (� )) ⊆
Act(last(� )) for all � ∈ PatℎsMf in . A strategy  is memoryless if last(� ) = last(� ′) implies
 (� ) =  (� ′) for all �,� ′ ∈ PatℎsMf in .

1Also referred to as stochastic strategy or policy.
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For an MDP M = (S,Act,) and a strategy  ∈ ΓM , the MC induced by M and  is given
by M = (PatℎsMf in , P

 ) where:

P (�,� ′) =

{
(last(� ), a, s′) ⋅  (� )(a) if � ′ = �as′,
0 otherwise.

(8.1)

A partially observable Markov decision process (POMDP) is a tuple  = (M,Z ,O), with
M = (S,Act,) the underlying MDP of , Z a �nite set of observations and O ∶ S → Z
the observation function. The set of all �nite observation-action sequences for a POMDP
 is denoted by ObsSeqf in . An observation-based strategy for a POMDP  is a function
 ∶ ObsSeqf in → Distr(Act) such that supp( (O(� ))) ⊆ Act(last(� )) for all � ∈ PatℎsMf in .
Γz is the set of observation-based strategies for .

A memoryless observation-based strategy  ∈ Γz is analogous to a memoryless MDP
strategy, formally we simplify to  ∶ Z → Distr(Act), i.e.,we decide based on the current
observation only. Similarly, POMDP together with a strategy yields an induced MC as
in Def. 8.1, resolving all nondeterminism and partial observability. A general POMDP
strategy can be represented by in�nite-state controllers. Strategies are often restricted to
�nite memory; this amounts to using �nite-state controllers (FSCs) [176].

A k-FSC for a POMDP is a tuple  = (N ,nI ,  , �) where N is a �nite set of k memory
nodes, nI ∈ N is the initial memory node,  is the action mapping  ∶ N ×Z → Distr(Act)
and � is the memory update � ∶ N ×Z ×Act → N . Let  ∈ Γz denote the observation-
based strategy represented by the FSC . The product × of a POMDP and a k-FSC
yields a (larger) “�at” POMDP where the memory update is directly encoded into the
state space [125]. The action mapping  is left out of the product. A memoryless strategy
 ∈ Γ×

z then determines the action mapping and can be projected to the �nite-memory
strategy  ∈ Γz .

Speci�cations. We consider linear-time temporal logic (LTL) properties [207]. For a set
of atomic propositions AP , which are either satis�ed or violated by a state, and a ∈ AP , the
set of LTL formulas is given by:

Ψa | (Ψ∧Ψ) | ¬Ψ | ○ Ψ | 2Ψ | (ΨU Ψ) . (8.2)

Intuitively, a path � satis�es the proposition a if its �rst state does; ( 1 ∧ 2) is satis�ed, if
� satis�es both  1 and  2; ¬ is true on � if  is not satis�ed. The formula ○ holds on �
if the subpath starting at the second state of � satis�es  . The path � satis�es 2 if all
su�xes of � satisfy  . Finally, � satis�es ( 1U  2) if there is a su�x of � that satis�es  2
and all longer su�xes satisfy  1. ◊ abbreviates (trueU  ).

For POMDPs, one wants to synthesize a strategy such that the probability of satisfying
an LTL-property respects a given bound, denoted ' = ℙ∼�( ) for ∼ ∈ {<,≤,≥,>} and � ∈ [0,1].
In addition, undiscounted expected reward properties ' = E∼�(◊a) require that the expected
accumulated cost until reaching a state satisfying a respects � ∈ ℝ≥0.

If ' (either LTL or expected reward speci�cation) is satis�ed in a (PO)MDP  under
 , we write  ⊧ ', that is, the speci�cation is satis�ed in the induced MC, see Eq. 8.1.
While determining an appropriate strategy is still e�cient for MDPs, this problem is in
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general undecidable for POMDPs [49]. In particular, for MDPs, to check the satisfaction of
a general LTL speci�cation one needs memory. Typically, tools like PRISM [144] compute
the product of the MDP and a deterministic Rabin automaton. In this product, reachability
of so-called accepting end-components ensures the satisfaction of the LTL property. This
reachability probability can be determined in polynomial time. PRISM-POMDP [190]
handles the problem similarly for POMDPs, but note that a strategy needs memory not
only for the LTL speci�cation but also for observation dependencies.

Finally, given a (candidate) strategy  , checking whether  ⊧ ' holds can be done
both for MDPs and POMDPs in polynomial time [18].

Related Work. Besides the publications mentioned in Section 8.1, previous work has
used recurrent neural network (RNN) to synthesize strategies for POMDPs. These meth-
ods fall within the policy gradient class of algorithms speci�c to reinforcement learn-
ing (RL) [266]. In this setting, the strategy is parameterized and updated by performing
gradient ascent on the error function (typically chosen to maximize the discounted reward).

In order to cope with arbitrary memory in POMDPs, policy gradients methods need
some notion of memory. RNNs are suitable for this task because (1) they are di�erentiable
end-to-end and (2) they are designed to exhibit dynamic temporal behavior. Indeed, [292]
were the �rst to employ a RNN to learn (�nite-memory) strategies for POMDPs. In particular,
the authors used a long short-term memory (LSTM) architecture which is able to leverage
both long and short term events in the past.

Recent progress in deep learning (DL) enabled scaling deep neural networks (DNNs) to
solve complex problems. For example, [181] developed a DNN-based Q-learning algorithm
able to play video games straight from video frames, under partial observability. Instead
of using RNNs, the memory problem is solved by replaying a series of frames at every
step. Later, [100] added an LSTM cell to enhance the algorithm’s capacity with both long
and short term memory. From there on, the �eld rapidly moved to explore new ways of
improving the memory representation [201, 211, 228]. However, even though they yield
good performance on a variety of tasks, these methods do not provide guarantees on the
strategies learned. In fact, it is very hard to perform any reasoning about these strategies.

8.3 Strategy synthesis

For a POMDP  and a speci�cation ', where either ' = ℙ∼�( ) with  an LTL formula,
or ' = E∼�(◊a), the problem is to determine a (�nite-memory) strategy  ∈ Γz such that
 ⊧ '. If such a strategy does not exist, the problem is infeasible.

The work�ow of the proposed method is illustrated in Fig. 8.1: We start by training a
RNN using observation-action sequences generated from an initial strategy as discussed
in Section 8.3.1. The trained strategy network represents an observation-based strategy,
taking as input an observation-action sequence and returning a distribution over actions
(Section 8.2). For a POMDP , we use the output of the strategy network in order to resolve
nondeterminism. The strategy network is thereby used to extract a memoryless strategy
 ∈ Γ and as a result we obtain the induced MC  . Model checking of this induced MC
evaluates whether the speci�cation ' is satis�ed or not for the extracted strategy. In the
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Figure 8.1: Flowchart of the RNN-based re�nement loop.

former case, the synthesis procedure is �nished. The extraction and evaluation is explained
in Section 8.3.2.

If the speci�cation is not satis�ed, we obtain a counterexample highlighting critical
states of the POMDP. We employ a linear programming (LP) approach that locally improves
action choices of the current strategy at these critical states, described in Section 8.3.3.
Afterwards, we retrain the RNN by generating new observation-action sequences obtained
from the new strategy. We iterate this procedure until the speci�cation is satis�ed or a
�xed iteration threshold is reached. For cases where we need to further improve, we use
domain knowledge to create a speci�c memory-update function of a k-FSC  (Section 8.3).
Then, we compute the product ′ = ×. We iterate with ′ as starting point and
thereby determine a concrete k-FSC including the action mapping.

8.3.1 Learning strategieswithrecurrentneuralnetworks

As mentioned in Section 8.2, policy gradient algorithms are used to map observations to
actions and are not well suited for POMDPs due to their inability to cope with arbitrary
memory. To overcome this weakness, we make explicit use of memory using RNNs - a
family of neural networks designed to exhibit dynamic temporal behaviour.

Constructing the Strategy Network. We use the LSTM architecture [107] in a similar
fashion to policy gradient methods and model the output as a probability distribution on
the action space (described formally by ̂ ∶ ObsSeqf in → Distr(Act)). Having stochastic
output units, we avoid computing gradients on the internal belief states, as it is, for example,
done in [176]. Using back propagation through time, we can update the strategy during
training. Thus, for a given observation-action sequence from ObsSeqf in , the model learns
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a strategy ̂ ∈ Γz . The output is a discrete probability distribution over the actions Act ,
represented using a �nal softmax layer.

RNNTraining. We train the RNN using a slightly modi�ed version of sampling re-usable
trajectories [129]. In particular, for a POMDP  = (M,Z ,O) and a speci�cation ', instead
of randomly generating observation sequences, we �rst compute a strategy  ∈ ΓM of the
underlying MDP M that satis�es '. Then we sample uniformly over all states of the MDP
and generate �nite paths (of a �xed maximal length) from PatℎsM


f in of the induced MC M ,

thereby creating multiple trajectory trees. For each �nite path � ∈ PatℎsM
f in , we generate

one possible observation-action sequence �z ∈ ObsSeqf in such that � = z0, a0,… , an−1, zn
with zi = O(�[i]), where �[i] denotes the i-th state of � for all 1 ≤ i ≤ n. We form the
training data set  from a (problem speci�c) number of m observation-action sequences
with observations as input and actions as output labels. Both input and output sets were
processed using one-hot-encoding. To �t the RNN model, we use the Adam optimiser [132]
with a cross-entropy error function.

Sampling Large Environments. In a POMDP  with a large state space (|S| > 105),
computing the underlying MDP strategy  ∈ ΓM a�ects the performance. In such cases, we
restrict the sampling to a smaller environment that shares the observation Z and action
spaces Act with . For example, consider a grid-world scenario with a moving obstacle
that has the same underlying probabilistic movement for di�erent problem sizes. Such a
framework can provide a similar dataset regardless of the size of the grid.

8.3.2 Strategy extraction and evaluation

We �rst describe how to extract a memoryless strategy from the strategy network for a
speci�c POMDP, then we formalize the extension to FSCs to account for �nite memory.
Finally, we explain how the strategies can be evaluated.

Given a POMDP , we use the trained strategy network ̂ ∶ ObsSeqf in → Distr(Act)
directly as observation-based strategy. Note that the RNN is inherently a predictor for the
distribution over actions and will not always deliver the same output for one input. While
we always use the �rst prediction we obtain, one may also sample several predictions and
take the average of the output distributions.

Extension to FSCs. As mentioned before, LTL speci�cations as well as observation-
dependencies in POMDPs require memory. Consider therefore a general FSC = (N ,nI ,  , �)
(Section 8.2). We �rst prede�ne the memory update function � in a problem-speci�c way,
for instance, � changes the memory node when an observation is repeated. Consider
observation sequence �z ∈ ObsSeqf in with �z = z0, a0,… , zn . Assume, the FSC is in memory
node nk ∈ N at position i of �z . We de�ne �(nk , zi , ai) = nk+1, if �z[i] = (zi , ai), and there
exists a j < i such that �z[j] = (zj , aj ) with zi = zj . Similarly, we account for speci�c memory
choices akin to the relevant LTL speci�cation.

Once � has been de�ned, we compute a product POMDP × which creates a state
space over S ×N . The training process is similar to the method outlined above but instead of
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generating observation-action sequences from ObsSeqf in , we generate observation-node-
action sequences
(z0, n0), a0,… , an−1, (zn , nn) fromObsSeq×

f in . In this case, the RNN is learning the mapping
of observation and memory node to the distribution over actions as an FSC strategy network:
̂FSC ∶ ObsSeq×

f in ×N → Distr(Act)
In order to extract the memoryless FSC  from the FSC strategy network ̂FSC, we

collect the predicted distributions across the product set of all possible observations z ∈ Z
and all possible memory nodes n ∈ N . From this prediction, the FSC  is constructed from
the action mapping  (z,n) = ̂FSC(z,n) and the prede�ned memory update function � .

Evaluation. We assume that for POMDP  = (M,Z ,O) and speci�cation ', we have a
�nite-memory observation-based strategy  ∈ Γ as described above. We use the strategy
 to resolve all nondeterminism in , resulting in the induced MC  , see Def. 8.1. For
this MC, we apply model checking, which in polynomial time reveals whether  ⊧ '. For
the �xed strategy  we extracted from the strategy network, this provides hard guarantees
about the quality of  regarding '. As mentioned before, this strategy is only a prediction
obtained from the RNN – so the guarantees necessarily do not directly carry over to the
strategy network.

8.3.3 Improving the strategy

Next we describe how to compute a local improvement for a strategy that does not satisfy
the speci�cation. In particular, we have POMDP  = (M,Z ,O), speci�cation ', and the
strategy  ∈ Γ with  ̸⊧ '. We then create diagnostics on why the speci�cation is not
satis�ed.

First, without loss of generality, we assume ' = ℙ≤�( ). Let  (z)(a) denote the prob-
ability of choosing action a ∈ Act upon observation z ∈ Z , under the strategy  . Let
Pr∗(s) denote the probability to satisfy  within the induced MC  . For some threshold
�′ ∈ [0,1], a state s ∈ S is critical i� Pr∗(s) > �′. We de�ne �′ as a function �′ ∶ S ×�→ ℝ
with respect to the threshold � from the original speci�cation and the state s. We de�ne
the set of critical decision under the strategy  .

A probability  (z)(a) > 0 according to an observation-based strategy  ∈ Γ is a critical
decision i� there exist states s, s′ ∈ S with s ∈ O−1(z), (s,a, s′) > 0, and s′ is critical. Intu-
itively, a decision is critical if it may lead to a critical state. The set of critical decisions
serves as counterexample, generated by the set of critical states and the strategy  . Note
that even if a speci�cation is satis�ed for  , the sets of critical decisions and states may
still be non-empty as they depend on the de�nition of the criticality-threshold �′.

For each observation z ∈ O with a critical decision, we construct an optimisation
problem that minimises the number of di�erent (critical) actions the strategy chooses per
observation class.

In particular, the probabilities of action choices under  are redistributed such that the
critical choices are minimised.

max
 (z)(a),a∈Act

min
s∈S

ps (8.3)
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s.t.

∀s ∈ O−1(z). ps = ∑
a∈Act

 (z)(a) ⋅∑
s′∈S

(s,a, s′) ⋅p∗(s′)

If the objective function is zero, then we have found an observation-based strategy, as
there are no choices that are inconsistent with the observations any more. Otherwise, we
select a class for which at least two di�erent actions are necessary and then we generate a
new set of paths starting from the critical states. After converting these new paths into
observation-action sequences, we retrain the RNN. By gathering more data from these
apparently critical situations, we locally improve the quality of the strategies at those
locations and gradually introduce observation-dependencies.

8.3.4 Correctness and termination

Correctness of our approach is ensured by evaluating the extracted strategy on the POMDP
using model checking. As the investigated problem is undecidable for POMDPs [161], our
approach is naturally incomplete. In order to enforce termination after �nite time, we abort
the re�nement loop after a speci�ed number of iterations, or as soon as the progress from
one iteration to the next (in terms of the model checking results) falls below a threshold.

8.4 Empirical evaluation

We evaluate tthe RNN-based synthesis procedure on benchmark examples that are subject
to either LTL speci�cations or expected cost speci�cations. For the former, we compare to
the tool PRISM-POMDP, and for the latter we compare to PRISM-POMDP and the point-
based solver SolvePOMDP [281]. Recall that, in general, a strategy over the continuous
belief space induces an in�nite memory strategy for POMDPs. PRISM-POMDP employs
a discretization (we chose the default level of discretization) of that belief space which
technically induces a �nite-memory strategy. Therefore solutions from PRISM-POMDP
are approximate; the tool computes an upper and lower bound on the optimum.

We selected the two solvers from di�erent research communities because they provide
the possibility for a straightforward adaption to our benchmark setting. In particular,
the tools support undiscounted rewards and have a simple and similar input interface.
Extended experiments with, for instance, Monte-Carlo-based methods [258] are interesting
but beyond the scope of this paper.

For a fair comparison, instead of terminating the synthesis procedure once a spec-
i�cation is satis�ed, we always iterate 10 times, where one iteration encompasses the
(re-)training of the RNN, the strategy extraction, the evaluations, and the strategy improve-
ment as in Sect. 8.3. For instance, for a speci�cation ' = ℙ≤�( ), we leave the � open and
seek to compute ℙmin( ), that is, we compute the minimal probability of satisfying  for
a strategy that satis�es '. We cannot guarantee to reach that optimum, but we rather
improve as far as possible within the prede�ned 10 iterations. The notions are similar for
ℙ≥� and ℙmax as well as for expected cost measures E≤� (E≥�) and Emin (Emax).

We will now shortly describe our experimental setup and present detailed results for
both types of examples.
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A

B x̂

x̂
x̃

(a)

Problem |S| |Act | |Z |

Navigation (c) c4 4 256
Delivery (c) c2 4 256
(c) c2 4 256
Maze(c) 3c +8 4 7
Grid(c) c2 4 2
RockSample[4,4] 257 9 2
RockSample[5,5] 801 10 2
RockSample[7,8] 12545 13 2

(b)

Figure 8.2: (a) Example environment and (b) Benchmark metrics

Implementation and Setup. We employ the following Python toolchain to realize the
full RNN-based synthesis procedure. First, we use the deep learning library Keras [54]
to train the strategy network. To evaluate strategies, we employ the probabilistic model
checkers PRISM (LTL) and STORM (undiscounted expected rewards).We evaluated on a
2.3 GHz machine with a 12 GB memory limit and a speci�ed maximum computation time
of 105 seconds.

8.4.1 Temporal logic examples

We examined three problem settings involving motion planning with LTL speci�cations.
For each of the settings, we use a standard grid-world formulation of an agent with 4 action
choices (cardinal directions of movement), see Fig. 8.2a. Inside this environment there are
a set of static (x̂) and moving (x̃) obstacles as well as possible target cells A and B. Each
agent has a limited visibility region, indicated by the green area, and can infer its state
from observations and knowledge of the environment. We de�ne observations as Boolean
functions that take as input the positions of the agent and moving obstacles. Intuitively,
the functions describe the 8 possible relative positions of the obstacles with respect to the
agent inside its viewing range.

1. Navigation with moving obstacles – an agent and a single stochastically moving
obstacle. The agent task is to maximize the probability to navigate to a goal state
A while not colliding with obstacles (both static and moving): '1 = ℙmax (¬X U A)
with x = x̂ ∪ x̃ ,

2. Delivery without obstacles – an agent and static objects (landmarks). The task is
to deliver an object from A to B in as few steps as possible: '2 = Emin(◊(A∧3B)).

3. Slippery delivery with static obstacles – an agent where the probability of mov-
ing perpendicular to the desired direction is 0.1 in each orientation. The task is
to maximize the probability to go back and forth from locations A and B without
colliding with the static obstacles x̂ : '3 = ℙmax (23A∧23B ∧¬3X ), with x = x̂ ,

Evaluation. Fig. 8.3 compares the size of counterexample in relation to the probability
of satisfying an LTL formula in each iteration of the synthesis procedure. In particular,
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Figure 8.3: Progression of the number of critical states and the probability of satisfying an LTL speci�cation as a
result of local improvement steps.

we depict the size of the set S′ ⊂ S of critical states regarding '1 = ℙmax (¬X U A) for the
Navigation example with grid-size 6. Note that even if the probability to satisfy the
LTL speci�cation is nearly one (for the initial state of the POMDP), there may still be
critical intermediate states. As can be seen in the �gure, while the probability to satisfy the
LTL formula increases, the size of the counterexample decreases. In particular, the local
improvement (Eq. 8.3, Sect. 8.3.3) is demonstrated to be e�ective.

Table 8.1 contains the results for the above LTL examples. Note that the sizes of the
FSCs were included to demonstrate the trade-o� between computational tractability and
expressivity: a larger FSC means that the strategy can store more information, which may
lead to better choices. However, larger FSCs require more computational e�ort and may
require more data for training the RNN. We convey this trade-o� in the experiments, as
the size of the FSC is often problem-speci�c. Naturally, the strategies produced by the
procedure will not have higher maximum probabilities (or lower minimum expected cost)
than those generated by the PRISM-POMDP tool. However, they scale for signi�cantly
larger environments and settings. In the larger environments (Navigation(15) and upwards
indicated by a star) we employ the sampling technique outlined at the end of Sect. 8.3.1
on a dataset with grid-size 10. The strategy still scales to these larger environments even
when trained on data from a smaller state space.

Also in Table 8.1, we compare the e�ect of increasing the value of k for several k-FSCs.
In smaller instances with grid-sizes of 4 and 5, memory-based strategies signi�cantly
outperform memoryless ones in terms of quality (the resulting probability or expected
cost) while not consuming signi�cantly more time. The increase in performance is due to
additional expressiveness of an FSC-based strategy in these environments with a higher
density of obstacles.

Summarized, our method scales to signi�cantly larger domains than PRISM-POMDP
with competitive computation times. As mentioned before, there is an inherent level of
randomness in extracting a strategy. While we always take the �rst shot result for our
experiments, the quality of strategies may improved by sampling several RNN predictions.
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Table 8.1: Synthesizing strategies for examples with LTL specs.

RNN-based Synthesis PRISM-POMDP
Problem States Type, ' Res. Time (s) Res. Time (s)

Navigation (3) 333 ℙ
max , '1 0.74 14.16 0.84 73.88

Navigation (4) 1088 ℙ
max , '1 0.82 22.67 0.93 1034.64

Navigation (4) [2-FSC] 13373 ℙ
max , '1 0.91 47.26 – –

Navigation (4) [4-FSC] 26741 ℙ
max , '1 0.92 59.42 – –

Navigation (4) [8-FSC] 53477 ℙ
max , '1 0.92 85.26 – –

Navigation (5) 2725 ℙ
max , '1 0.91 34.34 MO MO

Navigation (5) [2-FSC] 33357 ℙ
max , '1 0.92 115.16 – –

Navigation (5) [4-FSC] 66709 ℙ
max , '1 0.92 159.61 – –

Navigation (5) [8-FSC] 133413 ℙ
max , '1 0.92 250.91 – –

Navigation (10) 49060 ℙ
max , '1 0.79 822.87 MO MO

Navigation (10) [2-FSC] 475053 ℙ
max , '1 0.83 1185.41 – –

Navigation (10) [4-FSC] 950101 ℙ
max , '1 0.85 1488.77 – –

Navigation (10) [8-FSC] 1900197 ℙ
max , '1 0.81 1805.22 – –

Navigation (15) 251965 ℙ
max , '1 0.91 1271.80* MO MO

Navigation (20) 798040 ℙ
max , '1 0.96 4712.25* MO MO

Navigation (30) 4045840 ℙ
max , '1 0.95 25191.05* MO MO

Navigation (40) – ℙ
max , '1 TO TO MO MO

Delivery (4) [2-FSC] 80 E
min , '2 6.02 35.35 6.0 28.53

Delivery (5) [2-FSC] 125 E
min , '2 8.11 78.32 8.0 102.41

Delivery (10) [2-FSC] 500 E
min , '2 18.13 120.34 MO MO

Slippery (4) [2-FSC] 460 ℙ
max , '3 0.78 67.51 0.90 5.10

Slippery (5) [2-FSC] 730 ℙ
max , '3 0.89 84.32 0.93 83.24

Slippery (10) [2-FSC] 2980 ℙ
max , '3 0.98 119.14 MO MO

Slippery (20) [2-FSC] 11980 ℙ
max , '3 0.99 1580.42 MO MO

8.4.2 Comparison to existing POMDP examples

For comparison to existing benchmarks, we extend two examples from PRISM-POMDP
for an arbitrary-sized structure: Maze(c) with c +2 rows and Grid(c) – a square grid with
length c. We also compare to RockSample [258] (see Table 8.2b for problem metrics).

These problems are quite di�erent to the LTL examples, in particular the signi�cantly
smaller observation spaces. As a result, a simple memoryless strategy is insu�cient for a
useful comparison. For each problem, the size of the k-FSC used is given by: Maze(c) has
k = (c +1); Grid(c) has k = (c −1) and RockSample with b rocks has k = b.

Our method compares favorably with PRISM-POMDP and pomdpSolve for Maze and
Grid (Table 8.2). However, the proposed method performs poorly in comparison to pomdp-
Solve for RockSample: An observation is received after taking an action to check a particular
rock. This action is never sampled in the modi�ed trajectory-tree based sampling method
(Sect. 8.3.1). Note that our main aim is to enable the e�cient synthesis of strategies under
linear temporal logic constraints.

8.5 Conclusions and future research

We introduced a new RNN-based strategy synthesis method for POMDPs and LTL spec-
i�cations. While we cannot guarantee optimality, our approach shows results that are
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Table 8.2: Comparison for standard POMDP examples.

RNN-based Synthesis PRISM-POMDP pomdpSolve
Problem Type States Res Time (s) Res Time (s) Res Time (s)

Maze (1) E
min 68 4.31 31.70 4.30 0.09 4.30 0.30

Maze (2) E
min 83 5.31 46.65 5.23 2.176 5.23 0.67

Maze (3) E
min 98 8.10 58.75 7.13 38.82 7.13 2.39

Maze (4) E
min 113 11.53 58.09 8.58 543.06 8.58 7.15

Maze (5) E
min 128 14.40 68.09 13.00 4110.50 12.04 132.12

Maze (6) E
min 143 22.34 71.89 MO MO 18.52 1546.02

Maze (10) E
min 203 100.21 158.33 MO MO MO MO

Grid (3) E
min 165 2.90 38.94 2.88 2.332 2.88 0.07

Grid (4) E
min 381 4.32 79.99 4.13 1032.53 4.13 0.77

Grid (5) E
min 727 6.623 91.42 MO MO 5.42 1.94

Grid (10) E
min 5457 13.630 268.40 MO MO MO MO

RockSample[4,4] E
max 2432 17.71 35.35 N/A N/A 18.04 0.43

RockSample[5,5] E
max 8320 18.40 43.74 N/A N/A 19.23 621.28

RockSample[7,8] E
max 166656 20.32 860.53 N/A N/A 21.64 20458.41

often close to the actual optimum, with competitive computation times for large problem
domains. For future research, we are interested in extending our method to continuous state
spaces, together with abstraction techniques that would enable to employ our model-based
method.
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9
Conclusions

We tackled several challenges in the design, development and deployment of robust au-
tonomous systems. We regard autonomous systems as software systems capable to perceive
the environment they operate in, reason about it and plan future actions – where both
perception and planning are based on deep learning models. Since robustness has broad
implications along each stage of the software development life cycle for autonomous sys-
tems, we proposed a holistic approach to achieve robustness that incorporates (i) a macro,
system wide, perspective, and (ii) a micro, algorithmic, perspective.

Autonomous systems consist of multiple traditional software components, with which
deep learning components for perception and planning have to be integrated. Therefore,
we started from a macro, system wide perspective. In Chapter 2 we studied how software
systems can be (re-)architected to support robust integration of deep learning components.
Through a mixed-methods empirical study we identi�ed twenty architectural tactics that
can be used by practitioners to satisfy quality requirements of systems with deep learning
components. These tactics represent an empirical framework that support the process of
(re-)architecting software systems with deep learning components.

In Chapter 3 we observed that deep learning components complicate traditional soft-
ware architecture design because of the inability to verify that deep learning components
will satisfy their intended functionality and can cope with stochastic events coming from
the operational environment. Since traditional software architecture analysis methods do
not consider this complication, they fall short for systems with deep learning components.
To facilitate the comparison of architecture alternatives for systems with deep learning
components, we proposed a software architecture evaluation method that makes uncer-
tainty a central decision driver. The method supports reasoning over how architectural
patterns can mitigate uncertainty and enables comparison of di�erent architectures focused
on the interplay between deep learning and traditional software components. We also
showed that design patterns used in safety-critical systems can be used to build robust
autonomous systems with deep learning components.

In Chapter 4 we study the challenges raised by deep learning components at all stages
of the development life cycle. Through an empirical study, we compiled a catalogue of
engineering best practices for deep learning applications. Moreover, we studied the e�ects



9

122 9 Conclusions

of adopting the practices and the importance of each practice for the e�ects. These results
provide a basis for quality assessment and improvement for teams developing software
with deep learning components.

In the second part of the thesis, we zoomed in on the challenges raised by the devel-
opment of robust deep learning components from a micro, algorithmic perspective. In
particular, we tackled the development of computer vision models robust against adversarial
examples and of veri�able deep learning based planning algorithms.

We focused on reducing the impact of adversarial training – the most e�ective defence
against adversarial examples – on training time. Since adversarial training relies on �nding
representative adversarial samples for training, a procedure that slows down training
considerably, it is imperative to �nd methods to develop robust computer vision models
by alleviating the impact of adversarial training. To tackle this challenge, we proposed
in Chapter 6 to train models on output spaces with large class separation, in order to
gain robustness without adversarial training. We introduced a method to partition the
output space into class prototypes with large separation and train models to preserve the
separation. Experimental results show that models trained with these prototypes – which
we call deep repulsive prototypes – gain robustness competitive with adversarial training,
while also preserving more accuracy on natural samples. Moreover, the models are more
resilient to large perturbation sizes.

In Chapter 7 we proposed a method to train robust classi�ers with small training
data sets and transfer the knowledge learned about robustness between di�erent models.
Towards this goal, we trained a meta-optimiser which learns to robustly optimise a model
using perturbed samples and used it to transfer the knowledge learned to new models. Thus,
the method eliminates the need of adversarial training once the meta-optimiser is trained.
We show empirically that the meta-optimiser is consistent across di�erent architectures
and data sets, suggesting it is possible to transfer knowledge about robustness between
di�erent models.

In Chapter 8 we investigated the robustness of deep learning based planning algorithms,
where formal veri�cation can not be applied directly because the planning algorithms are
too complex. In this context, we studied the problem of strategy synthesis for partially
observable Markov decision processes, where the strategy is synthesised by a deep learning
algorithm. To determine if the strategies adhere to (probabilistic) temporal logic constraints
is computationally intractable and theoretically hard. In order to overcome this limitation,
we introduce a method that combines techniques from deep learning and formal veri�cation.
The strategy is learned using a recurrent neural network and restricted to represent a �nite
memory strategy, which can be implemented on a speci�c partially observable Markov
decision process. This allows formal veri�cation techniques to be used in order to provide
guarantees against temporal logic speci�cations.

9.1 Contributions

Several contributions were made in this thesis, as follows:

Chapter 2 introduced an empirical study of software architecture for deep learning,
which resulted in:
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• evidence that traditional software architecture challenges remain relevant for soft-
ware systems with deep learning components, although new architectural challenges
for deep learning also emerge;

• twenty solutions to the software architectural challenges for deep learning found
both in literature and practice;

• a link from architectural solutions to software quality attributes which allowed the
de�nition of twenty architectural tactics that can be used to satisfy individual quality
attributes of software systems with deep learning components.

Chapter 3 introduced a method to compare software architectures with deep learning
components, which resulted in:

• evidence that traditional software architecture evaluation methods do not take into
account the uncertainty related to deep learning components;

• a method to compare software architectures with deep learning components that
takes into account this uncertainty;

• a case study that demonstrates this method can be used to compare software archi-
tectures with deep learning components and evidence that software architecture
design patterns for safety critical systems can be used to decrease the uncertainty of
systems with deep learning components.

Chapter 4 introduced a study of software engineering best practices for deep learning,
which resulted in:

• a catalogue of twenty-nine software engineering best practices for machine and deep
learning applications;

• evidence that adoption of practices leads to measurable e�ects, such as traceability;

• an analysis of the contribution of each practice to the e�ects, which allows practi-
tioners to estimate the return of investment for adopting the practices.

Chapter 5 introduced a brief summary of adversarial examples, based on a previous
publication that provides:

• a comprehensive and self-contained survey of the �eld of adversarial examples which
compares more than 100 attacks and defences;

• a comprehensive presentation of the hypotheses behind the existence of adversarial
examples;

• a detailed discussion of the implications of adversarial examples to safety, security
and robustness of deep learning.
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Chapter 6 introduced a method to train robust deep learning models against adversarial
examples without adversarial training, which resulted in:

• evidence that the impact of adversarial training can be alleviated by choosing induc-
tive biases;

• evidence that the output space of classi�ers is a good inductive bias for training
robust deep learning models;

• a method to partition the output space into class prototypes that can be used to
train models as robust as those adversarial trained, without the need to generate
adversarial examples for training.

Chapter 7 introduced a meta-learning method to transfer knowledge about adversarial
examples between models, which resulted in:

• evidence that knowledge about adversarial examples can be learned by a meta
optimiser;

• evidence that the knowledge learned by a meta optimiser can be transferred to other
models;

• a method to train adversarial robust models with meta-learning, which reduces the
impact of adversarial training signi�cantly.

Chapter 8 introduced a method to formally verify strategies of deep learning based
planning algorithms, which resulted in:

• evidence that the strategies learned with recurrent neural networks can be reduced
to formally veri�able problems;

• a method to formally verify these strategies;

• a method to improve the strategy using counter-examples generated by formal
veri�cation tools.

9.2 Reflection on researchqestions

We provide a re�ection on the research questions from Table 1.1 in light of the contributions
of this thesis.

How can software systems be (re-)architected to enable robust integration of deep
learning components? The research presented in Chapter 2 designed to answer this
question revealed that, although traditional software architecture challenges remain rele-
vant for software with deep learning components, new challenges speci�c to deep learning
also emerge. While traditional challenges have been well studied, we observed that new
challenges have little support in the literature. Therefore, we designed and performed
a broader study involving practitioners, which allowed us to present an extensive set of
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solutions for all challenges. Software architecture is not always a �xed stage of the devel-
opment life cycle. For example, in Agile development the software architecture is designed
as the software is developed, while in Waterfall development the software architecture
is designed upfront. Trends such as “Just enough software architecture" [75] propose to
make architecture decisions as new risks are identi�ed during software development.

The results of our study revealed that practitioners adopt a similar process for designing
the software architecture of systems with deep learning components, tackling new concerns
once they emerge. Unfortunately, this results in practitioners focusing more on traditional
architecture concerns such as scalability or performance and less on concerns that are
emphasised by deep learning, such as robustness. We believe that a method that bridges
upfront and continuous architecture design is more suitable for systems with deep learning
components, in order to embrace issues that arise with deep learning and the experimental
development life cycle.

We made e�orts to link architectural decisions and solutions to quality attributes of
a system, such that the outcomes of architecture decisions can be better understood and
mapped to quality attributes of deep learning components. A tactic driven approach seems
suitable for (re-)architecting systems to enable robust integration of deep learning, as
tactics can be used both upfront and continuous. Moreover, the e�ects of some tactics
can be measured directly by instrumenting the system or the deep learning components.
Therefore, evidence for the outcomes of the tactics employed can be gathered rapidly. Our
initial e�orts in this direction allowed us to compile a set of twenty architectural tactics
that can be used to satisfy quality attributes of systems with deep learning components.
Nonetheless, this set of tactics is not complete and we expect new tactics that address new
quality attributes to emerge soon.

How to compare software architectures with deep learning components? As
we just mentioned, practitioners still focus on solving traditional software architecture
challenges, such as scalability or performance. Therefore, it is likely that traditional
architecture evaluation methods tailored for these quality attributes can be used for software
with deep learning components.

However, by analysing the literature we observed a lack of methods to evaluate how well
an architecture copes with uncertainty of DL components, also called uncertainty due to
“automated learning". This type of uncertainty is inherent to all deep learning components.
Therefore, architecture evaluation methods should take into account this type of uncertainty,
which is particularly relevant for safety critical systems, where deep learning components
can appear to be functioning normally but produce wrong or uncertain predictions. In
such scenarios, traditional architecture evaluation methods fall short, because the deep
learning components will appear to be functioning normally.

To overcome this challenge, we proposed an architecture evaluation method that takes
into account the uncertainty of deep learning components, both locally, as it impacts one
component, and globally, as it propagates through a system. We validated our approach
through a use-case, which brought evidence that di�erent software architectures can lead
to distinct uncertainty outcomes. We believe developments in this direction are needed in
order to complement traditional architecture evaluation methods and enable comparisons
of architectures with deep learning components. Moreover, since uncertainty can be
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measured or approximated at run-time, these methods can be extended to analyse systems
in operation and dynamically recon�gure them. This direction is tackled in the research
�eld of self-adaptive systems, although the lack of studies involving systems with deep
learning components is surprising. Nonetheless, we expect new developments in this �eld
as deep learning becomes prevalent.

How do teams design, develop and deploy software with deep learning compo-
nents? Software architecture is just one stage of the software development life cycle.
Since all other stages can impact the robustness of autonomous systems, we performed
a broader study to understand how teams design, develop and deploy systems with deep
learning components. We note that in this case deployment includes maintenance and
retirement of these systems.

To understand the team processes, we mined a broad set of best practices for each stage
of the development life cycle, including team organisation and governance aspects. By
running a global survey with over 300 participant teams, we could understand how teams
adopt these practices and how these practice relate to various e�ects. We observed that
practice adoption increases with team size and experience.

We also observed the adoption of best practices for engineering is rather low. In a
subsequent study we extended the initial set of practices with practices related to trust-
worthy development of deep learning [247]. These practices included, among others,
assurance of robustness. Unfortunately, we observed that the practices related to trust-
worthy deep learning have even lower adoption. These results are currently a cause of
concern. Nonetheless, we expect that popularisation of best engineering practices together
with new incentives (such as new regulations) will increase practice adoption and lead to
more robust autonomous systems.

How can we reduce the impact of adversarial training on robust computer vision
algorithms? The sensitivity of deep learning models to adversarial examples has been
studied intensively in the last �ve years. However, most defences against adversarial
examples have been broken and no technical solution for this issue exists. The most
e�ective defence is still adversarial training, which involves complementing the training
data set with adversarial examples.

Nonetheless, the process to generate adversarial examples is resource intensive and
slows down the training process signi�cantly. To alleviate this limitation, we proposed two
methods. The �rst one is based on adding an inductive bias for learning, by partitioning the
output space into class prototypes with large class separation. When new models are trained
to preserve this separation, they become almost as robust against adversarial examples as
adversarially trained models without the need to generate adversarial examples.

Also, the deep learning community seems to be �rmly against inductive biases, in
spite of the fact that they bring bene�ts. Subsequent experiments, performed at larger
scale [212], showed that similar prototypes can be learned with supervision from language
models and brings additional evidence that by specifying constraints on the output space
we can develop robust models for computer vision. The second method we introduce is
based on meta-learning and shows that information about the optimisation landscape of
adversarially trained models can be transferred to new models without the need to generate
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adversarial examples. While both methods reduce or remove the impact of adversarial
training, we can not yet train completely robust models. Therefore, this remains an open
problem.

Can we reduce the complexity of deep learning based planning algorithms and
allow formal veri�cation? Our work on reducing the complexity of deep learning
based planning algorithms to allow formal veri�cation shows it is possible to do so. The
resulting strategy is correct, as each strategy prediction is evaluated using model checking,
but not complete. The method is scalable, but not optimal.

Moreover, the method is limited to scenarios in which the underlying structure of
the problem is known or can be uncovered. For large problems – such as performing
reinforcement learning from unstructured raw observations (e.g., images) – we still do not
have solutions that can allow formal veri�cation. When training reinforcement learning
algorithms from unstructured raw observations, the strategies learned are competitive.
However, they can not be formally veri�ed. We believe this interplay between reducing the
representation of the world from unstructured raw observations to allow formal veri�cation
will play an important role in safe reinforcement learning. However, the solutions will
likely be context-dependent, because a universal solution is not tractable.

9.3 Future research

Concrete future research directions were discussed in each chapter. We here provide higher
level comments regarding our view on robustness of autonomous systems and the two main
topics studied: software engineering for machine and deep learning and robust computer
vision and planning.

With regard to to software engineering for machine and deep learning, we believe it
is necessary to continue to expand and develop operational practices that can be directly
applied by practitioners. We already made e�orts to expand the catalogue of practices
presented in Chapter 4 with practices regarding trustworthy development of deep learning
components [247]. Further e�orts to expand this catalogue of practices to tackle other
engineering concerns should be paired with advanced techniques for measuring practice
adoption. More fundamentally, a de�nition of quality for machine and deep learning
components, compatible with previous quality de�nitions for traditional software, is needed.
Research along these lines will provide practitioners with comparative measurements and
benchmarks for the quality of their systems and propose step-wise improvements for
distinct quality goals. Our initial exploration on this subject showed that applying more
advanced data processing techniques for subjective adoption measurements coming from
survey data (e.g., using item response theory) can be successfully used as an assessment
and step-wise improvement instrument. Nevertheless, more concrete measurements that
can be applied to code, data, infrastructure or team processes are needed.

Through various interactions with practitioners, we also observed a lack of educational
materials in the area of software engineering for machine learning. Data scientists and
machine learning practitioners have distinct backgrounds – ranging from physics, astron-
omy, to computer science or engineering – and their curriculum does not always provide
education in software engineering. We made e�orts to communicate the results gathered
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in the �rst part of the thesis in a manner that is easily accessible to practitioners with
distinct backgrounds and believe this material can serve as support for future courses and
educational materials on the topic of software engineering for machine learning.

With regard to to the vulnerability of computer vision models to adversarial examples,
we observed that research in this area is, for the most part, driven by benchmarks. While
this approach helps to de�ne comparative evaluation methods for adversarial robustness,
we believe a more fundamental approach is needed. The vulnerability to adversarial
examples shows the representations learned by neural networks are not consistent with
the real world, are not semantically consistent and not criticisable. We believe that (i)
using concepts from topology that can add structure to the internal representations or (ii)
using multi-modal learning to pair representations learned from di�erent data types will
bridge the gap between the real world and the internal structure of neural networks. A �rst
step in this direction has shown that large scale multi-modal learning bene�ts adversarial
robustness [212]. However, it opens up a new range of adversarial attacks [89].

Since security is generally considered an arms race, we expect that clever attackers will
�nd new methods to generate adversarial examples, no matter how sophisticated machine
and deep learning models are and how well they perform on standard benchmarks. There-
fore, we believe research in adversarial machine learning should borrow more concepts
from traditional security, such as de�ning threat models, performing risk analyses and
deciding when the vulnerability to adversarial examples is an important security threat.

With regard to to planning algorithms, we observed that deep learning based planning
algorithms, such as the family of algorithms developed in deep reinforcement learning,
can achieve better performance when not limited by the constraints imposed for making
formal veri�cation possible. However, such algorithms become impossible to formally
verify. From an engineering perspective, the trade-o�s between using planning algorithms
that can or can not be formally veri�ed should be discussed when the software architecture
of a system is de�ned. Methods such as the one presented in Chapter 3, which make
uncertainty a central decision driver, can be directly used or adapted depending on the use
case. From a research perspective, a line of work that we �nd interesting is learning state
representations from the environment, which can be later used in formal veri�cation [9].
Our initial e�orts in this direction showed it is possible to learn world representations for
formal veri�cation for simple use cases. However, scaling this method to larger worlds is
left for future research.

Overall, we believe that the development of robust autonomous systems will always
have to span multiple aspects, corresponding to di�erent stages of the development life
cycle. While there is no silver bullet to system or algorithmic robustness, the integration
of contributions from software engineering and machine learning provides promising
perspectives.
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