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Abstract

Machine learning methods are increasingly popular in detecting and correcting

defects in source code. This thesis focuses specifically on vulnerability de-

tection. We first provide a systematic literature review of recent approaches,

breakthroughs and directions. We find a thriving, quickly developing field

with numerous open questions and research directions. The review highlights

–among others– two important questions: (i) reproducibility of defect detec-

tion/correction research, and (ii) extension of vulnerability detection systems

past C/C++.

To explore the questions we first replicate one of the leading C/C++ vulner-

ability detection systems and perform extensive experiments by varying the

parameters that were not explicitly defined. We are able to largely replicate

the original study, but we do not achieve the same performance. We also show

that performance is strongly affected by the choice of parameters, which further

highlights the importance of transparency and clarity in reporting.

We then successfully adapt the pipeline into a Java vulnerability detection

system. We show that we can find vulnerabilities in Java with the success

comparable to the baseline. Our additional experimentation offers valuable

insights into the importance of the dataset used for training and the challenge

of detecting vulnerabilities in real source code.
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Introduction

Programming errors have been around for as long as programming itself; in 2017 alone,

the cost of software failures reportedly reached $1.7 trillion and affected 3.6 billion people

[62]. Yet, producing perfect code without mistakes is impossible for even the most experi-

enced programmers. Unfortunately, the most elusive and difficult to find bugs can lead to

severe consequences. OpenSSL’s infamous Heartbleed vulnerability (CVE-2014-0160), for

example, was caused by a single incorrect line of code and yet it made its way to thousands

of web servers and gave attackers unparalleled access to sensitive information [69]. As we

head towards a more and more software-reliant world, the need for quick and effective

identification of such vulnerabilities is clear.

Traditionally, the detection of vulnerabilities was a resource–intensive endeavor, requir-

ing great amounts of manual work and expertise. With the recent advances in deep learning

and source code processing, availability of large corpora of source code, and easier access

to big amounts of computational power, machine learning is beginning to take place as an

attractive alternative to the traditional techniques. We provide evidence for the increas-

ing popularity of machine learning techniques in vulnerability detection by conducting a

systematic literature review.

One of the most notable breakthrough works that showed great promise in usage of

deep learning for vulnerability detection in C programs is VulDeePecker [37]. While there

has been significant work done on machine learning-aided vulnerability detection in C

programs, Java has not yet received such attention, despite continuously appearing at

the top of programming language popularity charts [10]. The main goal of this thesis is

to design, implement and evaluate a machine learning system to detect vulnerabilities in

source code of Java programs, much like VulDeePecker does in C.

With this in mind, the following goals and research questions are defined for this thesis:
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1. INTRODUCTION

• The exploration of state-of-the-art practices and techniques for vulnerability detec-

tion and closely related topics

- What are the current best practices, challenges and future work directions in

the domain of automatic defect detection and correction?

• The replication of a vulnerability detection system for C/C++ source code

- Can the implementation and performance of VulDeePecker be replicated ac-

cording to the information given in the original paper?

- Which of the unspecified parameters and choices affect the performance and

measurements of the replication?

• The creation of a vulnerability detection system for Java source code

- Can the design of VulDeePecker be adapted and extended to support defect

detection in source code of Java programs?

- What performance can we achieve with Java vulnerability detection tool?

The contributions of this thesis can be summarized in the following points:

• We provide a concise review of applications of machine learning for detect detection

and correction published between 2015 and 2020

• Using VulDeePecker replication as a case study, we show that performance cannot

be perfectly replicated if all parameters of the pipeline are not explicitly disclosed.

More specifically, resampling and reweighting heavily affect performance

• We successfully create a system for vulnerability detection in in Java; performance is

comparable to published studies when using an artificial dataset, however the system

underperforms when using a real dataset

The thesis is structured as follows. Chapter 2 introduces the relevant terminology and

concepts necessary to understand the problem and the design of the vulnerability detection

system. Chapter 3 follows with the presentation of the closely related works, promising

directions and challenges. Chapter 4 presents the general design of a vulnerability detection

system and discusses the implementation details. Chapter 5 and Chapter 6 present the

results for replication of VulDeePecker and its adaptation to Java vulnerability detection

system, respectively. Finally, we conclude with a discussion in Chapter 7.
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Background

The following section provides the context, background information and terminology nec-

essary to understand the remainder of the thesis.

2.1 Defects in source code

In the traditional literature on fault tolerance [32], an error is a part of an erroneous state

which constitutes a difference from a valid state; a fault in the system is a defective value in

the state of a component or in the design of a system; and a failure of a system occurs the

first time the behavior of the system deviates from that required by its specification. More

recently –both in practice and in the literature– these terms are often used loosely and

interchangeably. We therefore adopt the recent terminology by Monperrus et al. [46]; the

terms defect, error, bug, fault and similar will be, for the remainder of this thesis treated as

synonyms, and refer to a “deviation between the expected behavior of a program execution

and what actually happened”. Depending on the type of defect found in a program, we

distinguish:

i. syntactic defects refer to mistakes in the syntax of a program, i.e. the grammar and

rules of the language. They are usually detected at compile or run-time and prevent the

program from running at all and are the most well defined and arguably the easiest

to target. Such problems -depending on the language in question- include missing

brackets, semicolons, typos, missing indentations and similar.

ii. semantic defects refer to mistakes in the semantics of a program i.e. its meaning and

intended behavior. They result in programs that do not behave as intended, but are

not typically a security concern. Such problems include inconsistent method names,

3



2. BACKGROUND

variable misuse bugs, typing errors, API misuse, swapped arguments in functions and

similar.

iii. vulnerabilities are a particular set of (typically) semantic defects that can compromise

the security of a system. They include defects that are not obvious at runtime or show

during normal execution, but can pose a security threat if abused by an attacker. Such

problems include buffer overflows, integer overflows, cross-site scripting, use-after free

etc.

The present thesis focuses on vulnerabilities. In order to facilitate the identification,

increase exposure of vulnerabilities and simplify their classification, multiple systems for

classification exist. Two of the most commonly used are CWE and CVE. CWE [45] stands

for common weakness enumeration and classifies vulnerabilities by category - eg. basic

cross-site scripting (CWE-80), SQL injections (CWE-89), improper validation of array

index (CWE-129) and integer over-/under-flow (CWE-190, CWE-191). CVE [44], on the

other hand, stands for common vulnerabilities and exposures and classifies the specific

known instances of a vulnerability within some system or a product.

2.2 Defect detection and correction

As before, correction, repair, fixing, patching, recovery and similar will be used as synonyms

and refer to “the transformation of an unacceptable behavior of a program execution into

an acceptable one according to a specification” [46]. Such transformations range from

adding, removing or replacing code, adding conditions, adding or removing method calls

to type or naming changes. Traditionally, defects in source code have been discovered by

means of static [12] (without executing the program) and dynamic [14] (by executing the

program) analysis techniques. Such techniques, however, come with own set of challenges

and drawbacks and cannot be always seamlessly integrated into the continuous integration

and continuous delivery pipelines of the software projects [13, 51]. In this respect, machine

learning techniques seem to become a very attractive alternative to the traditional software

defect detection techniques.

Automated error detection is “a process of building classifiers to predict code areas that

potentially contain defects, using information such as code complexity and change history.

The prediction results (i.e., buggy code areas) can place warnings for code reviewers and

allocate their efforts” [33]. There have been several error detection tools available over the

recent years, two of the bigger ones being Google’s Error Prone [1] and SpotBugs (formerly
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2.3 Machine learning for source code

known as FindBugs [30]). Such earlier works were usually frameworks on which checkers,

consisting of manually defined heuristics, formal logical rules and test oracles containing

ground truth, could be built. This made them both arduous to construct and slow to

adapt. In addition to that, they would often only target a specific class of bugs despite

requiring a considerable amounts of expert work and tend to generate many false positives.

To alleviate mentioned problems, some more recent attempts have been made to detect

errors with minimal manual work, without oracle and without information about the in-

tended behavior of the program. Such approaches rely on the fact that errors are anomalous

behaviors and can be statistically distinguished from correct code [26]. A similar obser-

vation comes from recent work [29] in which the authors argue that source code has an

inherent property called naturalness, meaning that code follows similar patterns as natural

language and buggy code stands out in the same way a grammatically incorrect sentence

does.

A logical next step from detection is automated software correction. It tries “to automati-

cally identify patches for a given bug, which can then be applied with little, or possibly even

without, human intervention” [19]. Compared to detection, correction is a more ambitious

goal, which has only recently emerged as a research topic through the use of techniques

previously applied to natural language. They do so by either learning to translate from

pairs of incorrect and correct programs (as one would translate between two languages,

i.e. English and Dutch) or learning from correct examples and translating programs that

deviate from that (equivalent of learning one language and then correcting misuse of it).

Overall, similarities of source code to natural language, together with recent develop-

ments in machine learning methodology, computational power and wider availability of

large corpora of real world open-source code –i.e. Big Code [55]– have made it possible to

tackle both issues as a machine learning problem. It is not surprising that the most recent

approaches borrow techniques from both natural language processing and deep learning.

Such techniques can aid in finding interesting features and properties of programs and help

distinguish erroneous patterns and potentially fix them.

2.3 Machine learning for source code

A typical machine learning pipeline consists of several important stages: data collection,

data preparation, model training, and finally evaluation and deployment:

i. During the data collection stage, a sufficiently large and representative dataset for the

task is constructed.
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2. BACKGROUND

ii. Data preparation consists of cleaning and sometimes labeling, feature engineering and

lastly splitting into (non-overlapping) subsets for training and testing. Ideally, the goal

is to eliminate as much noise as possible to allow for better training. Additionally, it

is important to select the most relevant features, which is often a non-trivial task.

iii. Model training phase is often computationally the most expensive. During the process,

the training portion of the dataset is used to create such a model which will be able to

distinguish erroneous code from correct one. Depending on the technique and type of

model used, it is often necessary to adapt the parameters and retrain several models

before achieving satisfactory results.

iv. Lastly, the model is evaluated on the test subset of data to determine if the model

shows the desired behaviors when presented with unseen data. At this stage, the

model should be able to detect programming defects and can be deployed to be used.

Typically, the tool is monitored, maintained and improved also after deployment, but

this is outside of the scope of this thesis.

2.3.1 Source code representation

As for step (ii), machine learning models are typically not capable of ingesting the source

code in its original format, and therefore, the code is processed and transformed into some

low level representation appropriate for ML model input (e.g. vectors for neural networks).

To preserve the semantic and syntactic properties of the program, it is useful to consider

some intermediate interpretation, capable of encoding such properties before feeding the

program into the model. The three predominant approaches treat the source code as:

• sequence of tokens: the raw source code is split into small units (e.g. “int”, “func”,

“(”, “)”, “{”, “}”) and presented to the model as such

• abstract syntax tree (AST): the abstract syntactic structure of source code is captured

by a tree representation, with each node of the tree denoting a construct occurring

in the source code

• graph encoding various semantic properties (e.g. control flow graph [4] or code prop-

erty graph [70]): it can capture various syntactic or semantic relationships and prop-

erties of the source code through the edges and nodes of the graphs

6



2.3 Machine learning for source code

2.3.2 Bidirectional Long Short-Term Memory

While there is a variety of machine learning approaches available to serve as the model

for step (iii), neural networks have proven especially successful for dealing with source

code. The aforementioned representations allow the code to be encoded as a sequence of

vectors, which are easily ingested by the network, so that no additional feature engineering

is necessary.

Figure 2.1: Architecture of a BLSTM

In this thesis, a type of neural network called Bidirectional Long Short-Term Memory

(BLSTM) is used. In order to understand the architecture of BLSTM and what sets it

apart from other options, we need to zoom out and understand the family of (recurrent)

neural networks first.

A neural network is a connected network of simple computational nodes -artificial neu-

rons-, connected to each other through edges with certain weights. As data passes through

the network during training, the weights are incrementally adjusted so that the network

can eventually tell whether a new piece of source code passing through is vulnerable or

non-vulnerable. A neural network typically consists of an input and output layer and a

number of (hidden) layers. In a recurrent network, the nodes are structured in such a

way, that the outputs of nodes in one layer can be used as input for nodes in the following

nodes. The architecture and the recurrent nature of computations makes it possible for the

network to take into account historical information. In source code analysis, this means
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2. BACKGROUND

that the network is in a way “aware" of the context and related code it has seen before.

Traditional recurrent neural networks, however, commonly run into the problem of van-

ishing gradient because of the multiplicative nature of the gradient with respect to the

number of layers. This means that the network struggles with capturing of long term

dependencies (i.e. the code it encountered less recently). Long Short-Term Memory is a

variant of recurrent neural network that is not vulnerable to the vanishing gradient prob-

lem and therefore highly efficient at remembering long term dependencies. Bidirectional

LSTM (Figure 2.1) is an extension that does not only consider the past, but also future

context by adding an additional backward LSTM.

When specifying the architecture of a BLSTM, a number of choices can be made. First,

the general geometry of the network is set by the number of layers and neurons. Next,

neurons require an activation function through which the weighted sum is passed; the

activation function then decides if the neuron activates and what is “fired” to the next

neuron. Sometimes, training benefits from some purging of the network by probabilistically

dropping some nodes - this probability is called the dropout rate. Lastly, a method to

calculate loss while training (i.e. the metric to determine how good the network’s current

prediction power is) can be specified in the form of loss function.

For the training of the model, several strategies, data normalization techniques and

optimization algorithms exist. Important factors for training include the number of epochs

(i.e. the number of times the algorithm trains on the whole dataset) and minibatch size

(i.e. the size of batches in which the data is fed to the network.)

2.3.3 Performance metrics

Prediction of a machine learning model has four possible classification states: true positive

(TP : cases correctly classified as true), true negatives (TN : cases correctly classified as

false), false positives (FP : cases incorrectly classified as true) and false negatives (FN :

cases incorrectly classified as false). In the case of bug detection, a true positive means

that a buggy line of code was correctly classified as a bug, and a false positive that a non-

buggy line of code was wrongly classified as a bug. The confusion matrix [66] can easily

be generalized for multi-class problems by adapting true and false into relevant classes.

With these in mind, a number of measures of performance are often reported [20]. Pre-

cision is defined as P = TP
TP+FP and shows what portion of classifications was actually

correct. True positive rate, also known as sensitivity or recall is defined as TPR = TP
TP+FN

and shows what proportion of actual positives was classified correctly. True negative rate,
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2.3 Machine learning for source code

also known as specificity does the same, but for negatives: TNR = TN
TN+FP . False posi-

tive rate is defined as FPR = FP
FP+TN and shows the proportion of false positives com-

pared to all non-vulnerable samples. On the other hand, false negative rate is defined as

FNR = FN
TP+FN and shows the proportion of false negatives compared to all vulnerable

samples. Finally, F1 score combines precision and recall as follows: F1 =
2(P∗R)
P+R .

Ideally, a tool should achieve high scores in precision and recall, while keeping false

positives and false negatives low. Realistically, there is often a trade-off to be made between

precision and recall, when an increase in one leads to a decrease of another. In other words,

a tool might have to compromise with either a high false positive rate (low threshold

to report a bug, at the cost of over-reporting and burying actual bugs in a pile of false

positives) or high false negative rate (reporting only highly suspicious cases, but potentially

missing some actual bugs). The best decision is generally application dependent and best

done on per-case basis.

2.3.4 Machine learning challenges

Machine learning comes with a distinct set of challenges. Firstly, it is crucial to train

the model on a high quality dataset. In general, this means a large enough dataset and a

representative distribution of classes. For example, a model that is trained on a dataset

that contains an equal number of buggy and non-buggy programs, might not perform

best when used in a real setting where occurrence of bugs is significantly lower. When

facing such challenges, resampling (undersampling or oversampling) of the data or class

reweighting techniques are commonly applied. On the other hand, since model training is

still a very resource-heavy task, training with too much data might take an unreasonably

large amount of time. As mentioned before, training a good model is often about making

an acceptable trade-off between different performance metrics by finding the right balance

between the parameters. While there are some heuristics and values, that are commonly

used as a starting point, the training phase will inevitably require some exploration and

testing.

Next, the selection of relevant features is one of the most important tasks of machine

learning. It is important to consider the amount of features –more features is not necessarily

better– and what information about the code they carry. The most recent deep learning

based approaches do not require manual feature selection, but rather take advantage of the

ability of the model to learn the important features directly from the training data itself.

In order to achieve this, the data might need to be simplified, at the danger of losing too

much information. A common problem that surfaces when evaluating or when replicating

9



2. BACKGROUND

the results is over-fitting, meaning that the model too closely fits the training data and

does not show same predictive power in production than it did during the training, often

due to noisy data or over-complicated model. In such cases is important to consider the

performance metrics on test data and stop the training before the model stops learning

and starts merely “memorizing” the values it sees.

10



3

Systematic literature review of
related works

3.1 Overview and methodology

The goal of the coming chapter is to examine and present a representative snapshot of the

state-of-the-art research and identify the trends and gaps in both detection and correction

of errors in source code. Starting from an agnostic starting point, we want to discover

patterns without being biased by our own dispositions and conjectures. For this we leverage

on the grounded theory [18] approach widely used in the empirical studies; this approach

allows the hypotheses to emerge from the data. We uncover not only the latest state and

approaches of Java vulnerability detection, but also closely related topics can offer valuable

insights that might prove useful in the creation of our own Java vulnerability detection

tool.

3.1.1 Inclusion and exclusion criteria

The initial set of 343 works was drawn from an online repository containing the state-of-the-

art machine learning research on source code.1 To reflect the state of the art techniques and

considering that machine learning is rapidly evolving, we focus our review on the papers

from 2015 onward (322 papers out of 343).

In addition to that, we only keep the papers on defect detection and correction, removing

papers on other topics, such as code synthesis, prediction, recommendation, summarization

and similar. We closely focus on the source code itself, and therefore, also exclude any
1Available on https://ml4code.github.io; the collection was created in the scope of [2] and is still

maintained by the author.
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3. SYSTEMATIC LITERATURE REVIEW OF RELATED WORKS

papers discussing supporting techniques for defect detection such as testing, fuzzing, taint

analysis, symbolic execution, defects in binary code etc. Finally, we exclude papers without

proof of concept or papers that do not contain a full machine learning pipeline. Papers

that share large parts of the pipeline and only adapt or discuss one part of it are treated

as one, with only the most representative paper being included and discussed. After the

removals, a set of 31 relevant papers has emerged.

To avoid biases and present a complete picture, we consider any additional relevant works

referenced in the original set of papers and cross-reference the works with top hits in the

domain from Google Scholar. The final list comprises 40 papers containing an end-to-end

machine learning pipeline capable of either detecting or also correcting defects in source

code.

3.1.2 Coding of the selected papers

To allow the discovery of emerging patterns from data (in this case, the set of selected

papers), we first needed to identify the defining characteristics of an defect correction/de-

tection tool, so that they can be annotated in each of the selected papers. The initial

codes were heavily inspired by the characteristics discussed and defined by the surveys

discussed in Chapter 2. The proposed codes were first used to annotate a small portion of

the selected papers to test their suitability and completeness. We aimed to identify a set

of codes that captures the most important differences between the studies, while ensuring

that no part of the pipeline is left out. We performed this process iteratively until the code

book became stable. Finally, after finalizing the full set of codes, we expanded the coding

to the remainder of the papers.

The coding and the subsequent analysis including the creation of co-occurrence tables

between categories and extraction of general statistics across the papers was performed

using Atlas.ti.

3.1.3 The code book

The final set of code groups and their respective codes capture general information about

the tools and the datasets used to train and test the model. Code groups related to the

abilities of tools are:

� Correction refers to correction and detection ability of the tool as defined in sec-

tion 2.1.

12



3.1 Overview and methodology

Table 3.1: Final code book

Code Group Code Description Example

Correction
No tool capable of only detecting defects we present the design and implementation of a deep

learning-based vulnerability detection system [37]
Yes tool capable of correcting defects we present an end-to-end solution [...] that can

fix multiple such errors in a program [21]

Defect type
Syntactic tool targets syntax defects algorithm [...] for finding repairs to syntax

errors [6]
Semantic tool targets semantic defects addressing the issue of semantic program repair [16]
Vulnerability tool targets vulnerabilities System for Vulnerability Detection [37]

Representation
Tokens source code represented as a sequence of tokens the model treats a program statement as a list of

tokens [54]
AST source code represented as an abstract syntax tree representations of the abstract syntax trees

(ASTs) [40]
Graph source code represented as a graph, capturing ad-

ditional semantic information (CFG, DFG, ...)
this step generates a System Dependency Graph

(SDGs) for each training program [74]

Language

Python tool evaluated on source code written in Python from the Introduction to Programming in Python

course [6]
C tool evaluated on source code written in C/C++ Fixing Common C Language Errors [21]
Java tool evaluated on source code written in Java we target Java source code [28]
JavaScript tool evaluated on source code written in

JavaScript
broad range of bugs in JavaScript programs [17]

C# tool evaluated on source code written in C# open source C# projects on GitHub [3]

Type
No bug tool trained on only non-buggy source code using language models trained on correct source

code to find tokens that seem out of place [58]
Bug + Fixed tool trained on paired examples of buggy and fixed

code
Given a pair (p; p0) where p is an incorrect

program and p0 is its correct version [22]
Bug + No
bug

tool trained on unpaired examples of buggy and
non-buggy code

dataset that contains 181,641 pieces of code [...]

Among them, 138,522 are non-vulnerable and the

other 43,119 are vulnerable [74]

Label
Yes tool trained on labeled data A program is labeled as “good” [...], “bad” [...],

or “mixed” [...] [74]
No tool trained on unlabeled data self-supervised learning with unlabeled programs

[71]

Data Availability
Yes dataset is publicly available -
No dataset is not publicly available -

Tool Availability
Yes tool is publicly available -
No tool is not publicly available -

Details
Low (almost) no detail given -

Middle some details given, but not enough for full repli-
cation

-

High enough detail given to perfectly replicate the pa-
per

-

� Defect type refers to the primary type of defect the tool targets, as defined in sec-

tion 2.1. If a more advanced tool can simultaneously correct simpler mistakes (e.g.

semantic defect tool fixing misplaced brackets –a syntax mistake), we classify it ac-

cording to the most advanced type of defect it can target.

� Representation refers to the main representation of the source code that is fed to the

model as defined in subsection 2.3.1. This does not include the further transforma-

13



3. SYSTEMATIC LITERATURE REVIEW OF RELATED WORKS

tions inside the models, but rather the initial information that is presented to the

model.

� Language refers to the language that the tool targets. More specifically, we refer to

the training and testing datasets, in case the tool can act in a language-agnostic way.

Codes that capture information about the datasets include1:

� Type refers to the structure of the dataset and captures what types of examples are

included in the dataset. It captures whether the datasets include buggy examples,

and –if bugs are present– whether buggy and non-buggy examples are paired.

� Label captures whether the dataset in labelled or unlabelled.

Codes that capture the availability of source material and replicability include:

� Dataset availability captures whether the dataset used for training and testing is

publicly available.

� Tool availability captures whether the tool created is open source and publicly avail-

able

� Details captures the level of details given about the tool’s full pipeline including the

data (e.g. amount, source, sampling/split etc.), preprocessing (e.g. cleaning, trans-

formations, vectorization), implementation (e.g. tools, libraries, machine/hardware

etc.), model architecture (e.g. model type, layers, activation function, dropout rate),

training and testing (e.g. epochs, loss, batch size, learning rate, time required).2

Table 3.1 presents the final code book. It shows the identified code groups, the possible

values for each of them, and illustrative examples taken from the source papers3.

1We refer to training data. When training is performed on data that does not have the same structure
as test subset, we describe the training data (e.g. correction tools that only train on non-buggy examples).
Additionally, when training data is collected from a public dataset, but then modified in some way, we
describe the modified version of data (e.g. an existing publicly available dataset of non-buggy code is
injected with bugs).

2In coding the level of details, we take into account the variability in pipeline structures and parameters
required for different models.

3An overview of the included studies together with the codes is also available on
https://github.com/tmv200/ml4code/blob/main/sota.yaml.
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3.1 Overview and methodology

Table 3.2: Studies

General Dataset Reproducibility
Tool Defect Represent. Method Language Size Type Label D. avail. T. avail. Repr
sk_p [54] Sem Token RNN (LSTM), skipgram Python 7×315-9,000 programs NB - - - Low-mid
DeepFix [21] Syn Token RNN C 7,000 programs B+F 3 3 3 High
SynFix [7] Syn Token RNN (LSTM) Python 40,000 programs NB - - - Low-mid
SSC [16] Sem AST RNN, rule-based Python 2,900,000 code snippets B+F 3 3 - Mid
Harer et al. [27] Vul Token GAN C 117,000 functions B+F 3 - - Low-mid
Ratchet [28] Sem Token RNN (LSTM) Java 35,137 pairs B+F 3 3 3 High
Sensibility [58] Syn Token n-gram, RNN (LSTM) Java 2,300,000 files NB - 3 3 High
SequenceR [11] Sem Token RNN (LSTM) Java 40,000 commits B+F 3 3 3 High
RLAssist [22] Syn Token DRL, RNN (LSTM) C 7,000 programs B+F 3 3 3 High
Liu et al. [41] Sem AST, Token CNN, paragraph vector Java 2,000,000 methods B+F - 3 3 High
DeepDelta [42] Sem AST RNN (LSTM) Java 4,800,000 builds B+F 3 - - Low-mid
Tufano et al. [63] Sem AST RNN Java 2,300,000 fixes B+F 3 3 3 High
VarMisuseRepair [64] Sem Token RNN (LSTM), pointer network Python 650,000 functions B+F 3 3 - Low
DeepRepair [68] Sem AST RNN Java 374 programs B+F 3 3 3 High
Hoppity [17] Sem AST graph-NN, RNN (LSTM) JavaScript 500,000 program pairs B+F 3 3 3 High
SampleFix [25] Syn Token GAN, CVAE, RNN (LSTM) C 7,000 programs B+F 3 3 - Mid
DLFix [36] Sem AST RNN (tree-RNN) Java 4,900,000 methods B+F 3 3 3 High
Graph2Diff [61] Sem AST graph-NN (GGNN) Java 500,000 fixes B+F 3 - - Low
DrRepair [71] Syn Token, Graph graph-NN, RNN (LSTM) C 64,000 programs B+F - 3 3 High

(a) Works which detect and correct defects

General Dataset Replicability
Tool Defect Represent. Method Language Size Type Label D. avail. T. avail. Repr
Wang et al. [67] Sem AST, Graph DBN Java 10×150-1046 files B+F 3 - - Low
DP-CNN [33] Sem AST CNN, logistic regression Java 7×330 files B+F 3 3 - Mid
POSTER [40] Vul AST RNN (BLSTM) C 6,000 functions B+F - 3 3 High
DeepBugs [53] Sem AST, Graph NN JavaScript 150,000 files B+F 3 3 3 High
VarMisuse [3] Sem AST, Graph GGNN, GRU C# 2,900,000 LoC B+NB - 3 3 High
VulDeePecker [37] Vul Token RNN (BLSTM) C 61,000 code gadgets B+F 3 3 - Mid
Russell et al. [56] Vul Token CNN, BoW, RNN, random forest C 1,270,000 functions B+F 3 3 - Mid
µVulDeePecker [74] Vul AST, Graph RNN (BLSTM) C 181,000 code gadgets B+NF 3 3 - Mid-high
Gupta et al. [23] Sem AST tree-CNN C 29×1,300 programs B+F 3 3 3 High
Habib and Pradel [24] Syn Token RNN (BLSTM) Java 112 projects B+F 3 - - Low-mid
Li et al. [35] Sem AST, Graph RNN (GRU), CNN Java 4,900,000 methods B+F 3 3 3 High
Project Achilles [57] Vul Token RNN (LSTM) Java 44,495 programs B+F 3 3 3 High
Li et al. [34] Vul Graph, Token BoW, CNN C 60,000 samples B+NB - - - Mid
VulDeeLocator [38] Vul AST, Token RNN (BRNN) C 120,000 program slices B+NB 3 3 3 High
SinkFinder [8] Vul Graph, Token SVM C 15,000,000 LoC NB - 3 - Mid
OffSide [9] Vul AST attention-NN Java 1,500,000 code snippets B+F 3 3 3 High
AI4VA [59] Vul AST, Graph graph-NN C 1,950,000 functions B+F 3 3 3 High
Tanwar et al. [60] Vul AST NN C 1,270,000 functions B+F 3 - - Low
Devign [73] Vul all graph-NN C 48,000 commits B+F 3 3 3 High
Dam et al. [15] Vul AST, Token RNN (LSTM) Java 18×46-3450 files B+NB 3 - - Low-mid
SySeVR [39] Vul AST, Graph RNN (BLSTM, BGRU) C 15,000 programs B+F 3 3 3 High

(b) Works which only detect defects

Note to subtables: The studies are ordered first chronologically and then alphabetically (by author name) within each subtable.
Notes to columns:
(I) Defect abbreviations: Sem=Semantic, Syn=Syntactic, Vul=Vulnerabilities
(II) Method: We refer to the primary machine learning method used in the tool. When a tool experiments with several approaches we include all if they are presented and
discussed equally, and skip the ones only mentioned in passing.
(III) Method abbreviations (alphabetically): (B)GRU=(Bidirectional) Gated Recurrent Unit, (B)LSTM=(Bidirectional) Long Short Term Memory, BoW=Bag of Words,
CNN=Convolutional Neural Network, CVAE=Conditional Variational Auto-Encoder DBN=Deep Belief Network, GAN=Generative Adversarial Network, GGNN=Gated
Graph Neural Network, NN=Neural Network, RNN=Recurrent Neural Network, DRL=Deep Reinforcement Learning SVM=Support Vector Machine
(IV) Type abbreviations: NB=No bug, B+NB=Buggy and non-buggy, B+F=Buggy and Fixed
(V) D. avail.= dataset availability, T. avail.= tool availability
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3. SYSTEMATIC LITERATURE REVIEW OF RELATED WORKS

3.2 Analysis and takeaways

In the following section, we discuss the most important observations about the approaches

and emerging trends and patterns within and across the selected papers.

Figure 3.1: Histogram of publications per year

Table 3.2 provides an overview of the

studies included in this review. Gener-

ally speaking, we can see an increase in

publications since 2015, signaling a grow-

ing interest in the field. This is evident

from the number of publications per year

shown in Figure 3.1. This holds for both

detection and correction studies. The

slight drop in publications of defect cor-

rection studies could be the consequence

of small sample size of reviewed studies

or an actual shift towards defect detec-

tion papers.

Figure 3.2: Co-occurrence graph

Overall, the examined papers exhibit

wide variety in goals and priorities, which

leads to a variety of approaches as dis-

cussed in the current section. For reasons

of conciseness and brevity we leave out

detailed description and low-level com-

parisons between the machine learning

methods and focus on more general direc-

tions in approaches. Figure 3.2 is a co-

occurrence network representing the rela-

tionships between the the characteristics

of presented studies (codes), with more

strongly related (co-occurring) concepts

appearing closer to each other. The sizes

of nodes and the thickness of edges repre-

sent how frequently a characteristic appears and the number of co-occurrences respectively.

The next subsections discuss in more detail the findings across each category.
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3.2 Analysis and takeaways

3.2.1 Detection vs. correction ability and defect types

Takeaway 1: We find an almost equal split between the papers that focus only on detection
and those also correcting defects.

21 papers focus only on detecting defects, while 19 can also correct them. In terms of

their evolution over time, research of both types seems to be growing fast as can be seen

in Figure 3.1.

Takeaway 2: The papers mostly address semantic defects and vulnerabilities, syntactic
defects are less popular. Among them, vulnerabilities are only detected whereas semantic
and syntactic defects are often also corrected.

7 papers target syntactic defects, 15 vulnerabilities and 18 semantic defects. Correction

studies target mostly semantic (12) and syntactic (6) defects, while the detection stud-

ies target mostly vulnerabilities (14) and semantic defects (6). Only a single correction

study [27] targets vulnerabilities and one detection study [24] focuses on syntactic defects.

Since defect detection often targets more complex problems such as semantic bugs and

vulnerabilities, many detection papers focus on a more narrow array of problems or try

to narrow the granularity. As such, DeepBugs [53] only targets name-based semantic

bugs, SinkFinder [8] examines security sensitive function pairs, while OffSide [9] looks for

boundary condition mistakes.

Among the correction papers, [27] presented one of the first studies requiring no paired

labeled examples for mapping from buggy to non-buggy domain. Sensibility [58] was one

of the first studies focusing on correction of single token syntax defects across domains.

DeepRepair [68] builds on the idea of redundancy, exploiting the fact that many programs

contain seeds to their own repair. More advanced studies like Hoppity [17] use neural

networks for source code embedding and graph transformations in order to correct semantic

mistakes. Graph2Diff [61] and VarMisuseRepair [64] both use pointer networks, using

pointers to locate the defect and a potential fix.

Takeaway 3: Correction papers mostly use AST and tokens whereas detection studies use
all the three representations.

We can see a significant division in representation approaches between detection and

correction studies. Firstly, the correction studies mostly use a single representation (17

out of 19), while detection studies more often use a combination of multiple approaches

(12 out of 21). Among the defect correction papers, the most common representation is

tokens (12), followed by AST (8). Only one correction study uses graph representation [71].
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3. SYSTEMATIC LITERATURE REVIEW OF RELATED WORKS

The split in representations is a bit more balanced among the detection-only papers: AST

appears 15 times, graph 10 times, and tokens 9 times.

3.2.2 Source code representation

Takeaway 4: The majority of the studies use either AST or token representation, with
graph representation being the least used one. Despite the different representations, the
input is commonly flattened when serving as input for a neural network.

AST representation is used by 23 papers, token representation appears in 21 studies,

and graph representation is used by 11 studies. The approaches can coexist, which is

evident from the studies that combine several representations: 11 defect detection and 2

defect correction studies use some combination of the source code representations. The

most common combination is AST – Graph (7), followed by AST – token (3) and Graph

– Token (3). Zhou et al. [73] use a combination of all the three representations.

With deep learning rising compared to other machine learning techniques, the need for

manually defined “traditional” features is falling. Instead, neural networks require input in

the form of a vector. To achieve that, the previously described source code representations

are commonly flattened into a vector, appropriate for neural network input [37, 41].

Takeaway 5: Different representation seems preferable for addressing different types of
defects.

There seem to be different preferences in representation choice depending on the defect

type targeted by a study. Syntactic defects almost exclusively use token representation (7),

with a single paper adding graph representation [71]. On the other hand, papers aimed at

semantic defects primarily use ASTs (14), followed by tokens (5) and graphs (4). The most

variety in representation comes from the vulnerability finding papers. Those use AST and

tokens equally often (9), with graphs used only slightly less commonly (6). Vulnerability

finding studies also most commonly use a combination of more than one representation.

3.2.3 Languages

Takeaway 6: The majority of examined studies target C and Java, with only a few papers
aimed at other languages.

Within the examined works, five programming languages are supported: C/C++ (17),

Java (16), Python (4), JavaScript (2) and C# (1). Several of the featured studies aim to

be language and syntax agnostic, but were only trained and tested on a specific language
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3.2 Analysis and takeaways

(in those cases, we classify papers to that specific language). It is, however, commonly

noted by the authors that the presented studies could be used on different languages with

minimal changes to models and by retraining on a suitable dataset.

Takeaway 7: We see a non-uniform distribution of goals across the examined languages,
both in terms of correction ability as well as defect types targeted.

Looking at the correction ability, we notice that the majority of C studies (12) only detect

defects, while only five can correct defects. On the other hand, Java is more balanced, with

seven detection and nine correction studies. JavaScript has one paper for correction [17]

and one for detection [53]. All the four Python studies are capable of correction. Finally,

the one examined C# paper [3] can detect defects. Overall, the two most commonly

appearing are defect detecting C studies (12) and defect correcting Java studies (9).

In terms of defect types, most of the C-language studies target vulnerabilities (12), while

the majority of Java papers target semantic defects (11). Python studies focus primarily

on semantic defects (3), with one paper targeting syntactic defects. The two examined

JavaScript studies as well as the only C# study target semantic defects. There is no

Python, JavaScript or C# papers that focus on security vulnerabilities. Similarly, not a

single JavaScript or C# paper aimed at detecting or correcting syntax defects.

3.2.4 Machine learning approaches/models

Takeaway 8: Both defect detection and correction studies increasingly rely on neural
networks. The most commonly used class of models is RNN.

Defect correction studies heavily borrow from natural language translation, also often

referred to as neural machine translation or sequence-to-sequence translation. This means

that the majority of the models come from the same domain; more specifically recurrent

neural networks (RNN) that appear 16 times out of 19 among defect correction papers. The

most common method within the RNN family is the Long Short-Term Memory (LSTM)

-11 studies-, which specifically targets the problem of long-term dependencies by allowing

learning from context. The most recent papers highlight the usefulness of neural networks

that are capable of understanding contexts, since the presence of a defect can highly depend

on that [35]. Additionally, attention (focusing on the relevant parts of the code depending

on the context) helps such neural networks learning long distance relations, which allows

the systems to keep track of the context outside of a narrow code segment. It is worth

mentioning that despite perceived uniformity, most studies add their own spin to the

method, leading to diverse final implementations.
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Among defect detection papers, nine use recurrent neural network, four use convolutional

neural networks. Most of the remaining papers still rely on some member of the neural

network family (e.g. spins on attention neural network, (gated) graph neural network,

deep belief network etc.). Similar to defect correction studies, methods that can learn

from context, such as Bidirectional Long Short-Term Memory (BLSTM) -5 papers- and

Gated Recurrent Unit (GRU) –3 papers–, are popular due to their ability to take into

account both future and past contexts [37]. Thus, there is only slightly more variety in

the defect detection world, where the task can (but does not need to) be logically split

into two: the embedding/feature extraction and the classification itself. While the former

is mostly handled by a form of neural network, the latter invites more experimentation.

Some of the classification methods include logistic regression[33], Bags of Words[34, 56],

Random Forest[56], and Support Vector Machine[8]. Despite some outliers, the task of

detection also seems to be heading in the neural network direction. The analysed papers

commonly attribute this to the neural network’s ability to operate without explicit feature

formation, the ability to understand contexts and keep some form of memory over time;

and neural network’s suitability for handling texts and (a form of) language.

3.2.5 Datasets and results

Takeaway 9: There is large disparity between datasets in terms of dataset size, data unit
size, code complexity, realism, and source.

The sizes of the datasets range from hundreds to millions of data units. The sizes of

data units themselves (i.e. the source code to be fed into the model) also range from full

program files to methods, functions, code gadgets or similar system-specific granularities.

We notice that the granularity of data points mostly coincides with the output granularity,

at which the tool is capable of spotting defects.

Additionally, the datasets differ in terms of complexity and realism. On the one hand,

several studies relied on beginner student assignments, simple code segments or syntheti-

cally injected bugs (e.g. [7, 21]). On the other hand, several datasets consist of real open

source projects collected from Github or big projects such as full Linux kernel source code

(e.g. [8, 58]). We also notice, that authors of the examined works often source their data

from publicly available datasets (14 papers), either with significant modifications or only

as a subset of the original dataset. Examples of such datasets include SARD and NVD,

Juliet Test Suite and Draper.

Takeaway 10: The majority of datasets consist of bug-fix pairs.
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3.2 Analysis and takeaways

We notice three distinct patterns in dataset structure: datasets with bug-fix pairs (31),

datasets of unrelated buggy and non-buggy examples (5) and datasets with no bugs (4).

Datasets without bugs are mostly used to teach a model the correct use of the language,

so that it is capable of discrimination and potentially translation when it encounters a

code pattern it is unfamiliar with. The remaining two dataset patterns help to teach the

model examples of good and bad behavior. The difference is that for defect correction, it is

valuable to have examples of concrete fixes for a buggy example. This is most commonly

achieved by either collecting version histories (commits with fixes) from publicly available

repositories or artificially injecting bugs to correct code. In case of defect detection, it

is not crucial to have such pairs, so several of the datasets include examples of bugs and

correct code, but not necessarily on the same piece of code.

Takeaway 11: There is little uniformity among studies’ outputs - we find varying levels
of granularity, but also some experimentation with additional feedback directions.

In terms of the paper output, we notice a significant variety of detection granularity, rang-

ing from simple binary classification (buggy vs. non-buggy program or file) to method,

function or specific line of code. For example, [15] focuses on file level detection, VulDeeP-

ecker [37] works on code gadget granularity, and Project Achilles [57] on methods. Addi-

tionally, research has also been done on tools that can point out the specific type of defect

they encounter. An interesting goal was set by Zou et al. [74]. The authors attempted to

not only recognize whether there is a vulnerability with fine granularity, but also determine

vulnerability type. There are similar differences between the correction studies that range

from single token correction all the way to full code sections, sometimes as a single-step

fix or sometimes as a collection of smaller steps with some form of correction-checking in

between.

Takeaway 12: There are significant differences in the quality of reporting of the dataset,
preprocessing, and training and model details, which makes replication of a number of
works difficult or impossible. Additionally, a relatively low number of papers have datasets
and source code publicly available.

We observe similar patterns in terms of dataset and tool availability from both correction

and detection studies and will therefore address them jointly. 30 of the included studies

make their dataset public, while slightly fewer –22– studies also provide their tool in an

open-source fashion. All of the studies that provide the tool source code, also provide the

dataset. On the other side, there is also a non-negligible number of papers that do not

provide either –10 of the studies included.
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When source material or the implementation is not available, we need to rely on the

paper’s own reporting of the implementation. Again, we find quite big disparities in the

quality and level of detail. Since papers that provide both the dataset(s) and the tool

source code can be considered highly detailed and therefore fully replicable by definition,

we leave them out of further discussion.1 Among the papers that provide the dataset,

but no tool, we find the reporting is most commonly sufficient (mid score) for some level

of replication, with some details or parameters unclear. We notice one outlier in each

direction –[64] provides so little implementation detail that any level of reproduction is

almost impossible, while [74] provides great level of implementation detail, despite not

explicitly providing the source code. Perhaps unsurprisingly, we find the lowest level of

detail reported by the papers that did not publicly provide the dataset or the tool.

3.3 Discussion

There are significant differences between the studies when it comes to supported languages,

leading to different defect patterns and consequently representation choices. All of these

seem to determine whether a tool will be able to automatically correct found bugs, or only

detect them.

Arguably, the simplest defect type to catch is a syntactic one, with the vulnerabilities

being the most challenging one. Seeing that most of the correction tools address the former,

while detection tools largely address the latter, we can assume that an effective correction

is more difficult to achieve. With several detection and correction tools targeting semantic

defects, it is easy to assume that such defects lie in the middle in terms of difficulty.

As mentioned, we observe that patterns in source code representation seem to follow

defect type patterns and, in turn, the detection or correction goals. We see that the defect

correcting tools can achieve the intended goal through the use of simpler representations,

while defect detecting tools use more advanced or combined representations. This fur-

ther shows that tackling vulnerabilities and semantic defects is likely more challenging, so

automatic correction on a large scale is not yet possible.

Sequence-of-tokens-based models are attractive because of their simplicity. Such an

approach sees the source code as a flat sequence of elements, similar to words in natural

language. They are especially useful for representing programs with syntactic defects in

which constructing abstract syntax trees (AST) or control flow graphs is limited or not

1There seems to be no clear consensus on the definitions and the differences between replicability and
reproducibility in machine learning setting, so we will use the two as synonyms.
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3.3 Discussion

possible due to severe syntax problems. The similarity to natural language makes it an

attractive choice in sequence-to-sequence models where the goal is defect correction through

the translation of the problematic sequence into a syntactically correct sequence.

Overall, token-level representation is the most popular choice for defect correction tools.

The challenge of this approach is the selection of the appropriate granularity and range of

tokens. Depending on the type of bug targeted, a model can benefit from simple stand-

alone tokens, or from grouped and more structured representation (code gadgets, functions,

or some other syntactic or semantic unit).

Syntactic representation considers the abstract syntax trees of the source code, allowing

for a less flat view of the code. Such representations are of larger sizes and more difficult to

construct, but can capture lexical and syntactic code properties. They are often combined

with Recursive Neural Networks or Long Short Term Memory models. Their popularity

lies mainly with the defect detection tools, especially semantic defect and vulnerability

detection. While ASTs are good at capturing the structure of the code, they do not

capture the semantics or large and complex pieces of code very well [72]. This is why

ASTs are commonly supported by semantic representation capturing data and control flow

information. The ability of graph models to capture more advanced semantic properties

of code reflects itself in the use cases – they appear almost exclusively in tools targeting

semantic defects and vulnerabilities.

Somewhat surprisingly, we observe a very unbalanced picture when it comes to the

languages beyond C/C++ and Java. For example, we have found that C#, JavaScript,

and Python lack the tools aimed at detecting and/or correcting security vulnerabilities.

The possible reason we observed more studies aimed at C/C++ and Java, is that these

languages are popular, well studied, and have large open databases of known defects (both

bugs and security vulnerabilities). However, considering the ever growing popularity of

C#, JavaScript, and Python, it becomes very important to develop the tools supporting

them1. This also extends to other popular languages that did not appear in the study (e.g.

PHP, Ruby etc.).

A look at the machine learning methods highlights the fact that the traditional ML

approaches are more of a stepping stone towards a deep learning solution than solutions

of their own. The reason likely lies in the fact that it is difficult to define the features

(necessary for most other machine learning approaches) that will sufficiently capture the

semantics of the program. The main benefit of deep learning is its ability to ingest the
1According to the PYPL index, Python is the most popular programming language of 2021 with

JavaScript and C# taking third and fourth positions.
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source code itself (after translation to appropriate representation) and create its own “fea-

tures” to learn from.

Most commonly, we see that the complexity of the dataset used reflects the complexity

of the task, which is to be expected. For example, one does not expect to find many syntax

bugs in Linux kernel, nor does it make sense to look for complex vulnerabilities on a simple

student program that does not even compile. The variety of datasets does however show

the importance of selecting an appropriate dataset for the task and also highlights the vast

difference in the desired behaviors of tools.

Similar to the datasets, it is useful to consider the full picture when discussing the tool

output. It is not crucial to be given very specific output if the program consists of a dozen

lines of code, whereas classifying a big project as vulnerable is next to useless if there is

no way to determine where the problem lies. This is especially important for the practical

application where the tools are supposed to be applied on the large number of real-world

projects. Overall, the importance of smaller granularity and bigger precision is recognized

and often highlighted throughout the works, with the trends moving towards the more

specific tools.

Finally, we find big variety in terms of what the papers make public and in how well

the process and details of the implementation are reported. This brings in the question

reproducibility of the works. On the bright side, about half of the examined works are

fully reproducible due to the full availability of the dataset and any related source code.

Unfortunately, we also find that about one fourth of the papers suffers from low level of

reporting and/or availability of core resource -the dataset. Seeing how machine learning is

amid a reproducibility crisis [31], the issue should not be taken lightly.

3.4 Challenges and research directions

This review is motivated by the need to discover patterns in the rapidly evolving field of

applications of machine learning in source code. Some of the challenges towards effective

solutions (Table 3.4) include access to high quality training datasets, effective source code

representation capable of semantic understanding, standardization, detection and correc-

tion across domains, catching application specific bugs (in regards to semantic defects)

and expansion to more programming languages. We briefly elaborate on some of these

challenges.

Future research in the domain should consider expansions to other commonly used pro-

gramming languages. Among the languages included in the study, we have noticed a lack
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Table 3.4: Key Takeaways

Finding Obs. Challenge
Missing detection or correction tools for
some language-defect combinations

2, 7 Expand tools for all defect types to all
languages

Variety of representation techniques,
but struggling to capture deeper prop-
erties of code; over-simplistic embed-
dings

3, 4, 5 Advanced (semantic) representations
and embeddings

Java and C/C++ most studied lan-
guages

6 Address Python, JavaScript etc.

Tool outputs not comparable 11 Formalize goals and measurements for
tools, simplify output for developers

Vast differences in datasets 9 Collect and standardize high quality
datasets across all defect types and lan-
guages

Problems with reproducibility 12 Normalize sharing of tool source code,
datasets and increase quality/detail of
reporting

of vulnerability detection approaches in Python, JavaScript and partly Java ss well. Ad-

ditionally, more research is needed towards automatic correction of defects in Java and

C/C++ programs. In particular, future research should work towards improving defect

localization precision and a wider coverage of different defect types.

As mentioned, effective representation seems to be an active area of research, with more

comprehensive approaches emerging, especially in the form of graph representations. A

common go-to method for tools that do not invest into novel approaches seems to be the

word2vec technique [43], which is primarily a simple token embedding technique. One then

wonders why bother with the complex representations, just to flatten everything at the end

of the pipe. We are already seeing (and expect to see) a further rise in similar, but more

specialized __2vec-like vectorization techniques capable of capturing deeper properties of

code.

Closely related to source code representation is the challenge of semantic understanding.

A tool’s ability to detect more complex semantic defects and vulnerabilities depends on its

understanding of the source code. While syntax is finite, well defined, and therefore, easier

to understand and capture, on the other hand, the semantics of programs are harder to

capture. As more tools attempt to tackle complex types of defects, the need for advanced

representation will further increase. In this respect, the graph-based representation capable
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3. SYSTEMATIC LITERATURE REVIEW OF RELATED WORKS

of capturing complex characteristics of the analysed programs (e.g. data or control flow)

seems particular promising.

There is a big variety in terms of datasets, goals and testing. We believe the field would

benefit from some degree of standardization, potentially in the form of a curated collection

of open source datasets, together with some uniform goals for each of defect types along

with a test suite and benchmarks. Since a tool’s performance can heavily rely on the

training data, stabilizing the dataset would allow more precise evaluation of the tool itself,

rather than the training data. Formalization of goals (e.g. in terms of granularity, defect

types) and results (speed, precision metrics) would also allow researchers in the field to

get a clearer and more complete picture of the available tools. A less ambitious, but also

useful goal would be standardization of terminology and measurements, which would allow

comparisons when different datasets are used.

A relatively small number of tools working with unlabelled data points show that this is

still a largely unexplored direction. It comes with the challenge of unsupervised learning,

but at the same time unlocks access to large datasets of unlabeled corpora, eliminating the

need for synthetic bug introduction or for manual labeling.

Finally, a relatively high number of paper that cannot be fully or at all reproduced. The

field would benefit from stricter norms about dataset and source code sharing and –when

that is not possible for whatever reason– detailed reporting of the full pipeline.
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Design and implementation

The system implemented and evaluated in this thesis generally follows the pipeline ini-

tially introduced by [37] in their seminal paper. As part of the thesis, two variations of

the proposed pipeline will be discussed. First we present an attempt to replicate the orig-

inal VulDeePecker pipeline for detection of C/C++ vulnerabilities by staying close to the

original design. Second, we follow up with an adaptation of said system to allow detection

of Java vulnerabilities. The coming section discusses the general design of the system’s

pipeline and the shared implementation choices; we leave the discussion of version-specific

implementation details, relevant changes and experimental treatments to the respective

chapters.

4.1 Architecture of the vulnerability detection system

Figure 4.1: Learning phase of VulDeePecker as pictured in [37]

Conceptually, the vulnerability detection system operates in two phases: the model is

first trained in the learning phase; after that it can be used to predict vulnerabilities in the

detection phase. In practice the two phases share most of the pipeline, but with different
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inputs and outputs. When the pipeline is used for the model training, the (training portion

of) dataset is used as input, with the trained model itself being the output. Once trained,

the input is a single unseen source code file which is eventually classified as vulnerable or

non-vulnerable. Figure 4.1 pictures the general pipeline used for both phases.

The pipeline begins with the input of one (in detection phase) or a number (in learning

phase) of program slices in a set programming language. The slices are then pre-processed

and transformed from plain text format into vectors to be fed into the neural network (Steps

II and III). The source code preparation and pre-processing steps proposed are novel in

the vulnerability detection domain, yet somewhat straightforward. The plain text source

code is first transformed into gadgets, which are labeled as vulnerable or non-vulnerable.

A gadget is composed of “a number of (not necessarily consecutive) lines of code, which

are semantically related to each other in terms of data dependency or control dependency”

[37].

Figure 4.2: Illustration of Step III.1: transforming code gadgets into their symbolic repre-
sentations as pictured in [37]

The gadgets are then cleaned up and transformed into symbolic representations. This

includes removing any comments and non-ASCII characters as well as mapping of the user-

defined variables and functions to symbolic names (eg. “VAR1”, “FUN1”, “FUN2”). Finally,

the cleaned gadgets are transformed into vectors. This step includes the tokenization of the

gadgets (as described in section 2.3), encoding of a number of said tokens using word2vec

technique [43] and padding of corresponding vectors with zeroes to ensure uniform vector

lengths.

Finally, the vectors are passed as input to a Bidirectional Long-Short Term Memory

network for training or prediction. The system can predict the label at gadget-granularity.
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4.1.1 Adaptation between languages

In principle the presented pipeline can act in a language-agnostic manner. This means

than it should be able to predict vulnerabilities in any language, provided it was trained

on an appropriate dataset. While the core of the system does not require many changes,

there are parts of the pipeline that should be adapted to each language in order to allow

successful training and produce useful results.

First and most importantly, an appropriate dataset of the desired language’s source

code needs to be available for the system to be trained on (Input and Step I). When

constructing such a dataset, the language’s structure and specifics need to be considered,

so that appropriate code samples or slices can be extracted.

In addition to that, the input of the pipeline and the pre-processing may need adapting,

depending on the language’s syntax and semantics. More specifically, different languages

will contain different keywords that should be preserved (not transformed into symbolic

representations), data structures or concepts that do not appear in others (eg. object

oriented languages), etc. While the system can still operate with some generic syntax set,

adaptations are needed for optimal performance.

Finally, a new language (or even a different set of vulnerabilities in the same language)

will likely require a different set of parameters in order to perform optimally. While this

is most obvious when dealing with the model itself (Step IV), other parts of the pipeline

might require adaptation as well (eg. gadget sizes, vectorization).

4.2 Implementation and overview of experimental setup

As the starting point of the implementation a public VulDeePecker replication attempt

[65] was used, providing the ground work and facilitating the pre-processing stages of the

replication. The pre-processing steps are relatively straightforward and were implemented

as stated in the design section. Additionally, we fix parameters that were clearly described

in [37]. The dropout rate is set to 0.5. The training is performed using minibatch stochastic

gradient descent together with ADAMAX, using batch size of 64.

However, there are several parameters or choices that were either not addressed or in-

sufficiently precise. We will, for the remainder of this thesis, refer to all of those choices

as parameters. Such parameters relate to dataset balancing approaches, specific neural

network hyper-parameters, activation, loss function and number of hidden layers in the

final results. They will be explored and evaluated as part of the experimental treatments.

In their respective chapters they are clearly stated and explained.
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The system was implemented in Python, supported by Keras, Scikit and Pandas libraries.

The full code for the system implemented in this thesis and the accompanying datasets is

available on https://github.com/tmv200/ml4code-Java. The experiments were performed

on a machine with NVIDIA GeForce GTX 1650 Ti GPU and Intel i7-10750H CPU oper-

ating at 2.60GHz. Depending on the treatment and parameter configuration, one model

requires 5-60 minutes to train. The training is performed on 80% of the dataset, with the

remaining 20% left for testing.

The reported results are based on 10 repetitions of the experiment. We report precision,

true positive rate (sensitivity) and true negative rate (specificity). In addition to that -when

relevant for comparison-, we report the same metrics that are available for VulDeePecker:

false positive rate (FPR), false negative rate (FNR) and F1 score.

4.2.1 Datasets

VulDeePecker project KB Juliet
Sample size (gadgets) 61,638 41,809 166,443

Vulnerability types (CWEs) 2 71* 112
Frequency of vulnerabilities 320-520 1-39 1-7015

Code properties synthetic & real real synthetic & real
*Translated from their respective CVEs according to https://www.cvedetails.com/

Table 4.1: Overview of the datasets used

The replication of VulDeePecker and the related exploration of its parameters was per-

formed using the same dataset of C/C++ source code that was created for and used in the

original paper. It includes two types of vulnerabilities: CWE-399 (resource management

error vulnerabilities) and CWE-119 (buffer error vulnerabilities). The dataset is a combi-

nation of two public datasets: SARD [48] and NVD [47], which include a combination of

synthetic examples and real source code. It contains 520 programs with buffer error vul-

nerabilities and 320 resource management vulnerabilities. The programs produce 61,638

code gadgets.

For adaptation to Java, two datasets were used and separately evaluated: project KB

[52] and Juliet [49]. Project KB dataset is part of a project aimed at facilitating vulnera-

bility research and contains manually curated vulnerabilities found in real source code. It

contains 71 different vulnerability types (CWEs), appearing between 1 and 39 times each,

with a mean of 6 appearances per CWE. The most commonly appearing vulnerabilities
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4.2 Implementation and overview of experimental setup

include: CWE-22 (39 appearances), CWE-611 (39), CWE-20 (34), CWE-502 (33) and

CWE-79 (29). The programs included in the dataset produce 41,809 code gadgets.

Juliet, on the other hand is a popular dataset with mostly synthetic or academic vul-

nerability examples. In contains 112 distinct vulnerability types, appearing between 1 and

7015 times each, with a mean of 412 appearances per CWE. The most commonly appearing

vulnerabilities include: CWE-190 (7015 appearances), CWE-191 (5612), CWE-129 (4392),

CWE-89 (3660) and CWE-369 (3050). Once processed, the dataset produces 166,443 code

gadgets.

The two Java datasets differ in a number of ways, which will allow us to examine the

effects of different dataset properties on vulnerability detection in Java. Namely, project

KB is a high quality dataset of real vulnerabilities, which comes at the cost of sample size.

On the other hand, Juliet leads significantly in quantity of data, but pays in data realism,

which may significantly affect external validity of the results. For better visualization,

we include a vulnerable code sample from both datasets and a complete CWE list with

number of appearances in the Appendix.

31



4. DESIGN AND IMPLEMENTATION

32



5

Vulnerability detection in C/C++
source code

5.1 Experimental treatments

The replication of VulDeePecker was implemented as follows: the stages, choices and pa-

rameters that are clearly specified in reference paper were fixed (as described in previous

section), while the remainder was subject to testing. For the latter, the options, approaches

and parameters that are commonly used in the deep learning community (as suggested in

the paper) were considered. The following chapter presents an exploration of these choices

in order to understand if and how they affect the performance of the tool.

The number of hidden nodes at each layer of the BLSTM network corresponds to the

length of the padded vectors and is fixed to 300, with 50 tokens per vector. The training is

performed in 4 epochs. While activation functions were not explicitly stated in the paper,

its appendix contains mathematical discussion of the BLSTM network in which tanh and

sigmoid functions are used as the activation and recurrent activation functions respectively.

The two functions also most commonly appear as the default choice in the deep learning

community. For this reasons, the two are used, with no alternative functions tested.

The set of unknown variables was narrowed down after some initial testing to identify the

choices, appropriate for the design specified. The final set of choices that are systematically

evaluated includes:

• number of BLSTM layers: we evaluate models with 1, 2, 3 and 4 layers (mentioned as

best performing in the original paper, but unspecified what is the final configuration)
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• sampling1: we evaluate models trained on the unchanged dataset and randomly

undersampled negative examples to rebalance the dataset (50%2 or 75% of the initial

negative examples).

• reweighting of classes: we evaluate models with and without reweighting (as an

alternative or as support to the resampling approach)

• loss function: we evaluate models with binary crossentropy and categorical crossen-

tropy

In order to identify the factors that most significantly affect the results, 48 different mod-

els with all possible combinations of the 4 mentioned variables were trained and tested.

Any additional parameters that could significantly affect the outcome of the experiments,

but were clearly stated in the original paper are fixed (we leave the exploration and exper-

iments with them for Java adaptation).

5.2 Parameter exploration results

5.2.1 Overview

Figure 5.1: Overview of model performances

Figure 5.1 offers an overview of the per-

formance for all 48 tested model config-

urations. Overall, we see that the sensi-

tivity (true positive rate) of models range

from 65% up to more than 95%. At the

same time, false positive rates range from

5% up to 40%.

We can also notice the typical “curve”

in model performance, highlighting the

trade-off between the true positive and

true negative rates. In general, the mod-

els that achieve high sensitivity do so by

more generously classifying piece of code as positive (vulnerable), resulting in higher false

positive rate and vice versa. Table 5.1 confirms the observed relationships between the

1While not strictly a parameter of the model, it is a technique commonly used in unbalanced datasets,
capable of affecting the performance and should therefore be tested.

2This produces approximately the same number of positive and negative examples.

34



5.2 Parameter exploration results

metrics. In particular, we observe negative correlation between sensitivity and the remain-

ing two metrics. For this reason, there is no single model that performs best in all metrics

at the same time.

Precision Sensitivity Specificity
Precision 1.000 - -
Sensitivity -0.786 1.000 -
Specificity 0.688 -0.927 1.000

Table 5.1: Correlations between performance metrics

For a more detailed picture of performance we can look at Figure 5.2. which shows

the precision, true positive rate and true negative rate for each of the 48 tested models.1

Each model is represented by a point on the graph, with different shape, fill and color

representing resampling, reweighting and loss function, respectively. The observations are

ordered by number of layers, separated by the dotted lines –first 12 models were built with

1 layer, next 12 with 2 etc.

In general, we can see noticeable differences in model performance across all three pre-

sented metrics. In terms of precision and specificity, we see that models without reweighting

perform better. On the other hand, models with reweighting in general achieve the highest

sensitivity. We can also see a slight dip in performance of the majority of models using 4

layers.

While some of the models achieve comparable scores for individual metrics, no single

model does so across all metrics. It seems that the models that achieve the most consistent

scores across all three metrics include some undersampling, but no reweighting (hollow

triangles and some circles).

In order to identify some more nuanced patterns, we need to look more closely at each

individual parameter. While it is unlikely that the findings can be generalized outside

VulDeePecker or potentially even the current replication, they illustrate the volatility of

the models as well as the importance of parameter selection and their precise reporting.

In the coming section we further elaborate on each of the parameters and their effects on

the overall performance.

1For brevity, we limit our discussion to those three metrics. For a complete presentation of all recorded
metrics for all 48 models see Table B1 in the Appendix.
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Figure 5.2: Precision, sensitivity and specificity for tested models

5.2.2 Effect of parameters

In this subsection we look at the effect of each parameter on the performance. First, we

tabulate the raw averages for each level of the parameter and visualize the differences

in boxplots. Next, we formally test whether each of the parameters has a statistically

significant effect on each of the performance metrics. We do so by using an ANOVA test.

ANOVA is a generalization of the t-test and it allows us to compare the means of more

than two groups. The null hypothesis is that the means are all equal to each other. A

p-value larger than 0.05 implies significant differences. We present the concise results in

the coming section, for full overview see Table C1 in the Appendix. Finally, whenever

the ANOVA test rejects the null hypothesis, it is interesting to see which of the means

differ from the rest. To find out, we perform post-hoc pairwise comparisons while using

the Bonferroni correction to control for multiple hypothesis testing.

The effect of number of layers

On average none of the metrics seem to be largely affected by the number of layers. We

see the precision score fluctuating between 73.7% and 75.4%, true positive rate between
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Figure 5.3: Effect of layers

P TPR TNR
Layers #Runs µ σ µ σ µ σ

1 120 74.9 6.4 83.1 10.9 82.8 8.3
2 120 75.4 6.7 83.5 10.3 83.3 7.5
3 120 73.9 6.9 85.5 9.7 81.4 8.8
4 120 73.7 6.1 84.3 9.7 81.7 8.1

Table 5.2: Mean and standard deviation
across layers

83.1% and 85.5%, and true negative rate between 81.4% and 83.3%. We can observe a

small drop of precision and true negative rate scores and a slight growth of true positive

rate scores with the higher number of layers. However, ANOVA tests find no statistically

significant difference between the layer performances (p-values between 0.405 and 0.528).

The effect of dataset resampling

Figure 5.4: Effect of resampling

P TPR TNR
Layers #Runs µ σ µ σ µ σ

50% 160 76.0 4.8 89.6 6.5 76.3 7.7
75% 160 73.8 5.8 84.3 8.5 83.0 6.2
100% 160 73.7 8.3 78.4 11.5 87.5 6.4

Table 5.3: Mean and standard deviation
across resampling option

By resampling the dataset, we increase the ratio of vulnerable over non-vulnerable exam-

ples. The benefit, but also the risk of this approach is that the algorithm may become more

of excessively likely to predict positive. This would translate to higher true positive rate

and lower true negative rate. Our results confirm this conjecture. Without resampling,

precision is 73.7%, true positive rate 78.4% and true negative rate 87.5%. With moderate

resampling (75% of the original non-vulnerable samples), we achieve precision of 73.8%,

true positive rate of 84.3% and true negative rate of 83.0%. With more aggressive under-

sampling, we achieve precision of 76.0%, true positive rate of 89.6% and true negative rate

of 76.3%. Again, there is a trade-off between true positive rate and true negative rate.
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The ANOVA tests show a very narrow effect of resampling on precision with only 2.5% of

the total variance in precision explained by resampling. We find significant and substantial

effects of resampling on true positive rate and true negative rate with 20.5% and 32.1% of

the variance explained respectively. Pairwise comparisons reveal that means vary across all

resampling choices. The raw averages, the boxplots, the ANOVA tests, and the pairwise

comparisons all show that resampling heavily affects performance.

The effect of class reweighting

Figure 5.5: Effect of reweighting

P TPR TNR
Reweighting #Runs µ σ µ σ µ σ

Without 240 79.8 4.1 76.8 8.9 88.0 5.5
With 240 69.1 3.4 91.4 4.4 76.5 6.1

Table 5.4: Mean and standard deviation
across reweighting option

Instead of manually changing the dataset, we can feed the full dataset to the algorithm

and allow it to reweight classes during the training phase. Without reweighting, we achieve

average precision of 79.8%, true positive rate of 76.8% and true negative rate of 88.0%.

With reweighting, precision is 69.1%, true positive rate 91.4% and true negative rate 76.5%.

It seems that reweighting has an effect on all three metrics. ANOVA tests confirm the

observations. Reweighting explains a large part of the variance in performance –between

49.9% and 67.2% depending on which metric we focus on.

The effect of loss function

Figure 5.6: Effect of loss functions

P TPR TNR
Layers #Runs µ σ µ σ µ σ

Bin 240 73.8 6.0 85.5 9.4 81.6 7.5
Cat 240 75.1 6.9 82.7 10.7 82.9 8.8

Table 5.5: Performance across loss func-
tions
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With binary crossentropy, we achieve average precision of 73.8%, true positive rate of

85.5% and true negative rate of 81.6%. With categorical crossentropy, the average precision

is 75.1%, true positive rate 82.7% and true negative rate 82.9%. We do not observe

significantly different performances between the two loss functions. ANOVA results confirm

the limited role of the loss function. We find a significant effect only on true positive rate,

but even there only 1.9% of the variance can be explained by the choice of loss function.

Interaction effects of parameters

It is worth noting that the standard deviations of certain metrics are noticeably larger in

certain models than others (eg. true positive rate for resampling). A potential explanation

for this could be the -both positive or negative- effects that the remaining parameters have

in combination with resampling. Motivated by this conjecture, we looked at all six possible

interactions effects between our parameters. We did so via two-way ANOVA tests. The

tests revealed a significant interaction only between resampling and reweighting.

Figure 5.7: Interaction effects between resampling and reweighting

The effect is visualized in Figure 5.7. The graph shows the changes in performance

across different resamplings. In each graph, we plot separately the changes with and

without reweighting. Parallel lines imply no interaction effects. We clearly see this is not

the case.

The strongest interaction effect is observed in precision. Using resampling increases

precision if used together with reweighting, whereas precision is decreased if resampling

is introduced without reweighting. The effects on true positive rate and true negative

rate are smaller in magnitude. The direction of the effect does not change with or without

reweighting. As noted in previous subsection, resampling overall increases true positive rate
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and decreases true negative rate. The interaction with reweighting is the rate at which it

happens. To illustrate, the gain in true positive rate is much faster without reweighting as

it is without.

Takeaway 1: The parameters that affect the performance the most are resampling and
reweighting, while number of layers and loss function do not have a significant effect.
Overall, we see positive correlation between precision and specificity and their negative
correlation with sensitivity.

5.2.3 Comparison with VulDeePecker

In order to best compare the tested models with VulDeePecker, we look at the metrics

reported in the original paper: false positive rate (FPR), false negative rate (FNR), true

positive rate (TPR), precision and F1 score. To an extent, this allows us to reason about

the parameters potentially used in the original paper.

In terms of F1 score, the tested models range from 72% on the lower end up to 83% at the

top. We observe that both FPR and FNR fluctuate between 5% and 35%. As mentioned,

TPR moves between 55.5% and 97.8% and precision between 60.8% and 92.2%. For com-

parison, the VulDeePecker model, trained and tested on the same dataset, performed with

FPR of 5.1%, FNR of 16.1%, TPR of 83.9%, precision of 86.9% and F1 score of 85.4%.

While some of the models achieve comparable or even higher scores than VulDeePecker for

individual metrics, no single model does so across all metrics.

According to the findings from the previous section, the two parameters that should be

scrutinized are resampling of the dataset and class reweighting. We find that models that

use reweighting tend to outperform VulDeePecker in terms of true positive rate, paying

the price with higher false positive rate. This suggest the VulDeePecker might not use

reweighting. On the other hand, we find that no dataset resampling roughly matches

VulDeePecker’s false positive rate, but does not match up in terms of F1 score. Instead,

we find that resampling leads to metrics that are closest to VulDeePecker’s results across

the board. Therefore, it is possible that VulDeePecker uses some level of resampling.

To summarize, our results most closely match VulDeePecker’s when undersampling of

non-vulnerable examples and no class reweighting is used during training; the pattern

seems to be consistent regardless of the number of layers or the loss function used.

For illustration purposes, we present one representative (handpicked) model with the

described characteristic. Model #16 uses 2 layers, categorical crossentropy, no reweighting

and was trained on resampled dataset where only 50% of the negative samples were used.
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We record the following average performance: FPR of 17.4%, FNR of 14.3%, TPR of

85.5%, P of 80.0% and F1 of 82.7%. For comparison, VulDeePecker reported FPR of 5.1%,

FNR of 16.1%, TPR of 83.9%, P of 86.9% and F1 of 85.4%. For a full overview of results,

see Table B1 in the Appendix.

Takeaway 2: Overall, the replication of VulDeePecker is possible to an extent, but the
results cannot be reproduced fully. The choice of the model parameters and dataset details
have a significant effect on the performance of the algorithm and should be disclosed in
more detail.

Takeaway 3: The models that perform closest to VulDeePecker include some undersam-
pling of negative samples and no reweighting. The choice of loss function and number of
layers do not play a role in our testing.
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6

Vulnerability detection in Java
source code

6.1 Experimental treatments

The Java adaptation follows the design specified in Chapter 4, with the input stages of the

pipeline modified to support Java syntax. The remainder of the pipeline remains largely

unchanged, apart from the parameters relevant for the experimentation. We fix the number

of layers to 3 and use binary crossentropy for loss computation. We fix (in the current

stage) the number of tokens per vector to 50 tokens. The remaining implementation details

remain as described in previous sections. The exploration of parameters was performed

using two dataset of Java source code: project KB and Juliet.

We use a number of treatments to explore two main questions: I) Can we implement

a Java vulnerability detection system and if so, how does it compare to the baseline (C

detection system); and II) How do different datasets perform and why?

To answer the first question, we repeat the parameter exploration from Chapter 5, but

on the Java datasets. Initial testing shows that the same parameters influence the results;

we therefore limit the parameter exploration to sampling and class reweighting. To account

for the potential differences in Java (compared to C/C++), we explore training for either

4 and 10 epochs. The final set of choices that are systematically evaluated includes:

• sampling : we evaluate models trained on the unchanged dataset and randomly un-

dersampled negative examples to rebalance the dataset (25%1, 50%2 or 75% of the

1This produces approximately the same number of positive and negative examples for project KB (the
only dataset tested with this parameter).

2This produces approximately the same number of positive and negative examples for Juliet.
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initial negative examples).

• reweighting of classes: we evaluate models with and without reweighting (as an

alternative or as support to the resampling approach)

• training duration: we evaluate models trained over 4 and 10 epochs

To explore the second question we vary 3 additional parameters. Each serves to explore

a different potential underlying cause for differences in performance. Note that parallel

(equivalent) experiments for both datasets are not always possible (eg. we cannot extend

the sample size of the smaller dataset to match the bigger, we cannot experiment with

CWE frequencies that are already very low) or outside of the scope of this thesis -i.e. we

do not aim to perfectly optimize the performance of the better performing dataset, but

rather explore the general feasibility of Java vulnerability detection and potential reasons

for differences in performance. The set of parameters varied together with the dataset on

which the testing was performed include:

• sample size [Juliet]: we evaluate models trained on the unchanged dataset and on

the dataset reduced to match the sample size of project KB.

• CWE frequency threshold [Juliet]: we evaluate models trained on the dataset of all

CWES, CWEs that appear more than 100 times, and more than 1000 times.

• Number of tokens per vector [project KB]: we evaluate models trained on vectors

containing 50, 75 and 100 tokens.

Given the differences between the datasets, we believe the three parameters chosen should

provide some evidence as to why the datasets perform the way they do. During the testing

of each parameter, we fix the remaining ones to isolate the effects of the parameter in

question.

6.2 Evaluation

6.2.1 Overview and parameter exploration

Figure 6.1 offers an overview of the performance for all 28 tested model configurations.

The models trained on project KB dataset are pictured in blue, while models trained on

Juliet are pictured in red. We can observe two distinct curves suggested by each of the

dataset’s models.
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Figure 6.1: Overview of model performances

It is obvious straight away that the

system trained on Juliet performs

much better. Looking more closely

at only Juliet trained models, we see

that the true positive rates remain

above 60%, with false positive rates

up to about 20%. On the other

hand, the true positive rates and

false false positive rates of project

KB trained models span across the

entirety of the spectrum.

Similar to C/C++ models, we no-

tice the typical “curve” in model performances, highlighting the trade-off between the true

positive and true negative rates. Table 6.1 confirms the observed relationships between

the metrics. Again, we observe negative correlation between sensitivity and the remaining

two metrics, resulting in no single model that performs best across all metrics.

Prec Sen Spec
Precision 1.000 - -
Sensitivity -0.934 1.000 -
Specificity 0.765 -0.929 1.000

Prec Sen Spec
Precision 1.000 - -
Sensitivity -0.863 1.000 -
Specificity 0.858 -0.982 1.000

Table 6.1: Correlations between performance metrics for project KB (left) and Juliet (right)

For a more detailed picture of performance we can look at Figure 6.2 which shows the

precision, true positive rate and true negative rate for each of the 28 tested models.1

Each model is represented by a point on the graph, with different shape, fill and color

representing resampling, reweighting and number of epochs, respectively. The models,

trained on different datasets are separated by a vertical dotted line, with project KB

trained models on the left and Juliet trained models on the right of each graph.

Again, we can see noticeable differences in model performance across all three presented

metrics. The most obvious distinction comes from the dataset used in training. Models

trained on project KB almost exclusively underperform or at best match their parametric

counterparts trained on Juliet. We further explore the differences and potential reasons

1For a complete presentation of all recorded metrics for all 28 models see Table B2 in the Appendix.
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Figure 6.2: Precision, sensitivity and specificity for tested models

between the two datasets in the following section.

Takeaway 4: The performance of a system for Java vulnerability detection matches or
outperforms the baseline set for C/C++ vulnerabilities, but only with one of the two
datasets tested.

Takeaway 5: The system trained on Juliet dataset significantly outperforms the system
trained on project KB dataset.

The effect of epochs

When looking at Figure 6.2, Table 6.3 and Table 6.4, we can see that among pairs of

models with same parameters, the ones trained over 10 epochs more commonly outperform

the ones trained over 4 epochs. The pattern is more evident when looking at precision

and true negative rate. In terms of the true positive rate, the effect is actually reversed

(on project KB trained models) or virtually indistinguishable (on Juliet trained models).

Despite the direction of the effect based on visual inspection of the graphs, the differences

are on aggregate not statistically significant (see Table C8 in Appendix).

The effect of resampling and reweighting
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Figure 6.3: Effect of epochs on project
KB trained models

Figure 6.4: Effect of epochs on Juliet
trained models

PR TPR TNR
Epochs #Runs µ σ µ σ µ σ

4 80 50.0 27.6 50.5 36.6 70.6 31.3
10 80 51.3 26.5 51.0 34.1 73.9 28.6

PR TPR TNR
Epoch #Runs µ σ µ σ µ σ

4 80 78.9 9.6 88.3 13.7 86.6 7.4
10 80 79.6 9.3 91.3 12.9 86.7 6.5

Table 6.2: Mean and standard deviation across epochs for project KB (left) and Juliet (right)

In terms of the remaining two parameters (resampling and reweighting), we notice similar

patterns as in C/C++ system. More specifically, we find both to be statistically significant,

with more aggressive undersampling and use of reweighting positively affecting true positive

rate, while reducing precision and true negative rate. Due to the similarity with the

observations in Chapter 5, we refrain from more detailed analysis; we instead provide

additional graphical material in the Appendix.

Takeaway 6: Reweighting and resampling have similar effect on performance of Java
vulnerability detection system as they do on C/C++. Training the models for 10 epochs
rather than 4, does not improve the performance.

6.2.2 Dataset exploration

Seeing that there are large differences in performances of models trained on different

datasets, we further explore some potential reasons. The conjectures tested are aligned

with the datasets’ underlying properties and the differences stemming from them, namely

the sample size, frequencies of CWE occurrences and realism of the source code.

The effect of sample size

To explore whether the performance of project KB is worse due to the smaller sample

size, we compare two treatments performed with Juliet: one with full sample size and one

where the sample size is reduced to match the size of project KB.
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P TPR TNR
Size #Runs µ σ µ σ µ σ

Full 60 79.6 9.3 91.3 12.9 86.7 6.5
Reduced* 60 80.0 10.0 89.3 13.9 86.9 7.2
*Reduced size equals the full size of project KB dataset

Table 6.3: Mean and standard deviation across sample sizes for Juliet dataset

Table 6.3 shows the average performance and standard deviation for both versions, av-

eraged over the remaining parameters. We do not see significant differences between the

performance of the two on aggregate level. The observation is confirmed by comparing the

means of two treatments using ANOVA test. With p-values ranging from 0.57 to 0.88, our

experiments found no evidence for sample size affecting performance for either of the three

metrics.

Due to the high standard deviation within each of the metrics when averaging the mod-

els (caused by resampling and reweighting variation), we perform an additional check on

a randomly selected model with fixed resampling (75%) and reweighting (used). Interest-

ingly, this way we find more evidence to support some effect of sample size (p=0.03 for

precision, 0.67 for sensitivity and 0.01 for specificity). This suggests that higher sample

size gives higher precision and true negative rate, while not losing true positive rate. While

the effect can be picked up for a randomly selected model, it is not strong enough to surface

on the aggregate level.

The effect of frequency of vulnerabilities

To explore if the performance depends on how commonly some vulnerability appears in

the dataset, we perform 3 experiments on three variants of Juliet dataset. We train models

using the full dataset (i.e. where certain vulnerabilities appearing only once or a handful

of times), and the datasets where vulnerabilities that appear fewer than 100 or 1000 times

were removed.

P TPR TNR
Threshold #Runs µ σ µ σ µ σ

1 90 78.6 9.8 89.3 13.8 86.0 7.6
100 90 78.2 8.9 89.5 12.3 86.3 6.7
1000 90 76.9 8.6 90.4 13.6 85.6 7.1

Table 6.4: Mean and standard deviation across CWE threshold options for Juliet dataset

Similar to sample size, we do not pick up any significance on aggregate level (p-values
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between 0.77 and 0.99). Interestingly, the same holds when testing the same single model

configuration as before (p-values between 0.15 and 0.49). Having found no effect on either,

we can reject any effect different vulnerability frequencies might have on performance.

The effect of number of tokens per vector

Lastly, we experiment with the number of tokens per vector. Given the bad performance

of the project KB dataset, we want to explore if widening the window through which the

system sees the code gadgets will improve its performance. We compare the default choice

used throughout the thesis (50 tokens) with two additional options (75 and 100 tokens).

P TPR TNR
Tokens #Runs µ σ µ σ µ σ

50 90 51.3 26.5 51.0 34.1 73.9 28.6
75 90 51.3 25.8 52.1 33.1 74.9 26.9
100 90 51.2 25.2 52.3 33.4 75.7 26.2

Table 6.5: Mean and standard deviation across different token size for project KB dataset

We see from Table 6.5 that the direction of the effect is in favor of higher number of

tokens –there is a slight increase in sensitivity and specificity and no change in precision.

However, the effect is not strong enough to be picked up by ANOVA testing on aggregate

level, nor individual model level. We can therefore conclude that the increase in number

of tokens per vector does not improve the performance of project KB trained models.

Takeaway 7: The difference in sample size, frequency of vulnerabilities or number of
tokens per vector do not explain the vast difference in performance between project KB
and Juliet trained models.
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Discussion

Our experimentation with the parameters of VulDeePecker replication and Java adaptation

showed significant differences between the models tested. This is interesting for a number

of reasons.

First, we find that changing the parameters can significantly affect the performance of the

system. More specifically, we see that changing dataset resampling and model reweighting

options is an effective way to fine-tune the balance between the sensitivity and specificity.

With the ratio between vulnerable and non-vulnerable examples heavily skewed towards

non-vulnerable examples, stronger undersampling will lead to data with a more balanced

number of both examples. This, in turn, makes the system more sensitive, but less specific.

Reweighting aims to achieve a similar goal by letting the model adapt the weights of the

classes, removing or reducing the need for dataset modifications. Models with reweighting

show similar patterns –higher sensitivity, but lower specificity.

Having the means to affect the performance of the model, we should consider where on

the spectrum of possibilities we want the final system to be. As is typical, the answer is

case-specific. A more security-sensitive user might want to sacrifice the specificity to ensure

that no vulnerability escapes, while a user with less resources might choose specificity over

sensitivity. The answer –in part– also depends on how common vulnerabilities are in a

typical project. In short, it is important to leave some choice of the final metrics and

output to the user.

Lastly –and not only related to VulDeePecker–, the fact that the exploration of param-

eters was necessary highlights the need for more clear and detailed reporting, and sharing

of source code and datasets of studies. While the dataset availability already places the

original study among the more replicable ones, we could not perfectly replicate the results

from the description and details given. This ties in with the current reproducibility crisis
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of machine learning research [31, 50] many are pointing out. Significant efforts have been

made to improve the situation (eg. OpenReview, PapersWithCode), but there is still much

to improve.

In terms of the adaptation of the system to detect vulnerabilities in Java, we find promis-

ing results when training with Juliet. We were able to adapt the general pipeline and

achieve performance equal to or in some cases better than VulDeePecker in C/C++. It

is worth mentioning that the tests were performed on a dataset with many more vulner-

ability types compared to only two vulnerability types in C/C++ dataset. On the other

hand, we fail to achieve comparable results with the second tested dataset –project KB.

This serves as a reminder that a successful machine learning pipeline is nothing without

an appropriate and realistic dataset.

The Java dataset-related results bring in question the feasibility of automatic vulnera-

bility detection on real source code. While our results show that sample size and frequency

of specific vulnerability appearance have little effect on performance, one glaring difference

remains: the realism of source code. A synthetic dataset like Juliet consists of clean and

illustrative examples, typically without additional unrelated code. On the other hand, real

code will likely contain a number of unrelated lines of code before, after, and possibly

within the vulnerable piece (when it’s not a single line mistake). Increasing the number of

tokens per gadget might alleviate this problem slightly, but an increase in gadget size might

lead to more noise and potential training on features unrelated to the actual vulnerabilities.

Additionally, the overlap between the CWEs in Juliet and project KB is somewhat low. If

we are to use the project KB dataset as a window into what vulnerabilities actually occur in

real world setting, the realism of vulnerabilities included in Juliet dataset is put in question.

Other works have noted similar patterns, raising concerns that the “vulnerabilities in Juliet

are not very diverse, and many of them are of a synthetic nature that does not occur in

real-world software projects” [5].

Overall, the results show promise for machine learning vulnerability detection for Java

source code. However, many open challenges remain before similar systems can realistically

be used as a constructive and useful part of a real-world production line.

7.1 Challenges and future work

The current thesis shows that the specified pipeline for vulnerability detection can indeed

act in a language-agnostic way and can -as such- work with C/C++ as well as Java by
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making relatively small adaptations to the core of the system. More research is needed to

generalize such claims to other popular programming languages.

As the main focus of this thesis was to explore the feasibility of machine learning vul-

nerability detection on Java source code, we did not explore the full set of adaptations

that could improve the performance of the pipeline. The experiments were therefore only

performed on a pipeline using code gadgets, token representation, word2vec vectorization

and a BLSTM neural network. Changes to any of the mentioned properties could lead

to different results and should be further researched (as highlighted in the discussion of

the literature study). Such experimentation could also lead to better performance when

dealing with more complicated/realistic datasets. There is likely also much room for im-

provement on the model level –e.g. through pre-training of models on synthetic data before

training on real world data.

The findings on the tradeoff between sensitivity and specificity open two new questions,

namely what metrics should be prioritized in a vulnerability detection system and whether

a collaboration of a human expert and a machine can bring up the performance of the full

system. While the VulDeePecker study explores this idea, it does so by leveraging human

expertise to improve the training data used. A possible extension of this research could

explore which –higher sensitivity or higher specificity– is perceived more useful for the final

users and which leads to better vulnerability detection overall (after human evaluation of

the outputs).

In addition to that, we notice that the majority of the studies (this thesis included)

highly focus on performance metrics and similar statistics, but largely leave the final user

out of the picture. To make proposed systems more useful for the final user, more field

and experimental research is needed on how the users perceive such systems, how useful

they are compared to traditional approaches and how they can be improved.

The experimentation with the two Java datasets also highlights the great differences in

performance depending on the data used. While the exploration offers some insight into

potential reasons, it is in no way complete or exhaustive.

An example for this could be our failure to pick up any significant difference between the

treatments with different vulnerability frequency thresholds. The reason for this could very

well be that the vulnerabilities that only appear rarely, make up a relatively small portion

of the data, therefore only affecting the performance in a negligible way. However, if this

is true, we could argue that the same holds for project KB as well. Alternatively, it could

also be that the relative frequency of some vulnerability (compared to the full size of the

dataset) doesn’t mater that much; rather there is some absolute number of times a certain
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vulnerability needs to appear in order to be picked up and recognized by the system. Given

the small sample size and the low frequency of pretty much all vulnerabilities in project

KB dataset, it is possible that few or no CWEs reach that threshold. Our experiments

were not designed to capture this.

Finally, more research is needed to confirm whether the low performance of project KB

trained system is indeed because the dataset is composed of real source code and not “toy”

examples. If that is the case, the field should aim to move away from proof of concept works,

where synthetic data is used, and focus on real data, which could bring machine learning-

powered vulnerability detection into the mainstream. This is not a trivial undertaking. For

such efforts to be successful, bigger datasets of real source code are likely also needed, more

advanced source code representation systems and potentially more specialized models.
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Appendix

A Supporting material for Java datasets

public class CWE190_Integer_Overflow__int_max_add_54e

{

public void badSink(int data ) throws Throwable

{

/* POTENTIAL FLAW: if data == Integer.MAX_VALUE, this will overflow */

int result = (int)(data + 1);

IO.writeLine("result: " + result);

}

/* goodG2B() - use goodsource and badsink */

public void goodG2BSink(int data ) throws Throwable

{

/* POTENTIAL FLAW: if data == Integer.MAX_VALUE, this will overflow */

int result = (int)(data + 1);

IO.writeLine("result: " + result);

}

/* goodB2G() - use badsource and goodsink */

public void goodB2GSink(int data ) throws Throwable

{

/* FIX: Add a check to prevent an overflow from occurring */

if (data < Integer.MAX_VALUE)

{

int result = (int)(data + 1);

IO.writeLine("result: " + result);

}

else

{

IO.writeLine("data value is too large to perform addition.");

}

}

}

Listing A1: Vulnerable code sample taken from Juliet dataset (CWE-190)
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...

public class HtmlFormFromFileController {

private static final String TEMP_HTML_FORM_FILE_PREFIX = "html_form_";

/** Logger for this class and subclasses */

protected final Log log = LogFactory.getLog(getClass());

@RequestMapping("/module/htmlformentry/htmlFormFromFile.form")

public void handleRequest(Model model, @RequestParam(value = "filePath", required =

false) String filePath,

@RequestParam(value = "patientId", required = false)

Integer pId,

@RequestParam(value = "isFileUpload", required = false)

boolean isFileUpload,

HttpServletRequest request) throws Exception {

if (log.isDebugEnabled())

log.debug("In reference data...");

model.addAttribute("previewHtml", "");

String message = "";

File f = null;

try {

if (isFileUpload) {

MultipartHttpServletRequest multipartRequest = (

MultipartHttpServletRequest) request;

MultipartFile multipartFile = multipartRequest.getFile("htmlFormFile");

if (multipartFile != null) {

//use the same file for the logged in user

f = new File(SystemUtils.JAVA_IO_TMPDIR, TEMP_HTML_FORM_FILE_PREFIX

+ Context.getAuthenticatedUser().getSystemId());

if (!f.exists())

f.createNewFile();

filePath = f.getAbsolutePath();

FileOutputStream fileOut = new FileOutputStream(f);

IOUtils.copy(multipartFile.getInputStream(), fileOut);

fileOut.close();

}

} else {

if (StringUtils.hasText(filePath)) {

f = new File(filePath);

} else {

message = "You must specify a file path to preview from file";

}

}

if (f != null && f.exists() && f.canRead()) {

model.addAttribute("filePath", filePath);

StringWriter writer = new StringWriter();

IOUtils.copy(new FileInputStream(f), writer, "UTF-8");

String xml = writer.toString();

Patient p = null;

if (pId != null) {

p = Context.getPatientService().getPatient(pId);

} else {

p = HtmlFormEntryUtil.getFakePerson();

}

HtmlForm fakeForm = new HtmlForm();

fakeForm.setXmlData(xml);

FormEntrySession fes = new FormEntrySession(p, null, Mode.ENTER,

fakeForm, request.getSession());

String html = fes.getHtmlToDisplay();

if (fes.getFieldAccessorJavascript() != null) {

html += "<script>" + fes.getFieldAccessorJavascript() + "</script>";

}

model.addAttribute("previewHtml", html);

//clear the error message

message = "";

} else {

message = "Please specify a valid file path or select a valid file.";

}

}

catch (Exception e) {

log.error("An error occurred while loading the html.", e);

message = "An error occurred while loading the html. " + e.getMessage();

}

model.addAttribute("message", message);

model.addAttribute("isFileUpload", isFileUpload);

}

}

Listing A2: Vulnerable code sample taken from project KB dataset (CVE-2017-12795/CWE-
20)
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Table A1: CWEs and their occurrences in project KB dataset

Occurrences CWE-ID
20-39 CWE-22, CWE-611, CWE-20, CWE-502, CWE-79, CWE-200, CWE-287
19-10 CWE-352, CWE-74, CWE-264, CWE-295, CWE-835, CWE-863, CWE-770
9-5 CWE-119,CWE-444, CWE-94, CWE-400, CWE-399, CWE-918, CWE-89,

CWE-522, CWE-284, CWE-601
<5 CWE-284, CWE-601, CWE-362, CWE-19, CWE-319, CWE-862, CWE-640,

CWE-326, CWE-184, CWE-78, CWE-310, CWE-254, CWE-613, CWE-255,
CWE-330, CWE-338, CWE-269, CWE-384, CWE-668, CWE-755, CWE-
77, CWE-417, CWE-88, CWE-434, CWE-732, CWE-113, CWE-297, CWE-
829, CWE-345, CWE-1021, CWE-1188, CWE-674, CWE-667, CWE-470,
CWE-787, CWE-346, CWE-332, CWE-532, CWE-776, CWE-312, CWE-798,
CWE-327, CWE-552, CWE-494, CWE-347, CWE-610, CWE-401, CWE-915

Table A2: CWEs and their occurrences in Juliet dataset

Occurrences multicolumn1cCWE-ID
3000-7015 CWE-190, CWE-191, CWE-129, CWE-89, CWE-369
1000-2999 CWE-789, CWE-400, CWE-113, CWE-197, CWE-134, CWE-80
500-999 CWE-606, CWE-643, CWE-15, CWE-90, CWE-78, CWE-36, CWE-23,

CWE-470, CWE-319, CWE-83, CWE-601, CWE-81
50-500 CWE-690, CWE-476, CWE-563, CWE-259, CWE-398, CWE-506, CWE-546,

CWE-477, CWE-510, CWE-315, CWE-256, CWE-566, CWE-321, CWE-193,
CWE-511, CWE-328, CWE-681

<50 CWE-327, CWE-396, CWE-617, CWE-209, CWE-459, CWE-526, CWE-325,
CWE-338, CWE-390, CWE-382, CWE-483, CWE-486, CWE-586, CWE-533,
CWE-395, CWE-698, CWE-481, CWE-523, CWE-759, CWE-535, CWE-572,
CWE-253, CWE-484, CWE-379, CWE-597, CWE-252, CWE-605, CWE-614,
CWE-584, CWE-329, CWE-336, CWE-598, CWE-378, CWE-478, CWE-613,
CWE-534, CWE-539, CWE-615, CWE-549, CWE-114, CWE-226, CWE-760,
CWE-482, CWE-570, CWE-571, CWE-383, CWE-835, CWE-833, CWE-404,
CWE-581, CWE-499, CWE-568, CWE-397, CWE-580, CWE-582, CWE-500,
CWE-772, CWE-764, CWE-561, CWE-609, CWE-491, CWE-775, CWE-674,
CWE-585, CWE-607, CWE-765, CWE-832, CWE-111, CWE-667, CWE-579,
CWE-248, CWE-600
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B Full results

This section contains the raw averages for all models we tested in all experiments of this

thesis.

Table B1: Full results for the C/C++ vulnerability detection models

Model Lay Sam Loss Rew A(%) P(%) TPR(%) TNR(%) FPR(%) FNR(%) F1(%)
VDP ? ? ? ? ? 86.9 83.9 ? 5.1 16.1 85.4
1 1 50 bin 3 81.2 72.2 94.5 70.5 29.5 5.5 81.8
2 1 50 bin - 83.0 78.2 86.5 80.1 19.9 13.5 82.0
3 1 50 cat 3 80.5 71.1 95.4 68.4 31.6 4.6 81.3
4 1 50 cat - 82.8 83.2 77.1 87.4 12.6 22.9 80.1
5 1 75 bin 3 82.7 68.9 92.1 77.6 22.4 7.9 78.8
6 1 75 bin - 84.2 75.4 82.2 85.3 14.7 17.8 78.5
7 1 75 cat 3 82.9 70.7 88.2 80.1 19.9 11.8 78.3
8 1 75 cat - 84.6 79.6 76.2 89.1 10.9 23.8 77.4
9 1 100 bin 3 84.5 67.6 88.7 82.8 17.2 11.3 76.7
10 1 100 bin - 85.9 82.8 65.4 94.2 5.8 34.6 72.5
11 1 100 cat 3 84.3 68.0 86.1 83.5 16.5 13.9 75.9
12 1 100 cat - 85.8 82.4 64.9 94.2 5.8 35.1 72.4
13 2 50 bin 3 82.3 74.0 93.1 73.7 26.3 6.9 82.4
14 2 50 bin - 84.1 79.9 86.1 82.4 17.6 13.9 82.7
15 2 50 cat 3 82.0 73.5 93.7 72.5 27.5 6.3 82.2
16 2 50 cat - 84.0 80.0 85.5 82.6 17.4 14.3 82.7
17 2 75 bin 3 82.8 69.2 91.6 78.1 21.9 8.4 78.8
18 2 75 bin - 85.0 81.1 74.6 90.6 9.4 25.4 77.6
19 2 75 cat 3 82.9 70.3 89.7 79.2 20.8 10.3 78.6
20 2 75 cat - 84.4 81.9 71.7 91.2 8.8 28.3 76.2
21 2 100 bin 3 83.9 66.3 89.8 81.5 18.5 10.2 76.2
22 2 100 bin - 86.4 80.1 70.3 92.9 7.1 29.7 74.8
23 2 100 cat 3 83.3 65.2 90.7 80.4 19.6 9.3 75.8
24 2 100 cat - 86.1 83.0 65.4 94.5 5.5 34.6 73.0
25 3 50 bin 3 81.2 72.1 95.0 70.1 29.9 5.0 81.9
26 3 50 bin - 83.3 77.4 88.8 78.8 21.2 11.0 82.5
27 3 50 cat 3 79.3 69.7 95.9 66.0 34.0 4.1 80.7
28 3 50 cat - 84.0 81.2 83.6 84.1 15.9 16.2 82.5
29 3 75 bin 3 83.3 70.0 92.0 78.6 21.4 8.0 79.5
30 3 75 bin - 84.8 75.2 84.9 84.8 15.2 15.1 79.7
31 3 75 cat 3 81.5 67.1 92.3 75.7 24.3 7.7 77.7
32 3 75 cat - 84.5 81.1 72.8 90.8 9.2 27.2 76.7
33 3 100 bin 3 83.2 65.0 90.4 80.2 19.8 9.6 75.6
34 3 100 bin - 86.8 78.9 73.8 92.0 8.0 26.2 76.2
35 3 100 cat 3 83.5 65.8 89.5 81.1 18.9 10.5 75.8
36 3 100 cat - 86.2 83.2 66.7 94.1 5.9 33.3 73.4
37 4 50 bin 3 80.8 70.3 96.4 68.7 32.9 3.6 81.3
38 4 50 bin - 83.8 77.7 90.7 82.3 21.0 9.3 83.7
39 4 50 cat 3 80.5 70.1 96.1 68.7 33.0 3.9 81.1
40 4 50 cat - 83.1 80.6 81.6 84.0 15.9 18.4 81.0
41 4 75 bin 3 81.9 68.1 90.0 77.4 22.9 10.0 77.4
42 4 75 bin - 83.7 72.9 85.9 84.5 17.2 14.1 78.8
43 4 75 cat 3 82.0 68.6 90.5 76.9 22.3 9.5 78.0
44 4 75 cat - 84.6 80.3 73.7 88.8 9.8 26.3 76.8
45 4 100 bin 3 82.9 65.3 89.9 79.7 19.3 10.1 75.7
46 4 100 bin - 85.5 76.1 70.1 92.5 8.9 29.9 73.0
47 4 100 cat 3 84.0 68.6 81.2 85.0 15.7 18.8 73.6
48 4 100 cat - 86.2 77.3 75.4 91.9 9.0 24.6 76.3

Notes:
(I) Parameters: Lay=layers, Sam=Sampling, Loss=Loss function, Rew=Reweighting
(II) Loss abbreviations: bin=binary crossentropy, cat=categorical crossentropy
(III) Metrics: A=Accuracy, P=Precision, TPR=True positive rate, TNR=True negative rate, FPR=False positive rate,
FNR=False negative rate, F1=F1 score
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B Full results

Table B2: Studies

Model Dataset Size Thr Epoch Tok Res Rew A(%) P(%) TPR(%) TNR(%) F1(%)
1 KB fullKB 1 4 50 0.25 1 34.77 31.30 98.78 7.50 47.52
2 KB fullKB 1 4 50 0.25 0 72.34 58.58 38.31 86.84 44.21
3 KB fullKB 1 4 50 0.5 1 53.95 25.98 85.63 47.21 39.73
4 KB fullKB 1 4 50 0.5 0 83.74 79.06 10.68 99.30 18.69
5 KB fullKB 1 4 50 0.75 1 61.11 21.38 79.07 58.56 33.63
6 KB fullKB 1 4 50 0.75 0 88.34 80.88 8.47 99.69 15.12
7 KB fullKB 1 4 50 1 1 66.53 18.89 74.79 65.65 30.12
8 KB fullKB 1 4 50 1 0 91.01 84.11 8.23 99.83 14.95
9 KB fullKB 1 10 50 0.25 1 42.78 34.09 97.07 19.65 50.42
10 KB fullKB 1 10 50 0.25 0 74.94 64.84 35.78 91.62 45.74
11 KB fullKB 1 10 50 0.5 1 52.65 25.87 88.27 45.06 39.86
12 KB fullKB 1 10 50 0.5 0 84.30 81.64 13.81 99.31 23.55
13 KB fullKB 1 10 50 0.75 1 65.34 23.30 77.79 63.57 35.85
14 KB fullKB 1 10 50 0.75 0 88.87 79.51 15.23 99.33 25.22
15 KB fullKB 1 10 50 1 1 72.88 21.85 68.20 73.38 32.85
16 KB fullKB 1 10 50 1 0 91.20 79.67 11.78 99.66 20.45
17 KB fullKB 1 10 75 0.25 1 46.30 35.53 95.50 25.35 51.69
18 KB fullKB 1 10 75 0.25 0 75.04 66.76 35.07 92.06 44.96
19 KB fullKB 1 10 75 0.5 1 55.83 27.42 86.75 49.24 41.42
20 KB fullKB 1 10 75 0.5 0 84.57 71.62 20.59 98.20 31.71
21 KB fullKB 1 10 75 0.75 1 66.44 24.16 77.72 64.84 36.72
22 KB fullKB 1 10 75 0.75 0 88.83 76.46 16.62 99.09 26.56
23 KB fullKB 1 10 75 1 1 70.88 21.28 73.02 70.66 32.88
24 KB fullKB 1 10 75 1 0 91.23 86.97 11.87 99.79 20.80
25 KB fullKB 1 10 100 0.25 1 44.98 34.98 97.22 22.73 51.42
26 KB fullKB 1 10 100 0.25 0 76.01 66.79 40.87 90.97 50.17
27 KB fullKB 1 10 100 0.5 1 58.92 28.16 85.22 53.32 42.26
28 KB fullKB 1 10 100 0.5 0 84.41 67.62 22.78 97.53 33.64
29 KB fullKB 1 10 100 0.75 1 68.22 25.06 77.69 66.88 37.87
30 KB fullKB 1 10 100 0.75 0 88.91 81.61 14.09 99.53 23.95
31 KB fullKB 1 10 100 1 1 74.32 22.95 68.05 74.99 34.06
32 KB fullKB 1 10 100 1 0 91.21 82.41 12.12 99.63 20.79

(a) Full results for the Java vulnerability detection models trained on project KB dataset

Model Dataset Size Thr Epoch Tok Res Rew A(%) P(%) TPR(%) TNR(%) F1(%)
1 Juliet fullJ 1 4 50 0.5 1 87.88 77.57 99.42 79.77 87.14
2 Juliet fullJ 1 4 50 0.5 0 87.41 81.11 90.64 85.15 85.47
3 Juliet fullJ 1 4 50 0.75 1 87.02 71.33 99.22 81.30 83.00
4 Juliet fullJ 1 4 50 0.75 0 88.01 88.76 71.88 95.58 79.22
5 Juliet fullJ 1 4 50 1 1 85.66 64.60 99.39 80.83 78.30
6 Juliet fullJ 1 4 50 1 0 89.76 89.85 69.02 97.06 77.76
7 Juliet fullJ 1 10 50 0.5 1 89.21 79.35 99.89 81.68 88.44
9 Juliet fullJ 1 10 50 0.75 1 88.08 73.16 99.04 82.94 84.16
10 Juliet fullJ 1 10 50 0.75 0 89.64 82.26 86.20 91.25 84.17
11 Juliet fullJ 1 10 50 1 1 86.57 66.14 99.24 82.11 79.38
12 Juliet fullJ 1 10 50 1 0 90.14 96.03 64.82 99.06 77.40
13 Juliet fullKB 1 10 50 0.5 1 88.24 78.11 99.39 80.39 87.47
14 Juliet fullKB 1 10 50 0.5 0 88.95 81.19 95.50 84.34 87.69
15 Juliet fullKB 1 10 50 0.75 1 87.57 72.23 99.22 82.11 83.60
16 Juliet fullKB 1 10 50 0.75 0 89.13 85.90 78.99 93.89 82.26
17 Juliet fullKB 1 10 50 1 1 86.44 65.97 98.95 82.04 79.16
18 Juliet fullKB 1 10 50 1 0 89.92 96.60 63.57 99.19 76.64
19 Juliet 35k 1 10 50 0.5 1 87.73 77.33 99.55 79.41 87.03
20 Juliet 35k 1 10 50 0.5 0 88.06 80.91 93.85 83.99 86.60
21 Juliet 35k 1 10 50 0.75 1 86.17 69.89 99.71 79.81 82.17
22 Juliet 35k 1 10 50 0.75 0 88.42 84.15 78.95 92.86 81.26
23 Juliet 35k 1 10 50 1 1 86.14 65.49 98.79 81.68 78.77
24 Juliet 35k 1 10 50 1 0 89.68 93.74 65.01 98.37 76.62
25 Juliet 35k 100 10 50 0.5 1 88.33 78.10 99.69 80.34 87.58
26 Juliet 35k 100 10 50 0.5 0 88.12 82.62 90.42 86.49 86.25
27 Juliet 35k 100 10 50 0.75 1 86.71 70.83 99.25 80.83 82.66
28 Juliet 35k 100 10 50 0.75 0 88.07 82.78 79.48 92.09 80.93
29 Juliet 35k 100 10 50 1 1 85.67 64.63 99.18 80.92 78.26
30 Juliet 35k 100 10 50 1 0 89.77 90.12 68.93 97.10 77.76
31 Juliet 35k 1000 10 50 0.5 1 87.90 76.98 99.72 79.96 86.88
32 Juliet 35k 1000 10 50 0.5 0 88.12 77.64 98.94 80.85 87.01
33 Juliet 35k 1000 10 50 0.75 1 86.85 70.30 99.50 81.19 82.39
34 Juliet 35k 1000 10 50 0.75 0 88.64 84.30 78.01 93.40 80.90
35 Juliet 35k 1000 10 50 1 1 85.79 64.02 99.25 81.27 77.83
36 Juliet 35k 1000 10 50 1 0 89.39 88.52 67.06 96.89 75.98

(b) Full results for the Java vulnerability detection models trained on Juliet dataset

Notes:
(I) Parameters: Thr=threshold for minimum frequency for a CWE, Tok=Tokens, Res=Resampling, Rew=Reweighting
(II) Sample size explanation: fullKB=full size of project KB dataset, fullJ=full size of Juliet dataset, 35K=35.000 code
gadget samples
(III) Metrics: A=Accuracy, P=Precision, TPR=True positive rate, TNR=True negative rate, F1=F1 score
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C Additional tables and figures

C.1 Vulnerability detection in C source code

This subsection presents in a concise table the ANOVA results supporting the conclusions

from subsection 5.2.2.

P TPR TNR

Layers
p 0.41 0.59 0.53
ES 1.2% 0.8% 0.9%

Resampling
p 0.05∗ 0.01∗ 0.01∗

ES 2.5% 20.5% 32.1%

Reweighting
p 0.01∗ 0.01∗ 0.01∗

ES 67.2% 51.9% 49.9%

Loss
p 0.12 0.03∗ 0.225
ES 1.0% 1.9% 0.6%

Notes:

p refers to p-value of the ANOVA test

ES is the percentage of total variance explained

Stars (∗) indicate significance at 5% confidence level

Table C1: Summary of ANOVA results for C/C++

C.2 Vulnerability detection in Java source code

This subsection presents additional results supporting the conclusions from subsection 6.2.1.

We first present visual evidence in the form of boxplots of performance metrics across re-

sampling and reweighting (separately for project KB dataset and for Juliet dataset). We

also present the means and standard deviations that facilitate the comparisons. Finally,

we present a synopsis of the ANOVA tests formally testing for significant differences.

P TPR TNR
Res µ σ µ σ µ σ

25% 47.2 15.7 67.5 32.0 51.4 39.6
50% 53.1 28.6 49.6 38.5 72.7 28.2
75% 51.2 30.2 45.1 34.3 80.3 19.9
100% 51.1 31.8 40.7 32.0 84.6 16.2
#Runs 40 40 40

P TPR TNR
Res µ σ µ σ µ σ

50% 79.7 1.8 97.1 4.7 82.5 2.5
75% 78.9 7.5 89.1 11.8 87.8 6.1
100% 79.1 14.6 83.1 16.9 89.8 8,6
#Runs 40 40 40

Table C2: Mean and standard deviation across resamplings for project KB (left) and Juliet
(right)
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Table C3: Effect of resampling on models
trained with project KB dataset

Table C4: Effect of resampling on models
trained with Juliet dataset

P TPR TNR
Rew µ σ µ σ µ σ

With 25.3 5.1 83.7 11.0 47.6 22.9
Without 76.0 11.0 17.8 12.6 96.9 5.5
#Runs 80 80 80

P TPR TNR
Rew µ σ µ σ µ σ

With 72.0 5.5 99.4 0.5 81.4 1.1
Without 86.4 6.4 80.1 12.9 91.9 6.2
#Runs 60 60 60

Table C5: Mean and standard deviation across reweighting for project KB (left) and Juliet
(right)

Table C6: Effect of reweighting on mod-
els trained with project KB dataset

Table C7: Effect of reweighting on mod-
els trained with Juliet dataset

Table C8: ANOVA results for Java adaptation

P TPR TNR

Epochs
p 0.83 0.95 0.62
ES 0.1% 0.1% 0.3%

Resampling
p 0.92 0.08 0.001∗
ES 0.7% 8.4% 18.5%

Reweighting
p 0.01∗ 0.01∗ 0.01∗
ES 89.9% 88.8% 69.3%

(a) ANOVA results for KB trained models

P TPR TNR

Epochs
p 0.77 0.39 0.95
ES 0.2% 1.3% 0.1%

Resampling
p 0.97 0.01∗ 0.01∗
ES 0.1% 18.8% 20.1%

Reweighting
p 0.01∗ 0.01∗ 0.01∗
ES 60.2% 53.0% 58.6%

(b) ANOVA results for Juliet trained models

Notes for both tables: p refers to p-value of the ANOVA test, ES is the percentage of total variance explained, and
stars (∗) indicate significance at 5% confidence level

69


	1 Introduction
	2 Background
	2.1 Defects in source code
	2.2 Defect detection and correction
	2.3 Machine learning for source code
	2.3.1 Source code representation
	2.3.2 Bidirectional Long Short-Term Memory
	2.3.3 Performance metrics
	2.3.4 Machine learning challenges


	3 Systematic literature review of related works
	3.1 Overview and methodology
	3.1.1 Inclusion and exclusion criteria
	3.1.2 Coding of the selected papers
	3.1.3 The code book

	3.2 Analysis and takeaways
	3.2.1 Detection vs. correction ability and defect types
	3.2.2 Source code representation
	3.2.3 Languages
	3.2.4 Machine learning approaches/models
	3.2.5 Datasets and results

	3.3 Discussion
	3.4 Challenges and research directions

	4 Design and implementation
	4.1 Architecture of the vulnerability detection system
	4.1.1 Adaptation between languages

	4.2 Implementation and overview of experimental setup
	4.2.1 Datasets


	5 Vulnerability detection in C/C++ source code
	5.1 Experimental treatments
	5.2 Parameter exploration results
	5.2.1 Overview
	5.2.2 Effect of parameters
	5.2.3 Comparison with VulDeePecker


	6 Vulnerability detection in Java source code
	6.1 Experimental treatments
	6.2 Evaluation
	6.2.1 Overview and parameter exploration
	6.2.2 Dataset exploration


	7 Discussion
	7.1 Challenges and future work

	References
	Appendix
	A Supporting material for Java datasets
	B Full results
	C Additional tables and figures
	C.1 Vulnerability detection in C source code
	C.2 Vulnerability detection in Java source code



