
About VERSEN
VERSEN is the Dutch National
Association for Software Engineering.
The mission of the VERSEN association
is to bring together researchers,
educators and practitioners in the
field of software engineering in The
Netherlands, who share the common
goals of advancing the field of
software engineering, raising public
awareness of the challenges and
opportunities of the field, acquiring
funding for groundbreaking research,
and transferring academic results to
broader society.

www.versen.nl

Manifesto on
Software Research
and Education in
the Netherlands

*** By VERSEN

Software plays a role in almost
every aspect of our daily lives.
As software becomes increasingly
complex, ensuring correctness,
safety, security and flexibility
is a major challenge. Software
research and education in the
Netherlands are under siege due to
the steeply increasing teaching load
and decreasing funding. A serious
investment in software research and
education is therefore urgently
needed.
The Netherlands wants to take the
lead in digitization and wants to
influence technological developments.
To achieve this goal, excellent
research and education in software
creation are a prerequisite. The
industry of software-intensive
systems is crucial for our economy;
5.5% of the total workforce in the
Netherlands works in ICT.
Well-educated software engineers
enable the success of innovative
companies, but they are at the moment
starving for talent and qualified
software professionals.
Research in computer science and
software engineering has produced
many powerful methods, techniques,
theories, and tools for building
correct, secure and maintainable
software systems. However, with the
lightning-fast technological change
and churn, many new challenges for

software have come into existence.

VEReniging Software Engineering Nederland

VEReniging Software Engineering Nederland

Software Reliability
How to ensure that software behaves as expected?

This does not only concern the basic intended

functionality, but also quality aspects such

as security, performance, energy-efficiency,

scaleability, sustainability and usability.

All software contains errors, and the earlier they

are detected (or prevented), the better.

Urgent research questions in software reliability

are:

•	 How to create software that is correct and

reliable by construction?

•	 How to create software that respects required

quality aspects (see above) by design?

•	 How to scale verification techniques to check

software for bugs or inconsistencies?

•	 Humans are the weakest link in using software-

intensive systems. How to design software that

actively detects, prevents and mitigates the

consequences of human error?

Challenges

Software Maintainability
and Evolution
After software has been created, it has to be

maintained and adapted over time. If this is not

done effectively, the software becomes more and more

complex, and the costs of maintenance and evolution

become unsurmountable. Urgent challenges are:

•	 Organisations lose control over software and

they can’t gauge which part of their software

is worth maintaining and which parts need to be

re-developed. How to analyse and prioritise such

maintenance tasks?

•	 Modern software cannot cope with continuous and

unpredictable change. How to facilitate software

that is changeable by design?

•	 Socio-technical aspects help, or hinder,

achieving maintainability goals. How do we

organize software development to embrace and

facilitate change?

Designed by: Sponsored by:

Efficient Engineering of
Software
Software engineering is exceeding human capabilities

in termcvvenges in efficient engineering are:

•	 How to make software development more effective

and efficient, in order to continuously deliver?

•	 How to create efficient tools that help us to

develop software that is reduced in size and

complexity?

•	 What can we learn from existing software systems?

•	 Which software engineering practices are

effective and productive?

•	 How to use even more automation in software

engineering to bring it to the next level?

Software Education

The software industry in the Netherlands employs

hundreds of thousands of developers, which all

need further professional development and life-long

learning.

Scalable practices are needed for:

•	 Teaching technical skills for software

development such as design, programming,

programming languages, testing, frameworks, and

tooling.

•	 Teaching soft skills such as collaboration,

communication, and giving feedback.

•	 Attracting and retaining a diverse student

population.

To address these challenges, we need new educational

practices, new tooling that provides high-quality

feedback on software system quality, and new ways

to assess software development skills. These require

not only pedagogical soundness, but also the ability

to take into account the competencies of the user to

give feedback and help, and to assess skills.

Our Goal
By addressing all these challenges we intend to:

•	 Increase the number of software engineers

graduating at higher education institutes.

•	 Increase the quality of graduates and

employees.

•	 Provide easier access to development

opportunities.

•	 Increase the diversity of the student
population and workforce.

